inorganic compounds
The mixed-metal tris(disulfide) thiophosphate, KNb1.77Ta0.23PS10
aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
*Correspondence e-mail: hsyun@ajou.ac.kr
The title compound catena-poly[potassium [tri-μ-disulfido-μ-tetrathiophosphato-di[niobate(IV)/tantalate(IV)(0.885/0.115)]]], has been obtained through the reaction of the elements with KCl. The title compound is isostructural with KNb2PS10, with the Nb sites occupied by statistically disordered Nb (88.5%) and Ta (11.5%) atoms. The structure is composed of anionic ∞1[M2PS10]− chains along [100] (M = Nb/Ta) and K+ ions. This chain is built up from distorted bicapped trigonal prisms [MS8] and [PS4] tetrahedra. There are no interchain bonding interactions, except for electrostatic and The S22− and S2− anionic species and the M4+–M4+ pair [M—M = 2.8939 (3) Å] are observed. The classical charge balance is represented by [K+][M4+]2[PS43−][S22−]3.
CCDC reference: 980749
Related literature
For the related mixed-metallic phase KNb1.75V0.25PS10, see: Yu & Yun (2011). For related quaternary compounds, see: Goh et al. (2002); Do & Yun (1996, 2009); Kim & Yun (2002); Kwak et al. (2007); Bang et al. (2008) and for quintenary compounds, see: Kwak & Yun (2008); Dong et al. (2005a,b). For Cs0.5Ag0.5Nb2PS10, see: Park & Yun (2010). For a typical Nb4+—Nb4+ bond length, see: Angenault et al. (2000).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 2006); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 980749
10.1107/S1600536814000592/ru2056sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000592/ru2056Isup2.hkl
The title compound, KNb1.77Ta0.23PS10 was prepared by the reaction of the elemental with the use of the reactive alkali metal halides-flux technique. A combination of the pure elements, Nb powder (CERAC 99.8%), Ta powder (CERAC 99.9%), P powder(Aldrich 99.9%), and S powder (Aldrich 99.999%) were mixed in a fused silica tube in a molar ratio of Nb: Ta: P: S = 1:1:1:10 with KCl (CERAC 99.9%). The mass ratio of the reactants and the alkali metal halides
was 1:1. The tube was evacuated to 0.133 Pa, sealed and heated gradually (70 K/h) to 1073 K, where it was kept for 72 h. The tube was cooled to 473 K at 6 K/h and then was quenched to room temperature. The excess halides were removed with distilled water and black needle-shaped single crystals were obtained. The crystals are stable in air and water. Qualitative analysis of these crystals using XRF showed the presence of K, Nb, Ta, P, and S.The
of the model with occupational disorder on the M site caused significant decrease of the R-factor (wR2 = 0.042) in comparison if the full occupation by either metal had been considered (wR2 > 0.077). Also the displacement parameters in the disordered model became plausible. The disordered atoms were supposed to have the same displacement parameters. With the nonstoichiometric model, the parameter remained the same. The large anisotropic displacement parameters for alkali metals are also found in the related compounds such as KNb2PS10 (Do & Yun, 1996). The highest residual electron density is 0.40 Å from the M2 site and the deepest hole is 0.64 Å from the M1 site.A number of monovalent metal Nb thiophosphates have been investigated. Among them are NaNb2PS10 (Goh et al., 2002), KNb2PS10 (Do & Yun, 1996), RbNb2PS10 (Kim & Yun, 2002), CsNb2PS10 (Kwak et al., 2007), TlNb2PS10 (Bang et al., 2008), Ag0.88Nb2PS10 (Do & Yun, 2009), K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008), K0.5Ag0.Nb2PS10 (Dong et al., 2005a), Rb0.38Ag0.5Nb2PS10 (Dong et al., 2005b), Cs0.5Ag0.5Nb2PS10 (Park & Yun, 2010), and KNb1.75V0.25PS10 (Yu & Yun, 2011). As a result of efforts to find new phases in this family, we have found a mixed-metallic phase,. In this paper we report the synthesis and structure of another mixed-metallic quintenary thiophosphate, KNb1.77Ta0.23PS10.
