organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Do­decyl­indoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, bInstitut National des Plantes Médicinales et Aromatiques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, cX-Ray Structure Analysis, University of Regensburg, D-93053 Regensburg, Germany, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: fatimazahrae_qachchachi@yahoo.fr

(Received 23 January 2014; accepted 24 January 2014; online 31 January 2014)

The structure of the title compound, C20H29NO2, is isotypic to that of its homologue 1-octylindoline-2,3-dione. The indoline ring and the two carbonyl-group O atoms are approximately coplanar, the largest deviation from the mean plane being 0.0760 (10) Å. The mean plane through the fused-ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain [dihedral angle = 77.69 (5)°]. All C atoms of the dodecyl group are in an anti­periplanar arrangement. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For biological activity of indoline derivatives, see: Bhrigu et al. (2010[Bhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229-235.]); Malhotra et al. (2011[Malhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743-751.]); Da Silva et al. (2001[Da Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]); Ramachandran (2011[Ramachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289-294.]); Smitha et al. (2008[Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621-636.]). For similar compounds see: Qachchachi et al. (2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.]).

[Scheme 1]

Experimental

Crystal data
  • C20H29NO2

  • Mr = 315.44

  • Monoclinic, P 21 /c

  • a = 25.2013 (7) Å

  • b = 4.66818 (9) Å

  • c = 15.7013 (4) Å

  • β = 104.926 (3)°

  • V = 1784.84 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 123 K

  • 0.12 × 0.11 × 0.04 mm

Data collection
  • Oxford Diffraction SuperNova (single source at offset, Atlas) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.942, Tmax = 0.979

  • 12640 measured reflections

  • 3493 independent reflections

  • 3039 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.02

  • 3493 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.47 3.1423 (14) 127
C6—H6⋯O2ii 0.95 2.55 3.2360 (13) 130
C8—H8⋯O2iii 0.95 2.52 3.4598 (13) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2012[Oxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isatin (1H-indoline-2,3-dione) and derivatives possess a broad range of biological and pharmacological properties and are widely used as starting materials for the synthesis of heterocyclic compounds and as substrates for drug synthesis relevant to application as insecticides and fungicides. These compounds find applications also in a broad range of therapies as anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). In our work, we are interested in developing a new isatin derivative with the addition of an alkyl halide to explore other potential applications.

The molecule of title compound is build up from a fused five- and six-membered ring system linked to a 1-dodecyl chain and to two ketone O atoms as shown in Fig. 1. The indoline ring and the two carbonyl-group O atoms are nearly coplanar, the largest deviation from the mean plane being 0.0760 (10) Å for atom O1. The plane of the fused ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain as indicated by the dihedral angle of 77.69 (5)°. The dodecyl substituent has all carbon atoms in an antiperiplanar conformation. The structure of the title compound is similar to that of its homologue 1-octylindoline-2,3-dione (Qachchachi et al., 2013).

In the crystal, the molecules are linked by C6–H6···O1, C6–H6···O2 and C8–H8···O2 hydrogen bonds in the way to build a three-dimensional network as shown in Fig. 2 and Table 2.

Related literature top

For biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For similar compounds see: Qachchachi et al. (2013).

Experimental top

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in DMF (30 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and 1-bromododecane (0.9 ml, 3.7 mmol). The mixture was stirred for 48 h and the reaction monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals in 86% yield (m. p. 321 K).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.95 Å (aromatic), C—H = 0.99 Å (methylene) and C—H = 0.97 Å (methyl) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C) or Uiso(H) = 1.5 Ueq(C) for methyl H atoms.

Structure description top

Isatin (1H-indoline-2,3-dione) and derivatives possess a broad range of biological and pharmacological properties and are widely used as starting materials for the synthesis of heterocyclic compounds and as substrates for drug synthesis relevant to application as insecticides and fungicides. These compounds find applications also in a broad range of therapies as anticancer drugs, antibiotics and antidepressants (Bhrigu et al., 2010; Malhotra et al., 2011; Da Silva et al., 2001; Ramachandran, 2011; Smitha et al., 2008). In our work, we are interested in developing a new isatin derivative with the addition of an alkyl halide to explore other potential applications.

The molecule of title compound is build up from a fused five- and six-membered ring system linked to a 1-dodecyl chain and to two ketone O atoms as shown in Fig. 1. The indoline ring and the two carbonyl-group O atoms are nearly coplanar, the largest deviation from the mean plane being 0.0760 (10) Å for atom O1. The plane of the fused ring system is nearly perpendicular to the mean plane passing through the 1-dodecyl chain as indicated by the dihedral angle of 77.69 (5)°. The dodecyl substituent has all carbon atoms in an antiperiplanar conformation. The structure of the title compound is similar to that of its homologue 1-octylindoline-2,3-dione (Qachchachi et al., 2013).

