organic compounds
1-Dodecylindoline-2,3-dione
aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bInstitut National des Plantes Médicinales et Aromatiques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, cX-Ray Structure Analysis, University of Regensburg, D-93053 Regensburg, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimazahrae_qachchachi@yahoo.fr
The structure of the title compound, C20H29NO2, is isotypic to that of its homologue 1-octylindoline-2,3-dione. The indoline ring and the two carbonyl-group O atoms are approximately coplanar, the largest deviation from the mean plane being 0.0760 (10) Å. The mean plane through the fused-ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain [dihedral angle = 77.69 (5)°]. All C atoms of the dodecyl group are in an antiperiplanar arrangement. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.
CCDC reference: 983507
Related literature
For biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For similar compounds see: Qachchachi et al. (2013).
Experimental
Crystal data
|
Data collection
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 983507
10.1107/S1600536814001792/rz5103sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814001792/rz5103Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814001792/rz5103Isup3.cml
To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and 1-bromododecane (0.9 ml, 3.7 mmol). The mixture was stirred for 48 h and the reaction monitored by thin layer
The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals in 86% yield (m. p. 321 K).All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.95 Å (aromatic), C—H = 0.99 Å (methylene) and C—H = 0.97 Å (methyl) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C) or Uiso(H) = 1.5 Ueq(C) for methyl H atoms.
Isatin (1H-indoline-2,3-dione) and derivatives possess a broad range of biological and pharmacological properties and are widely used as starting materials for the synthesis of
and as substrates for drug synthesis relevant to application as insecticides and fungicides. These compounds find applications also in a broad range of therapies as anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). In our work, we are interested in developing a new isatin derivative with the addition of an alkyl halide to explore other potential applications.The molecule of title compound is build up from a fused five- and six-membered ring system linked to a 1-dodecyl chain and to two ketone O atoms as shown in Fig. 1. The indoline ring and the two carbonyl-group O atoms are nearly coplanar, the largest deviation from the mean plane being 0.0760 (10) Å for atom O1. The plane of the fused ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain as indicated by the dihedral angle of 77.69 (5)°. The dodecyl substituent has all carbon atoms in an antiperiplanar conformation. The structure of the title compound is similar to that of its homologue 1-octylindoline-2,3-dione (Qachchachi et al., 2013).