The structure of KNb1.77Ta0.23PS10 is isostructural with KNb2PS10 and mixed-metallic KNb1.75V0.25PS10. Detailed description of the structure is given previously (Do & Yun, 1996; Yu & Yun, 2011). The title compound is made up of the usual bicapped trigonal biprismatic [M2S12] unit (M=Nb/Ta) and the tetrahedral [PS4] group. The M sites are occupied by the statistically disordered Nb(88.5%) and Ta(11.5%) atoms. The bicapped biprismatic [M2S12] units and its neighboring tetrahedral [PS4] groups are given in Figure 1. These [M2S12] units are linked together to form the one-dimensional chains, ∞1[M2PS10-] by sharing the S22- prism edge.
The M atoms associate in pairs with M—M interactions alternating in the sequence of one short (2.8939 (3) Å) and one long (3.7670 (3) Å) distances. The short distance is typical of Nb4+—Nb4+ bonding interactions (Angenault et al., 2000). There are no interchain bonding interactions except the
and the K+ ions in this van der Waals gap stabilize the structure through the electrostatic interactions (Figure 2).The structural studies of the three different crystals from the same reaction tube implied that the stoichiometry of each metal can vary, KNb2 - xTaxPS10, 0.18≤x≤0.26 and they seem to form a random substitutional However Ta analogue of this phase, ATa2PS10 has never been synthsized and thus the maximum x should be small. Finally, the classical charge balance of this phase can be represented by [K+][M4+]2[PS43-][S22-]3.
For the related mixed-metallic phase KNb1.75V0.25PS10, see: Yu & Yun (2011). For related quaternary compounds, see: Goh et al. (2002); Do & Yun (1996, 2009); Kim & Yun (2002); Kwak et al. (2007); Bang et al. (2008) and for quintenary compounds, see: Kwak & Yun (2008); Dong et al. (2005a,b). For Cs0.5Ag0.5Nb2PS10, see: Park & Yun (2010). For a typical Nb4+—Nb4+ bond length, see: Angenault et al. (2000).
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. A view of the bicapped trigonal biprismatic [M2S12] unit (M=Nb/Ta) and its neighboring tetrahedral [PS4] groups. Yellow circles are S atoms, blue circles are Nb atoms, pink and dark green circles are P and K atoms, respectively. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (v) 0.5 - x, y, -0.5 + z; (vi) -0.5 + x, -y, z; (viii) 1 - x, -y, -0.5 + z] | |
Fig. 2. View of the KNb1.77Ta0.23PS10 down the b axis showing the one-dimensional nature of the compound. Atoms are as marked in Fig. 1. |
KNb1.77Ta0.23PS10 | F(000) = 1133 |