In the crystal, the molecules are linked by C6–H6···O1, C6–H6···O2 and C8–H8···O2 hydrogen bonds in the way to build a three-dimensional network as shown in Fig. 2 and Table 2.

For biological activity of indoline derivatives, see: Bhrigu et al. (2010); Malhotra et al. (2011); Da Silva et al. (2001); Ramachandran (2011); Smitha et al. (2008). For similar compounds see: Qachchachi et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO (Oxford Diffraction, 2012); data reduction: CrysAlis PRO (Oxford Diffraction, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular plot of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Intermolecular hydrogen interactions in the title compound. Hydrogen bonds are shown as dashed lines.
1-Dodecylindoline-2,3-dione top
Crystal data top
C20H29NO2F(000) = 688
Mr = 315.44Dx = 1.174 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 6237 reflections
a = 25.2013 (7) Åθ = 5.4–73.8°
b = 4.66818 (9) ŵ = 0.58 mm1
c = 15.7013 (4) ÅT = 123 K
β = 104.926 (3)°Plate, clear light orange
V = 1784.84 (7) Å30.12 × 0.11 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova (single source at offset, Atlas)
diffractometer
3493 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3039 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.3546 pixels mm-1θmax = 73.6°, θmin = 3.6°
ω scansh = 3130
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 55
Tmin = 0.942, Tmax = 0.979l = 1918
12640 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.4135P]
where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H29NO2V = 1784.84 (7) Å3
Mr = 315.44Z = 4
Monoclinic, P21/cCu Kα radiation
a = 25.2013 (7) ŵ = 0.58 mm1
b = 4.66818 (9) ÅT = 123 K
c = 15.7013 (4) Å0.12 × 0.11 × 0.04 mm
β = 104.926 (3)°
Data collection top
Oxford Diffraction SuperNova (single source at offset, Atlas)
diffractometer
3493 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2012); analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
3039 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.979Rint = 0.021
12640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.29 e Å3
3493 reflectionsΔρmin = 0.20 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11717 (4)0.3582 (2)0.56405 (7)0.0263 (2)
C20.07145 (4)0.5831 (2)0.52742 (7)0.0256 (2)
C30.07308 (4)0.6313 (2)0.43624 (7)0.0221 (2)
C40.11376 (4)0.4511 (2)0.41950 (7)0.0207 (2)
C50.12551 (4)0.4485 (2)0.33845 (7)0.0243 (2)
H50.15270.32490.32680.029*
C60.09572 (4)0.6350 (2)0.27432 (7)0.0264 (2)
H60.10300.63820.21790.032*
C70.05561 (4)0.8162 (2)0.29048 (7)0.0280 (2)
H70.03630.94190.24550.034*
C80.04351 (4)0.8149 (2)0.37185 (7)0.0258 (2)
H80.01580.93610.38310.031*
C90.18532 (4)0.0978 (2)0.50360 (8)0.0262 (2)
H9A0.18020.01610.44890.031*
H9B0.18700.03700.55290.031*
C100.23949 (4)0.2615 (2)0.52023 (8)0.0264 (2)
H10A0.23960.37700.46740.032*
H10B0.24210.39510.57010.032*
C110.28944 (4)0.0655 (2)0.54105 (8)0.0261 (2)
H11A0.28660.06970.49150.031*
H11B0.28960.04830.59430.031*
C120.34340 (4)0.2303 (2)0.55654 (8)0.0269 (2)
H12A0.34410.33390.50180.032*
H12B0.34480.37480.60320.032*