In the crystal, the molecules are linked by C6–H6···O1, C6–H6···O2 and C8–H8···O2 hydrogen bonds in the way to build a three-dimensional network as shown in Fig. 2 and Table 2.
For biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For similar compounds see: Qachchachi et al. (2013).
Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell
CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C20H29NO2 | F(000) = 688 |
Mr = 315.44 | Dx = 1.174 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 6237 reflections |
a = 25.2013 (7) Å | θ = 5.4–73.8° |
b = 4.66818 (9) Å | µ = 0.58 mm−1 |
c = 15.7013 (4) Å | T = 123 K |
β = 104.926 (3)° | Plate, clear light orange |
V = 1784.84 (7) Å3 | 0.12 × 0.11 × 0.04 mm |
Z = 4 |
Oxford Diffraction SuperNova (single source at offset, Atlas) diffractometer | 3493 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3039 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 10.3546 pixels mm-1 | θmax = 73.6°, θmin = 3.6° |
ω scans | h = −31→30 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] | k = −5→5 |
Tmin = 0.942, Tmax = 0.979 | l = −19→18 |
12640 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.4135P] where P = (Fo2 + 2Fc2)/3 |
3493 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C20H29NO2 | V = 1784.84 (7) Å3 |
Mr = 315.44 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 25.2013 (7) Å | µ = 0.58 mm−1 |
b = 4.66818 (9) Å | T = 123 K |
c = 15.7013 (4) Å | 0.12 × 0.11 × 0.04 mm |
β = 104.926 (3)° |
Oxford Diffraction SuperNova (single source at offset, Atlas) diffractometer | 3493 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] | 3039 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.979 | Rint = 0.021 |
12640 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.29 e Å−3 |
3493 reflections | Δρmin = −0.20 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.11717 (4) | 0.3582 (2) | 0.56405 (7) | 0.0263 (2) | |
C2 | 0.07145 (4) | 0.5831 (2) | 0.52742 (7) | 0.0256 (2) | |
C3 | 0.07308 (4) | 0.6313 (2) | 0.43624 (7) | 0.0221 (2) | |
C4 | 0.11376 (4) | 0.4511 (2) | 0.41950 (7) | 0.0207 (2) | |
C5 | 0.12551 (4) | 0.4485 (2) | 0.33845 (7) | 0.0243 (2) | |
H5 | 0.1527 | 0.3249 | 0.3268 | 0.029* | |
C6 | 0.09572 (4) | 0.6350 (2) | 0.27432 (7) | 0.0264 (2) | |
H6 | 0.1030 | 0.6382 | 0.2179 | 0.032* | |
C7 | 0.05561 (4) | 0.8162 (2) | 0.29048 (7) | 0.0280 (2) | |
H7 | 0.0363 | 0.9419 | 0.2455 | 0.034* | |
C8 | 0.04351 (4) | 0.8149 (2) | 0.37185 (7) | 0.0258 (2) | |
H8 | 0.0158 | 0.9361 | 0.3831 | 0.031* | |
C9 | 0.18532 (4) | 0.0978 (2) | 0.50360 (8) | 0.0262 (2) | |
H9A | 0.1802 | −0.0161 | 0.4489 | 0.031* | |
H9B | 0.1870 | −0.0370 | 0.5529 | 0.031* | |
C10 | 0.23949 (4) | 0.2615 (2) | 0.52023 (8) | 0.0264 (2) | |
H10A | 0.2396 | 0.3770 | 0.4674 | 0.032* | |
H10B | 0.2421 | 0.3951 | 0.5701 | 0.032* | |
C11 | 0.28944 (4) | 0.0655 (2) | 0.54105 (8) | 0.0261 (2) | |
H11A | 0.2866 | −0.0697 | 0.4915 | 0.031* | |
H11B | 0.2896 | −0.0483 | 0.5943 | 0.031* | |
C12 | 0.34340 (4) | 0.2303 (2) | 0.55654 (8) | 0.0269 (2) | |