Mr = 596.52 | Dx = 3.03 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 10926 reflections |
a = 13.0049 (3) Å | θ = 3.1–27.4° |
b = 7.5262 (2) Å | µ = 5.45 mm−1 |
c = 13.3616 (3) Å | T = 290 K |
V = 1307.81 (6) Å3 | Needle, black |
Z = 4 | 0.32 × 0.06 × 0.04 mm |
Rigaku R-AXIS RAPID S diffractometer | 2974 independent reflections |
Radiation source: sealed X-ray tube | 2842 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −16→16 |
Tmin = 0.724, Tmax = 1.000 | k = −9→9 |
12074 measured reflections | l = −17→17 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0132P)2 + 0.4965P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.019 | (Δ/σ)max = 0.001 |
wR(F2) = 0.040 | Δρmax = 0.40 e Å−3 |
S = 1.08 | Δρmin = −0.64 e Å−3 |
2974 reflections | Absolute structure: Flack (1983) |
130 parameters | Absolute structure parameter: 0.102 (14) |
KNb1.77Ta0.23PS10 | V = 1307.81 (6) Å3 |
Mr = 596.52 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 13.0049 (3) Å | µ = 5.45 mm−1 |
b = 7.5262 (2) Å | T = 290 K |
c = 13.3616 (3) Å | 0.32 × 0.06 × 0.04 mm |
Rigaku R-AXIS RAPID S diffractometer | 2974 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2842 reflections with I > 2σ(I) |
Tmin = 0.724, Tmax = 1.000 | Rint = 0.031 |
12074 measured reflections |
R[F2 > 2σ(F2)] = 0.019 | 1 restraint |
wR(F2) = 0.040 | Δρmax = 0.40 e Å−3 |
S = 1.08 | Δρmin = −0.64 e Å−3 |
2974 reflections | Absolute structure: Flack (1983) |
130 parameters | Absolute structure parameter: 0.102 (14) |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
K | 0.38318 (10) | 0.50405 (16) | 0.30118 (10) | 0.0643 (3) | |
Nb1 | 0.024329 (14) | 0.05323 (3) | 0.03456 (2) | 0.01373 (8) | 0.8870 (16) |
Ta1 | 0.024329 (14) | 0.05323 (3) | 0.03456 (2) | 0.01373 (8) | 0.1130 (16) |
Nb2 | 0.313802 (14) | 0.07133 (3) | 0.03507 (2) | 0.01349 (8) | 0.8848 (16) |
Ta2 | 0.313802 (14) | 0.07133 (3) | 0.03507 (2) | 0.01349 (8) | 0.1152 (16) |
P | 0.16059 (6) | 0.40111 (13) | 0.11222 (8) | 0.02029 (19) | |
S1 | 0.03152 (5) | 0.39563 (11) | 0.02331 (9) | 0.0241 (2) | |
S2 | 0.05537 (7) | 0.15129 (15) | 0.40771 (7) | 0.0231 (2) | |
S3 | 0.15181 (9) | 0.58446 (14) | 0.21735 (9) | 0.0393 (3) | |
S4 | 0.16755 (6) | 0.14082 (12) | 0.16603 (6) | 0.01689 (19) | |
S5 | 0.29233 (6) | 0.41195 (10) | 0.02861 (11) | 0.0285 (2) | |
S6 | 0.33066 (6) | 0.05475 (12) | 0.40561 (7) | 0.0189 (2) | |
S7 | 0.44837 (7) | 0.13315 (14) | 0.16957 (6) | 0.0207 (2) | |
S8 | 0.60107 (7) | 0.10612 (14) | 0.39842 (7) | 0.0235 (2) | |
S9 | 0.60965 (7) | 0.11936 (13) | 0.66622 (6) | 0.0201 (2) | |
S10 | 0.67408 (5) | 0.16023 (11) | 0.00053 (6) | 0.01866 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K | 0.0846 (8) | 0.0454 (7) | 0.0629 (8) | 0.0038 (6) | −0.0317 (7) | 0.0034 (6) |
Nb1 | 0.00877 (11) | 0.01781 (13) | 0.01460 (12) | −0.00086 (7) | 0.00002 (16) | 0.00118 (14) |
Ta1 | 0.00877 (11) | 0.01781 (13) | 0.01460 (12) | −0.00086 (7) | 0.00002 (16) | 0.00118 (14) |
Nb2 | 0.00838 (11) | 0.01692 (13) | 0.01516 (12) | 0.00106 (7) | 0.00005 (15) | −0.00009 (14) |
Ta2 | 0.00838 (11) | 0.01692 (13) | 0.01516 (12) | 0.00106 (7) | 0.00005 (15) | −0.00009 (14) |
P | 0.0158 (4) | 0.0172 (4) | 0.0279 (5) | 0.0018 (3) | −0.0010 (4) | −0.0027 (4) |
S1 | 0.0156 (3) | 0.0208 (4) | 0.0359 (6) | 0.0022 (3) | −0.0026 (5) | 0.0045 (5) |
S2 | 0.0139 (4) | 0.0342 (6) | 0.0213 (5) | −0.0031 (4) | −0.0019 (4) | 0.0071 (4) |
S3 | 0.0450 (6) | 0.0281 (5) | 0.0449 (7) | 0.0070 (5) | −0.0044 (5) | −0.0179 (5) |
S4 | 0.0138 (4) | 0.0200 (5) | 0.0169 (4) | 0.0004 (3) | 0.0002 (3) | −0.0011 (4) |
S5 | 0.0160 (3) | 0.0192 (4) | 0.0503 (6) | −0.0005 (3) | 0.0068 (6) | 0.0056 (6) |
S6 | 0.0125 (4) | 0.0275 (5) | 0.0166 (4) | 0.0000 (3) | 0.0002 (3) | 0.0027 (4) |
S7 | 0.0168 (4) | 0.0267 (5) | 0.0185 (5) | 0.0007 (4) | −0.0008 (4) | −0.0050 (4) |
S8 | 0.0150 (4) | 0.0354 (6) | 0.0202 (5) | 0.0047 (4) | 0.0029 (4) | 0.0084 (5) |
S9 | 0.0166 (4) | 0.0253 (5) | 0.0183 (5) | 0.0017 (4) | −0.0009 (4) | −0.0033 (4) |
S10 | 0.0152 (4) | 0.0169 (4) | 0.0239 (4) | −0.0001 (3) | −0.0012 (3) | 0.0018 (3) |
K—S3 | 3.2671 (16) | S2—S8vi | 2.0302 (16) |
K—S1i | 3.2720 (16) | S2—Ta2i | 2.4805 (9) |
K—S9ii | 3.3606 (15) | S2—Nb2i | 2.4805 (9) |
K—S7 | 3.4064 (16) | S2—Nb1x | 2.5133 (10) |
K—S2iii | 3.7107 (16) | S2—Ta1x | 2.5133 (10) |
K—S6 | 3.7213 (15) | S2—Kxi | 3.7107 (16) |
K—S3iii | 3.7288 (19) | S3—Kxi | 3.7288 (19) |
K—S10iv | 3.7461 (16) | S6—S10xii | 2.0568 (13) |
Nb1—S8v | 2.4753 (10) | S6—Ta1i | 2.5545 (9) |
Nb1—S7vi | 2.4895 (9) | S6—Nb1i | 2.5545 (9) |
Nb1—S2vii | 2.5133 (10) | S6—Ta2i | 2.5568 (9) |
Nb1—S9v | 2.5255 (9) | S6—Nb2i | 2.5568 (9) |
Nb1—S6v | 2.5545 (9) | S7—S9viii | 2.0452 (15) |
Nb1—S10vi | 2.5653 (8) | S7—Ta1ix | 2.4895 (9) |
Nb1—S1 | 2.5831 (9) | S7—Nb1ix | 2.4895 (9) |
Nb1—S4 | 2.6438 (8) | S8—S2ix | 2.0302 (17) |
Nb1—Nb2vi | 2.8939 (3) | S8—Nb1i | 2.4753 (10) |
Nb1—Ta2vi | 2.8939 (3) | S8—Ta1i | 2.4753 (10) |
Nb2—S9viii | 2.4742 (9) | S8—Nb2xii | 2.5185 (10) |
Nb2—S2v | 2.4805 (9) | S8—Ta2xii | 2.5185 (10) |
Nb2—S8viii | 2.5185 (10) | S9—S7xii | 2.0452 (15) |
Nb2—S7 | 2.5513 (9) | S9—Ta2xii | 2.4742 (9) |
Nb2—S6v | 2.5568 (9) | S9—Nb2xii | 2.4742 (9) |
Nb2—S10vi | 2.5597 (8) | S9—Nb1i | 2.5255 (9) |
Nb2—S5 | 2.5802 (8) | S9—Ta1i | 2.5255 (9) |
Nb2—S4 | 2.6369 (8) | S9—Kiv | 3.3606 (15) |
Nb2—Ta1ix | 2.8939 (3) | S10—S6viii | 2.0568 (13) |
Nb2—Nb1ix | 2.8939 (3) | S10—Ta2ix | 2.5597 (8) |
P—S3 | 1.9725 (14) | S10—Nb2ix | 2.5597 (8) |
P—S5 | 2.0470 (14) | S10—Nb1ix | 2.5653 (8) |
P—S1 | 2.0568 (13) | S10—Ta1ix | 2.5653 (8) |
P—S4 | 2.0888 (14) | S10—Kii | 3.7461 (16) |
S1—Kv | 3.2720 (16) | ||
S3—K—S1i | 132.02 (6) | S5—Nb2—Ta1ix | 115.097 (18) |
S3—K—S9ii | 71.66 (3) | S4—Nb2—Ta1ix | 138.44 (2) |
S1i—K—S9ii | 133.45 (4) | S9viii—Nb2—Nb1ix | 55.46 (2) |
S3—K—S7 | 101.77 (4) | S2v—Nb2—Nb1ix | 55.12 (2) |
S1i—K—S7 | 100.34 (4) | S8viii—Nb2—Nb1ix | 53.89 (2) |
S9ii—K—S7 | 114.03 (5) | S7—Nb2—Nb1ix | 53.97 (2) |
S3—K—S2iii | 123.90 (4) | S6v—Nb2—Nb1ix | 132.67 (2) |
S1i—K—S2iii | 67.78 (3) | S10vi—Nb2—Nb1ix | 116.78 (2) |
S9ii—K—S2iii | 66.39 (3) | S5—Nb2—Nb1ix | 115.097 (18) |
S7—K—S2iii | 128.37 (5) | S4—Nb2—Nb1ix | 138.44 (2) |
S3—K—S6 | 97.35 (4) | Ta1ix—Nb2—Nb1ix | 0.000 (14) |
S1i—K—S6 | 59.70 (3) | S3—P—S5 | 114.15 (6) |
S9ii—K—S6 | 166.57 (4) | S3—P—S1 | 112.22 (6) |
S7—K—S6 | 59.64 (3) | S5—P—S1 | 111.63 (7) |
S2iii—K—S6 | 127.02 (4) | S3—P—S4 | 114.42 (7) |
S3—K—S3iii | 142.46 (6) | S5—P—S4 | 100.89 (5) |
S1i—K—S3iii | 84.85 (3) | S1—P—S4 | 102.44 (5) |
S9ii—K—S3iii | 87.91 (4) | P—S1—Nb1 | 90.91 (4) |
S7—K—S3iii | 57.68 (3) | P—S1—Kv | 104.02 (5) |
S2iii—K—S3iii | 71.02 (3) | Nb1—S1—Kv | 108.29 (4) |
S6—K—S3iii | 97.02 (4) | S8vi—S2—Ta2i | 67.02 (4) |
S3—K—S10iv | 86.32 (4) | S8vi—S2—Nb2i | 67.02 (4) |
S1i—K—S10iv | 65.83 (3) | Ta2i—S2—Nb2i | 0.000 (15) |
S9ii—K—S10iv | 79.53 (3) | S8vi—S2—Nb1x | 65.01 (4) |
S7—K—S10iv | 165.76 (4) | Ta2i—S2—Nb1x | 70.83 (3) |
S2iii—K—S10iv | 51.37 (3) | Nb2i—S2—Nb1x | 70.83 (3) |
S6—K—S10iv | 108.05 (4) | S8vi—S2—Ta1x | 65.01 (4) |
S3iii—K—S10iv | 121.36 (4) | Ta2i—S2—Ta1x | 70.83 (3) |
S8v—Nb1—S7vi | 111.20 (3) | Nb2i—S2—Ta1x | 70.83 (3) |
S8v—Nb1—S2vii | 48.02 (4) | Nb1x—S2—Ta1x | 0.000 (11) |
S7vi—Nb1—S2vii | 88.85 (3) | S8vi—S2—Kxi | 145.11 (5) |
S8v—Nb1—S9v | 91.47 (3) | Ta2i—S2—Kxi | 147.85 (4) |
S7vi—Nb1—S9v | 48.13 (3) | Nb2i—S2—Kxi | 147.85 (4) |
S2vii—Nb1—S9v | 107.82 (3) | Nb1x—S2—Kxi | 115.97 (4) |
S8v—Nb1—S6v | 89.43 (3) | Ta1x—S2—Kxi | 115.97 (4) |
S7vi—Nb1—S6v | 141.65 (3) | P—S3—K | 93.51 (5) |
S2vii—Nb1—S6v | 81.51 (3) | P—S3—Kxi | 98.23 (5) |
S9v—Nb1—S6v | 168.03 (3) | K—S3—Kxi | 136.62 (6) |
S8v—Nb1—S10vi | 118.08 (3) | P—S4—Nb2 | 89.36 (4) |
S7vi—Nb1—S10vi | 94.41 (3) | P—S4—Nb1 | 88.54 (4) |
S2vii—Nb1—S10vi | 79.05 (3) | Nb2—S4—Nb1 | 91.02 (3) |
S9v—Nb1—S10vi | 140.41 (3) | P—S5—Nb2 | 91.88 (4) |
S6v—Nb1—S10vi | 47.37 (3) | S10xii—S6—Ta1i | 66.59 (3) |
S8v—Nb1—S1 | 79.67 (3) | S10xii—S6—Nb1i | 66.59 (3) |
S7vi—Nb1—S1 | 128.22 (3) | Ta1i—S6—Nb1i | 0.000 (13) |
S2vii—Nb1—S1 | 125.92 (3) | S10xii—S6—Ta2i | 66.37 (3) |
S9v—Nb1—S1 | 82.47 (3) | Ta1i—S6—Ta2i | 94.95 (3) |
S6v—Nb1—S1 | 85.96 (3) | Nb1i—S6—Ta2i | 94.95 (3) |
S10vi—Nb1—S1 | 125.95 (3) | S10xii—S6—Nb2i | 66.37 (3) |
S8v—Nb1—S4 | 155.83 (3) | Ta1i—S6—Nb2i | 94.95 (3) |
S7vi—Nb1—S4 | 86.48 (3) | Nb1i—S6—Nb2i | 94.95 (3) |
S2vii—Nb1—S4 | 153.05 (3) | Ta2i—S6—Nb2i | 0.000 (6) |
S9v—Nb1—S4 | 88.51 (3) | S10xii—S6—K | 162.09 (5) |
S6v—Nb1—S4 | 85.81 (3) | Ta1i—S6—K | 96.98 (3) |
S10vi—Nb1—S4 | 74.88 (3) | Nb1i—S6—K | 96.98 (3) |
S1—Nb1—S4 | 76.37 (3) | Ta2i—S6—K | 110.13 (4) |
S8v—Nb1—Nb2vi | 55.28 (2) | Nb2i—S6—K | 110.13 (4) |
S7vi—Nb1—Nb2vi | 55.97 (2) | S9viii—S7—Ta1ix | 66.86 (4) |
S2vii—Nb1—Nb2vi | 54.06 (2) | S9viii—S7—Nb1ix | 66.86 (4) |
S9v—Nb1—Nb2vi | 53.81 (2) | Ta1ix—S7—Nb1ix | 0.000 (14) |
S6v—Nb1—Nb2vi | 134.55 (2) | S9viii—S7—Nb2 | 64.03 (3) |
S10vi—Nb1—Nb2vi | 121.05 (2) | Ta1ix—S7—Nb2 | 70.06 (2) |
S1—Nb1—Nb2vi | 110.949 (17) | Nb1ix—S7—Nb2 | 70.06 (2) |
S4—Nb1—Nb2vi | 138.22 (2) | S9viii—S7—K | 132.92 (5) |
S8v—Nb1—Ta2vi | 55.28 (2) | Ta1ix—S7—K | 159.16 (5) |
S7vi—Nb1—Ta2vi | 55.97 (2) | Nb1ix—S7—K | 159.16 (5) |
S2vii—Nb1—Ta2vi | 54.06 (2) | Nb2—S7—K | 110.02 (4) |
S9v—Nb1—Ta2vi | 53.81 (2) | S2ix—S8—Nb1i | 66.97 (4) |
S6v—Nb1—Ta2vi | 134.55 (2) | S2ix—S8—Ta1i | 66.97 (4) |
S10vi—Nb1—Ta2vi | 121.05 (2) | Nb1i—S8—Ta1i | 0.000 (12) |
S1—Nb1—Ta2vi | 110.949 (17) | S2ix—S8—Nb2xii | 65.06 (4) |
S4—Nb1—Ta2vi | 138.22 (2) | Nb1i—S8—Nb2xii | 70.83 (3) |
Nb2vi—Nb1—Ta2vi | 0.000 (16) | Ta1i—S8—Nb2xii | 70.83 (3) |
S9viii—Nb2—S2v | 110.53 (3) | S2ix—S8—Ta2xii | 65.06 (4) |
S9viii—Nb2—S8viii | 91.66 (3) | Nb1i—S8—Ta2xii | 70.83 (3) |
S2v—Nb2—S8viii | 47.92 (4) | Ta1i—S8—Ta2xii | 70.83 (3) |
S9viii—Nb2—S7 | 48.00 (3) | Nb2xii—S8—Ta2xii | 0.000 (13) |
S2v—Nb2—S7 | 88.20 (2) | S7xii—S9—Ta2xii | 67.97 (4) |
S8viii—Nb2—S7 | 107.81 (3) | S7xii—S9—Nb2xii | 67.97 (4) |
S9viii—Nb2—S6v | 138.29 (3) | Ta2xii—S9—Nb2xii | 0.000 (13) |
S2v—Nb2—S6v | 92.96 (3) | S7xii—S9—Nb1i | 65.01 (3) |
S8viii—Nb2—S6v | 78.85 (3) | Ta2xii—S9—Nb1i | 70.73 (2) |
S7—Nb2—S6v | 171.69 (3) | Nb2xii—S9—Nb1i | 70.73 (2) |
S9viii—Nb2—S10vi | 91.05 (3) | S7xii—S9—Ta1i | 65.01 (3) |
S2v—Nb2—S10vi | 121.90 (3) | Ta2xii—S9—Ta1i | 70.73 (2) |
S8viii—Nb2—S10vi | 79.64 (3) | Nb2xii—S9—Ta1i | 70.73 (2) |
S7—Nb2—S10vi | 137.57 (3) | Nb1i—S9—Ta1i | 0.000 (11) |
S6v—Nb2—S10vi | 47.41 (3) | S7xii—S9—Kiv | 141.46 (5) |
S9viii—Nb2—S5 | 130.06 (4) | Ta2xii—S9—Kiv | 149.10 (4) |
S2v—Nb2—S5 | 79.06 (4) | Nb2xii—S9—Kiv | 149.10 (4) |
S8viii—Nb2—S5 | 123.38 (4) | Nb1i—S9—Kiv | 124.00 (4) |
S7—Nb2—S5 | 85.22 (4) | Ta1i—S9—Kiv | 124.00 (4) |
S6v—Nb2—S5 | 86.92 (3) | S6viii—S10—Ta2ix | 66.22 (3) |
S10vi—Nb2—S5 | 126.41 (3) | S6viii—S10—Nb2ix | 66.22 (3) |
S9viii—Nb2—S4 | 86.29 (3) | Ta2ix—S10—Nb2ix | 0.000 (17) |
S2v—Nb2—S4 | 154.41 (3) | S6viii—S10—Nb1ix | 66.04 (3) |
S8viii—Nb2—S4 | 154.60 (3) | Ta2ix—S10—Nb1ix | 94.62 (3) |
S7—Nb2—S4 | 89.49 (3) | Nb2ix—S10—Nb1ix | 94.62 (3) |
S6v—Nb2—S4 | 85.91 (3) | S6viii—S10—Ta1ix | 66.04 (3) |
S10vi—Nb2—S4 | 75.09 (3) | Ta2ix—S10—Ta1ix | 94.62 (3) |
S5—Nb2—S4 | 75.35 (3) | Nb2ix—S10—Ta1ix | 94.62 (3) |
S9viii—Nb2—Ta1ix | 55.46 (2) | Nb1ix—S10—Ta1ix | 0.000 (16) |
S2v—Nb2—Ta1ix | 55.12 (2) | S6viii—S10—Kii | 94.94 (4) |
S8viii—Nb2—Ta1ix | 53.89 (2) | Ta2ix—S10—Kii | 136.76 (3) |
S7—Nb2—Ta1ix | 53.97 (2) | Nb2ix—S10—Kii | 136.76 (3) |
S6v—Nb2—Ta1ix | 132.67 (2) | Nb1ix—S10—Kii | 113.42 (3) |
S10vi—Nb2—Ta1ix | 116.78 (2) | Ta1ix—S10—Kii | 113.42 (3) |
Symmetry codes: (i) −x+1/2, y, z+1/2; (ii) −x+1, −y+1, z−1/2; (iii) x+1/2, −y+1, z; (iv) −x+1, −y+1, z+1/2; (v) −x+1/2, y, z−1/2; (vi) x−1/2, −y, z; (vii) −x, −y, z−1/2; (viii) −x+1, −y, z−1/2; (ix) x+1/2, −y, z; (x) −x, −y, z+1/2; (xi) x−1/2, −y+1, z; (xii) −x+1, −y, z+1/2. |
Nb1—S8i | 2.4753 (10) | Nb2—S6i | 2.5568 (9) |
Nb1—S7ii | 2.4895 (9) | Nb2—S10ii | 2.5597 (8) |
Nb1—S2iii | 2.5133 (10) | Nb2—S5 | 2.5802 (8) |
Nb1—S9i | 2.5255 (9) | Nb2—S4 | 2.6369 (8) |
Nb1—S6i | 2.5545 (9) | Nb2—Ta1v | 2.8939 (3) |
Nb1—S10ii | 2.5653 (8) | Nb2—Nb1v | 2.8939 (3) |
Nb1—S1 | 2.5831 (9) | P—S3 | 1.9725 (14) |
Nb1—S4 | 2.6438 (8) | P—S5 | 2.0470 (14) |
Nb1—Nb2ii | 2.8939 (3) | P—S1 | 2.0568 (13) |
Nb1—Ta2ii | 2.8939 (3) | P—S4 | 2.0888 (14) |
Nb2—S9iv | 2.4742 (9) | S2—S8ii | 2.0302 (16) |
Nb2—S2i | 2.4805 (9) | S6—S10vi | 2.0568 (13) |
Nb2—S8iv | 2.5185 (10) | S7—S9iv | 2.0452 (15) |
Nb2—S7 | 2.5513 (9) |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) x−1/2, −y, z; (iii) −x, −y, z−1/2; (iv) −x+1, −y, z−1/2; (v) x+1/2, −y, z; (vi) −x+1, −y, z+1/2. |
Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2011–0011309).