C130.39431 (4)0.0414 (3)0.58348 (8)0.0275 (2)
H13A0.39300.10320.53690.033*
H13B0.39380.06200.63830.033*
C140.44783 (4)0.2094 (3)0.59858 (8)0.0283 (3)
H14A0.44850.31050.54340.034*
H14B0.44870.35630.64440.034*
C150.49914 (4)0.0237 (3)0.62696 (8)0.0285 (3)
H15A0.49840.12320.58120.034*
H15B0.49860.07710.68220.034*
C160.55241 (4)0.1948 (3)0.64174 (8)0.0290 (3)
H16A0.55280.29570.58650.035*
H16B0.55310.34160.68750.035*
C170.60399 (4)0.0110 (3)0.67010 (8)0.0290 (3)
H17A0.60330.13580.62430.035*
H17B0.60360.09000.72540.035*
C180.65705 (4)0.1830 (3)0.68478 (8)0.0287 (3)
H18A0.65740.28380.62940.034*
H18B0.65760.33020.73040.034*
C190.70879 (4)0.0017 (3)0.71327 (8)0.0319 (3)
H19A0.70830.14610.66780.038*
H19B0.70870.09810.76890.038*
C200.76140 (5)0.1765 (3)0.72716 (9)0.0383 (3)
H20A0.76260.32040.77310.046*
H20B0.76220.27240.67200.046*
H20C0.79320.04910.74530.046*
N10.13859 (4)0.2877 (2)0.49531 (6)0.0237 (2)
O10.13183 (4)0.2676 (2)0.63893 (5)0.0368 (2)
O20.04303 (3)0.6876 (2)0.57083 (5)0.0350 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (5)0.0325 (6)0.0234 (5)0.0083 (4)0.0058 (4)0.0017 (5)
C20.0203 (5)0.0317 (6)0.0250 (5)0.0069 (4)0.0063 (4)0.0076 (5)
C30.0169 (4)0.0255 (5)0.0240 (5)0.0034 (4)0.0056 (4)0.0056 (4)
C40.0168 (4)0.0231 (5)0.0212 (5)0.0028 (4)0.0029 (4)0.0021 (4)
C50.0201 (5)0.0290 (5)0.0248 (5)0.0006 (4)0.0077 (4)0.0035 (4)
C60.0262 (5)0.0324 (6)0.0206 (5)0.0028 (5)0.0063 (4)0.0013 (4)
C70.0248 (5)0.0290 (6)0.0274 (6)0.0008 (4)0.0017 (4)0.0018 (5)
C80.0192 (5)0.0263 (5)0.0308 (6)0.0010 (4)0.0044 (4)0.0040 (5)
C90.0192 (5)0.0256 (5)0.0320 (6)0.0005 (4)0.0034 (4)0.0025 (5)
C100.0192 (5)0.0257 (5)0.0322 (6)0.0005 (4)0.0031 (4)0.0015 (5)
C110.0188 (5)0.0277 (5)0.0297 (6)0.0002 (4)0.0025 (4)0.0019 (5)
C120.0193 (5)0.0294 (6)0.0308 (6)0.0003 (4)0.0042 (4)0.0016 (5)
C130.0188 (5)0.0316 (6)0.0308 (6)0.0004 (4)0.0038 (4)0.0014 (5)
C140.0189 (5)0.0336 (6)0.0315 (6)0.0002 (4)0.0046 (4)0.0015 (5)
C150.0188 (5)0.0342 (6)0.0315 (6)0.0005 (4)0.0043 (4)0.0023 (5)
C160.0191 (5)0.0345 (6)0.0323 (6)0.0000 (4)0.0048 (4)0.0004 (5)
C170.0194 (5)0.0357 (6)0.0308 (6)0.0012 (5)0.0047 (4)0.0034 (5)
C180.0194 (5)0.0355 (6)0.0300 (6)0.0003 (4)0.0041 (4)0.0005 (5)
C190.0217 (5)0.0403 (6)0.0326 (6)0.0029 (5)0.0052 (5)0.0050 (5)
C200.0193 (5)0.0507 (8)0.0428 (7)0.0010 (5)0.0044 (5)0.0007 (6)
N10.0187 (4)0.0286 (5)0.0232 (5)0.0001 (4)0.0042 (3)0.0013 (4)
O10.0369 (5)0.0487 (5)0.0239 (4)0.0068 (4)0.0060 (3)0.0062 (4)
O20.0287 (4)0.0505 (5)0.0288 (4)0.0021 (4)0.0127 (3)0.0127 (4)
Geometric parameters (Å, º) top
C1—O11.2142 (14)C12—H12A0.9900
C1—N11.3656 (14)C12—H12B0.9900
C1—C21.5552 (16)C13—C141.5252 (14)
C2—O21.2113 (13)C13—H13A0.9900
C2—C31.4601 (14)C13—H13B0.9900
C3—C81.3869 (16)C14—C151.5251 (15)
C3—C41.4027 (14)C14—H14A0.9900
C4—C51.3789 (14)C14—H14B0.9900
C4—N11.4163 (14)C15—C161.5275 (14)
C5—C61.3950 (16)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C6—C71.3909 (16)C16—C171.5250 (15)
C6—H60.9500C16—H16A0.9900
C7—C81.3878 (15)C16—H16B0.9900
C7—H70.9500C17—C181.5257 (15)
C8—H80.9500C17—H17A0.9900
C9—N11.4528 (13)C17—H17B0.9900
C9—C101.5270 (14)C18—C191.5220 (15)