H12A | 0.3441 | 0.3339 | 0.5018 | 0.032* | |
H12B | 0.3448 | 0.3748 | 0.6032 | 0.032* | |
C13 | 0.39431 (4) | 0.0414 (3) | 0.58348 (8) | 0.0275 (2) | |
H13A | 0.3930 | −0.1032 | 0.5369 | 0.033* | |
H13B | 0.3938 | −0.0620 | 0.6383 | 0.033* | |
C14 | 0.44783 (4) | 0.2094 (3) | 0.59858 (8) | 0.0283 (3) | |
H14A | 0.4485 | 0.3105 | 0.5434 | 0.034* | |
H14B | 0.4487 | 0.3563 | 0.6444 | 0.034* | |
C15 | 0.49914 (4) | 0.0237 (3) | 0.62696 (8) | 0.0285 (3) | |
H15A | 0.4984 | −0.1232 | 0.5812 | 0.034* | |
H15B | 0.4986 | −0.0771 | 0.6822 | 0.034* | |
C16 | 0.55241 (4) | 0.1948 (3) | 0.64174 (8) | 0.0290 (3) | |
H16A | 0.5528 | 0.2957 | 0.5865 | 0.035* | |
H16B | 0.5531 | 0.3416 | 0.6875 | 0.035* | |
C17 | 0.60399 (4) | 0.0110 (3) | 0.67010 (8) | 0.0290 (3) | |
H17A | 0.6033 | −0.1358 | 0.6243 | 0.035* | |
H17B | 0.6036 | −0.0900 | 0.7254 | 0.035* | |
C18 | 0.65705 (4) | 0.1830 (3) | 0.68478 (8) | 0.0287 (3) | |
H18A | 0.6574 | 0.2838 | 0.6294 | 0.034* | |
H18B | 0.6576 | 0.3302 | 0.7304 | 0.034* | |
C19 | 0.70879 (4) | 0.0017 (3) | 0.71327 (8) | 0.0319 (3) | |
H19A | 0.7083 | −0.1461 | 0.6678 | 0.038* | |
H19B | 0.7087 | −0.0981 | 0.7689 | 0.038* | |
C20 | 0.76140 (5) | 0.1765 (3) | 0.72716 (9) | 0.0383 (3) | |
H20A | 0.7626 | 0.3204 | 0.7731 | 0.046* | |
H20B | 0.7622 | 0.2724 | 0.6720 | 0.046* | |
H20C | 0.7932 | 0.0491 | 0.7453 | 0.046* | |
N1 | 0.13859 (4) | 0.2877 (2) | 0.49531 (6) | 0.0237 (2) | |
O1 | 0.13183 (4) | 0.2676 (2) | 0.63893 (5) | 0.0368 (2) | |
O2 | 0.04303 (3) | 0.6876 (2) | 0.57083 (5) | 0.0350 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0228 (5) | 0.0325 (6) | 0.0234 (5) | −0.0083 (4) | 0.0058 (4) | −0.0017 (5) |
C2 | 0.0203 (5) | 0.0317 (6) | 0.0250 (5) | −0.0069 (4) | 0.0063 (4) | −0.0076 (5) |
C3 | 0.0169 (4) | 0.0255 (5) | 0.0240 (5) | −0.0034 (4) | 0.0056 (4) | −0.0056 (4) |
C4 | 0.0168 (4) | 0.0231 (5) | 0.0212 (5) | −0.0028 (4) | 0.0029 (4) | −0.0021 (4) |
C5 | 0.0201 (5) | 0.0290 (5) | 0.0248 (5) | 0.0006 (4) | 0.0077 (4) | −0.0035 (4) |
C6 | 0.0262 (5) | 0.0324 (6) | 0.0206 (5) | −0.0028 (5) | 0.0063 (4) | −0.0013 (4) |
C7 | 0.0248 (5) | 0.0290 (6) | 0.0274 (6) | 0.0008 (4) | 0.0017 (4) | 0.0018 (5) |
C8 | 0.0192 (5) | 0.0263 (5) | 0.0308 (6) | 0.0010 (4) | 0.0044 (4) | −0.0040 (5) |
C9 | 0.0192 (5) | 0.0256 (5) | 0.0320 (6) | 0.0005 (4) | 0.0034 (4) | 0.0025 (5) |
C10 | 0.0192 (5) | 0.0257 (5) | 0.0322 (6) | −0.0005 (4) | 0.0031 (4) | 0.0015 (5) |
C11 | 0.0188 (5) | 0.0277 (5) | 0.0297 (6) | 0.0002 (4) | 0.0025 (4) | 0.0019 (5) |
C12 | 0.0193 (5) | 0.0294 (6) | 0.0308 (6) | −0.0003 (4) | 0.0042 (4) | 0.0016 (5) |
C13 | 0.0188 (5) | 0.0316 (6) | 0.0308 (6) | 0.0004 (4) | 0.0038 (4) | 0.0014 (5) |
C14 | 0.0189 (5) | 0.0336 (6) | 0.0315 (6) | 0.0002 (4) | 0.0046 (4) | 0.0015 (5) |
C15 | 0.0188 (5) | 0.0342 (6) | 0.0315 (6) | 0.0005 (4) | 0.0043 (4) | 0.0023 (5) |
C16 | 0.0191 (5) | 0.0345 (6) | 0.0323 (6) | 0.0000 (4) | 0.0048 (4) | 0.0004 (5) |
C17 | 0.0194 (5) | 0.0357 (6) | 0.0308 (6) | 0.0012 (5) | 0.0047 (4) | 0.0034 (5) |
C18 | 0.0194 (5) | 0.0355 (6) | 0.0300 (6) | 0.0003 (4) | 0.0041 (4) | 0.0005 (5) |
C19 | 0.0217 (5) | 0.0403 (6) | 0.0326 (6) | 0.0029 (5) | 0.0052 (5) | 0.0050 (5) |
C20 | 0.0193 (5) | 0.0507 (8) | 0.0428 (7) | 0.0010 (5) | 0.0044 (5) | 0.0007 (6) |
N1 | 0.0187 (4) | 0.0286 (5) | 0.0232 (5) | −0.0001 (4) | 0.0042 (3) | 0.0013 (4) |
O1 | 0.0369 (5) | 0.0487 (5) | 0.0239 (4) | −0.0068 (4) | 0.0060 (3) | 0.0062 (4) |
O2 | 0.0287 (4) | 0.0505 (5) | 0.0288 (4) | −0.0021 (4) | 0.0127 (3) | −0.0127 (4) |
C1—O1 | 1.2142 (14) | C12—H12A | 0.9900 |
C1—N1 | 1.3656 (14) | C12—H12B | 0.9900 |
C1—C2 | 1.5552 (16) | C13—C14 | 1.5252 (14) |
C2—O2 | 1.2113 (13) | C13—H13A | 0.9900 |
C2—C3 | 1.4601 (14) | C13—H13B | 0.9900 |
C3—C8 | 1.3869 (16) | C14—C15 | 1.5251 (15) |
C3—C4 | 1.4027 (14) | C14—H14A | 0.9900 |
C4—C5 | 1.3789 (14) | C14—H14B | 0.9900 |
C4—N1 | 1.4163 (14) | C15—C16 | 1.5275 (14) |
C5—C6 | 1.3950 (16) | C15—H15A | 0.9900 |
C5—H5 | 0.9500 | C15—H15B | 0.9900 |
C6—C7 | 1.3909 (16) | C16—C17 | 1.5250 (15) |
C6—H6 | 0.9500 | C16—H16A | 0.9900 |
C7—C8 | 1.3878 (15) | C16—H16B | 0.9900 |
C7—H7 | 0.9500 | C17—C18 | 1.5257 (15) |
C8—H8 | 0.9500 | C17—H17A | 0.9900 |
C9—N1 | 1.4528 (13) | C17—H17B | 0.9900 |
C9—C10 | 1.5270 (14) | C18—C19 | 1.5220 (15) |
C9—H9A | 0.9900 | C18—H18A | 0.9900 |
C9—H9B | 0.9900 | C18—H18B | 0.9900 |
C10—C11 | 1.5222 (14) | C19—C20 | 1.5239 (16) |
C10—H10A | 0.9900 | C19—H19A | 0.9900 |
C10—H10B | 0.9900 | C19—H19B | 0.9900 |
C11—C12 | 1.5265 (14) | C20—H20A | 0.9800 |
C11—H11A | 0.9900 | C20—H20B | 0.9800 |
C11—H11B | 0.9900 | C20—H20C | 0.9800 |
C12—C13 | 1.5238 (14) | ||
O1—C1—N1 | 126.70 (11) | C14—C13—H13A | 108.9 |
O1—C1—C2 | 127.24 (10) | C12—C13—H13B | 108.9 |
N1—C1—C2 | 106.04 (9) | C14—C13—H13B | 108.9 |
O2—C2—C3 | 131.26 (11) | H13A—C13—H13B | 107.8 |
O2—C2—C1 | 123.57 (10) | C15—C14—C13 | 113.73 (10) |
C3—C2—C1 | 105.16 (8) | C15—C14—H14A | 108.8 |
C8—C3—C4 | 121.03 (10) | C13—C14—H14A | 108.8 |
C8—C3—C2 | 131.64 (10) | C15—C14—H14B | 108.8 |
C4—C3—C2 | 107.32 (9) | C13—C14—H14B | 108.8 |
C5—C4—C3 | 121.28 (10) | H14A—C14—H14B | 107.7 |
C5—C4—N1 | 128.13 (9) | C14—C15—C16 | 113.14 (10) |
C3—C4—N1 | 110.58 (9) | C14—C15—H15A | 109.0 |
C4—C5—C6 | 117.21 (9) | C16—C15—H15A | 109.0 |
C4—C5—H5 | 121.4 | C14—C15—H15B | 109.0 |
C6—C5—H5 | 121.4 | C16—C15—H15B | 109.0 |
C7—C6—C5 | 121.95 (10) | H15A—C15—H15B | 107.8 |
C7—C6—H6 | 119.0 | C17—C16—C15 | 113.57 (10) |
C5—C6—H6 | 119.0 | C17—C16—H16A | 108.9 |
C8—C7—C6 | 120.51 (10) | C15—C16—H16A | 108.9 |
C8—C7—H7 | 119.7 | C17—C16—H16B | 108.9 |
C6—C7—H7 | 119.7 | C15—C16—H16B | 108.9 |
C3—C8—C7 | 118.01 (10) | H16A—C16—H16B | 107.7 |
C3—C8—H8 | 121.0 | C16—C17—C18 | 113.33 (10) |
C7—C8—H8 | 121.0 | C16—C17—H17A | 108.9 |
N1—C9—C10 | 112.22 (9) | C18—C17—H17A | 108.9 |
N1—C9—H9A | 109.2 | C16—C17—H17B | 108.9 |
C10—C9—H9A | 109.2 | C18—C17—H17B | 108.9 |
N1—C9—H9B | 109.2 | H17A—C17—H17B | 107.7 |
C10—C9—H9B | 109.2 | C19—C18—C17 | 113.75 (10) |
H9A—C9—H9B | 107.9 | C19—C18—H18A | 108.8 |
C11—C10—C9 | 112.92 (9) | C17—C18—H18A | 108.8 |
C11—C10—H10A | 109.0 | C19—C18—H18B | 108.8 |
C9—C10—H10A | 109.0 | C17—C18—H18B | 108.8 |
C11—C10—H10B | 109.0 | H18A—C18—H18B | 107.7 |
C9—C10—H10B | 109.0 | C18—C19—C20 | 113.08 (11) |
H10A—C10—H10B | 107.8 | C18—C19—H19A | 109.0 |
C10—C11—C12 | 112.63 (9) | C20—C19—H19A | 109.0 |
C10—C11—H11A | 109.1 | C18—C19—H19B | 109.0 |
C12—C11—H11A | 109.1 | C20—C19—H19B | 109.0 |
C10—C11—H11B | 109.1 | H19A—C19—H19B | 107.8 |
C12—C11—H11B | 109.1 | C19—C20—H20A | 109.5 |
H11A—C11—H11B | 107.8 | C19—C20—H20B | 109.5 |
C13—C12—C11 | 113.86 (9) | H20A—C20—H20B | 109.5 |
C13—C12—H12A | 108.8 | C19—C20—H20C | 109.5 |
C11—C12—H12A | 108.8 | H20A—C20—H20C | 109.5 |
C13—C12—H12B | 108.8 | H20B—C20—H20C | 109.5 |
C11—C12—H12B | 108.8 | C1—N1—C4 | 110.82 (9) |
H12A—C12—H12B | 107.7 | C1—N1—C9 | 123.54 (9) |
C12—C13—C14 | 113.16 (9) | C4—N1—C9 | 125.19 (9) |
C12—C13—H13A | 108.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.47 | 3.1423 (14) | 127 |
C6—H6···O2ii | 0.95 | 2.55 | 3.2360 (13) | 130 |
C8—H8···O2iii | 0.95 | 2.52 | 3.4598 (13) | 169 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.47 | 3.1423 (14) | 127.4 |
C6—H6···O2ii | 0.95 | 2.55 | 3.2360 (13) | 129.6 |
C8—H8···O2iii | 0.95 | 2.52 | 3.4598 (13) | 169.4 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+2, −z+1. |
References
Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235. CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Da Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801. CSD CrossRef IUCr Journals Google Scholar
Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Isatin (1H-indoline-2,3-dione) and derivatives possess a broad range of biological and pharmacological properties and are widely used as starting materials for the synthesis of heterocyclic compounds and as substrates for drug synthesis relevant to application as insecticides and fungicides. These compounds find applications also in a broad range of therapies as anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). In our work, we are interested in developing a new isatin derivative with the addition of an alkyl halide to explore other potential applications.
The molecule of title compound is build up from a fused five- and six-membered ring system linked to a 1-dodecyl chain and to two ketone O atoms as shown in Fig. 1. The indoline ring and the two carbonyl-group O atoms are nearly coplanar, the largest deviation from the mean plane being 0.0760 (10) Å for atom O1. The plane of the fused ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain as indicated by the dihedral angle of 77.69 (5)°. The dodecyl substituent has all carbon atoms in an antiperiplanar conformation. The structure of the title compound is similar to that of its homologue 1-octylindoline-2,3-dione (Qachchachi et al., 2013).
In the crystal, the molecules are linked by C6–H6···O1, C6–H6···O2 and C8–H8···O2 hydrogen bonds in the way to build a three-dimensional network as shown in Fig. 2 and Table 2.