References
Angenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem. 153, 55–65. Web of Science CrossRef CAS Google Scholar
Bang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem. 181, 1978–1802. Web of Science CrossRef Google Scholar
Do, J. & Yun, H. (1996). Inorg. Chem. 35, 3729–3730. CrossRef PubMed CAS Web of Science Google Scholar
Do, J. & Yun, H. (2009). Acta Cryst. E65, i56–i57. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25–i26. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc. 26(2), 309–311. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goh, E., Kim, S. & Jung, D. (2002). J. Solid State Chem. 168, 119–125. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53–i54. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc. 28, 701–704. CAS Google Scholar
Kwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc. 29, 273–275. CAS Google Scholar
Park, S. & Yun, H. (2010). Acta Cryst. E66, i51–i52. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, J. & Yun, H. (2011). Acta Cryst. E67, i24. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A number of monovalent metal Nb thiophosphates have been investigated. Among them are NaNb2PS10 (Goh et al., 2002), KNb2PS10 (Do & Yun, 1996), RbNb2PS10 (Kim & Yun, 2002), CsNb2PS10 (Kwak et al., 2007), TlNb2PS10 (Bang et al., 2008), Ag0.88Nb2PS10 (Do & Yun, 2009), K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008), K0.5Ag0.Nb2PS10 (Dong et al., 2005a), Rb0.38Ag0.5Nb2PS10 (Dong et al., 2005b), Cs0.5Ag0.5Nb2PS10 (Park & Yun, 2010), and KNb1.75V0.25PS10 (Yu & Yun, 2011). As a result of efforts to find new phases in this family, we have found a mixed-metallic phase,. In this paper we report the synthesis and structure of another mixed-metallic quintenary thiophosphate, KNb1.77Ta0.23PS10.
The structure of KNb1.77Ta0.23PS10 is isostructural with KNb2PS10 and mixed-metallic KNb1.75V0.25PS10. Detailed description of the structure is given previously (Do & Yun, 1996; Yu & Yun, 2011). The title compound is made up of the usual bicapped trigonal biprismatic [M2S12] unit (M=Nb/Ta) and the tetrahedral [PS4] group. The M sites are occupied by the statistically disordered Nb(88.5%) and Ta(11.5%) atoms. The bicapped biprismatic [M2S12] units and its neighboring tetrahedral [PS4] groups are given in Figure 1. These [M2S12] units are linked together to form the one-dimensional chains, ∞1[M2PS10-] by sharing the S22- prism edge.
The M atoms associate in pairs with M—M interactions alternating in the sequence of one short (2.8939 (3) Å) and one long (3.7670 (3) Å) distances. The short distance is typical of Nb4+—Nb4+ bonding interactions (Angenault et al., 2000). There are no interchain bonding interactions except the van der Waals forces and the K+ ions in this van der Waals gap stabilize the structure through the electrostatic interactions (Figure 2).
The structural studies of the three different crystals from the same reaction tube implied that the stoichiometry of each metal can vary, KNb2 - xTaxPS10, 0.18≤x≤0.26 and they seem to form a random substitutional solid solution. However Ta analogue of this phase, ATa2PS10 has never been synthsized and thus the maximum x should be small. Finally, the classical charge balance of this phase can be represented by [K+][M4+]2[PS43-][S22-]3.