C9—H9A0.9900C18—H18A0.9900
C9—H9B0.9900C18—H18B0.9900
C10—C111.5222 (14)C19—C201.5239 (16)
C10—H10A0.9900C19—H19A0.9900
C10—H10B0.9900C19—H19B0.9900
C11—C121.5265 (14)C20—H20A0.9800
C11—H11A0.9900C20—H20B0.9800
C11—H11B0.9900C20—H20C0.9800
C12—C131.5238 (14)
O1—C1—N1126.70 (11)C14—C13—H13A108.9
O1—C1—C2127.24 (10)C12—C13—H13B108.9
N1—C1—C2106.04 (9)C14—C13—H13B108.9
O2—C2—C3131.26 (11)H13A—C13—H13B107.8
O2—C2—C1123.57 (10)C15—C14—C13113.73 (10)
C3—C2—C1105.16 (8)C15—C14—H14A108.8
C8—C3—C4121.03 (10)C13—C14—H14A108.8
C8—C3—C2131.64 (10)C15—C14—H14B108.8
C4—C3—C2107.32 (9)C13—C14—H14B108.8
C5—C4—C3121.28 (10)H14A—C14—H14B107.7
C5—C4—N1128.13 (9)C14—C15—C16113.14 (10)
C3—C4—N1110.58 (9)C14—C15—H15A109.0
C4—C5—C6117.21 (9)C16—C15—H15A109.0
C4—C5—H5121.4C14—C15—H15B109.0
C6—C5—H5121.4C16—C15—H15B109.0
C7—C6—C5121.95 (10)H15A—C15—H15B107.8
C7—C6—H6119.0C17—C16—C15113.57 (10)
C5—C6—H6119.0C17—C16—H16A108.9
C8—C7—C6120.51 (10)C15—C16—H16A108.9
C8—C7—H7119.7C17—C16—H16B108.9
C6—C7—H7119.7C15—C16—H16B108.9
C3—C8—C7118.01 (10)H16A—C16—H16B107.7
C3—C8—H8121.0C16—C17—C18113.33 (10)
C7—C8—H8121.0C16—C17—H17A108.9
N1—C9—C10112.22 (9)C18—C17—H17A108.9
N1—C9—H9A109.2C16—C17—H17B108.9
C10—C9—H9A109.2C18—C17—H17B108.9
N1—C9—H9B109.2H17A—C17—H17B107.7
C10—C9—H9B109.2C19—C18—C17113.75 (10)
H9A—C9—H9B107.9C19—C18—H18A108.8
C11—C10—C9112.92 (9)C17—C18—H18A108.8
C11—C10—H10A109.0C19—C18—H18B108.8
C9—C10—H10A109.0C17—C18—H18B108.8
C11—C10—H10B109.0H18A—C18—H18B107.7
C9—C10—H10B109.0C18—C19—C20113.08 (11)
H10A—C10—H10B107.8C18—C19—H19A109.0
C10—C11—C12112.63 (9)C20—C19—H19A109.0
C10—C11—H11A109.1C18—C19—H19B109.0
C12—C11—H11A109.1C20—C19—H19B109.0
C10—C11—H11B109.1H19A—C19—H19B107.8
C12—C11—H11B109.1C19—C20—H20A109.5
H11A—C11—H11B107.8C19—C20—H20B109.5
C13—C12—C11113.86 (9)H20A—C20—H20B109.5
C13—C12—H12A108.8C19—C20—H20C109.5
C11—C12—H12A108.8H20A—C20—H20C109.5
C13—C12—H12B108.8H20B—C20—H20C109.5
C11—C12—H12B108.8C1—N1—C4110.82 (9)
H12A—C12—H12B107.7C1—N1—C9123.54 (9)
C12—C13—C14113.16 (9)C4—N1—C9125.19 (9)
C12—C13—H13A108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.473.1423 (14)127
C6—H6···O2ii0.952.553.2360 (13)130
C8—H8···O2iii0.952.523.4598 (13)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.473.1423 (14)127.4
C6—H6···O2ii0.952.553.2360 (13)129.6
C8—H8···O2iii0.952.523.4598 (13)169.4
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z1/2; (iii) x, y+2, z+1.
 

References

First citationBhrigu, B., Pathak, D., Siddiqui, N., Alam, M. S. & Ahsan, W. (2010). Int. J. Pharm. Sci. Drug Res. 2, 229–235.  CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDa Silva, J. F. M., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalhotra, S., Balwani, S., Dhawan, A., Singh, B. K., Kumar, S., Thimmulappa, R., Biswal, S., Olsen, C. E., Van der Eycken, E., Prasad, A. K., Ghosh, B. & Parmar, V. S. (2011). Med. Chem. Commun. 2, 743–751.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2012). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, S. (2011). Int. J. Res. Pharm. Chem. 1, 289–294.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds