organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o188-o189

1-(2,4-Di­nitro­phen­yl)-2-[(E)-(3,4,5-tri­meth­­oxy­benzyl­­idene)]hydrazine

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 3 January 2014; accepted 17 January 2014; online 22 January 2014)

Mol­ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth­oxy groups of the 3,4,5-tri­meth­oxy­benzene moiety lie in the plane of the attached ring [Cmeth­yl–O–C–C torsion angles −0.1 (4)° and −3.7 (3)°] while the para-meth­oxy substituent lies out of the plane [Cmeth­yl—O—C—C, −86.0 (3)°]. An intra­molecular N—H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol­ecules are linked by weak C—H⋯O inter­actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by ππ stacking inter­actions between the nitro and meth­oxy substituted aromatic rings with a centroid–centroid separation of 3.9420 (13) Å. C—H⋯π contacts further stabilize the two-dimensional network.

Related literature

For background to the biological activity of hydro­zones, see: Angelusiu et al. (2010[Angelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Cui et al. (2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]), Gokce et al. (2009[Gokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]); Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]); Sathyadevi et al. (2012[Sathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K., Multhiah, P. T. & Dharmaraj, N. (2012). Polyhedron 31, 294-306.]); Wang et al. (2009[Wang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425-2433.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.], 2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144-o2145.], 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O7

  • Mr = 376.33

  • Orthorhombic, P 21 21 21

  • a = 7.4724 (4) Å

  • b = 14.3106 (7) Å

  • c = 16.1549 (7) Å

  • V = 1727.52 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.58 × 0.30 × 0.24 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.972

  • 20053 measured reflections

  • 2855 independent reflections

  • 2243 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.107

  • S = 1.08

  • 2855 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.82 (2) 2.04 (2) 2.624 (3) 129 (2)
C16—H16C⋯O2i 0.96 2.44 3.169 (4) 133
C14—H14BCg1ii 0.96 2.89 3.514 (3) 123
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There are numerous reports of the various biological activities of hydrazones and their complexes which show antibacterial, antifungal, antitumor, anti-inflammatory and antioxidant activities (Angelusiu et al., 2010; Cui et al., 2010; Gokce et al., 2009; Sathyadevi et al., 2012 and Wang et al., 2009).

In previous works, we synthesized a number of hydrazone derivatives from the reaction of 2,4-dinitrophenylhydrazine and various substituted aldehydes (Fun et al., 2011, 2012 and 2013). The title hydrazone (I) was again synthesized using 2,4-dinitrophenylhydrazine but with 3,4,5-trimethoxybenzaldehyde as the aldehyde. Our evaluation of the antioxidant activity of (I) by the DPPH free radical scavenging method [DPPH = 2,2-diphenyl-1-picrylhydrazyl] (Molyneux, 2004) showed that it displays weak antioxidant activity with 17.6% inhibition. This further confirms observations from previous works (Fun et al., 2011, 2012 and 2013) that the antioxidant ability of such compounds is controlled by the number and substitution pattern of the methoxy substituents. Herein we report the synthesis and crystal structure of (I).

In Fig. 1, the whole molecular structure of (I), C16H16N4O7 is not planar, with the dihedral angle between the two substituted benzene rings being 5.50 (11)°. Both nitro groups lie close to the plane of the attached benzene ring [torsion angles O1–N3–C2–C1 = 4.7 (4)°, O2–N3–C2–C3 = 5.1 (4)°, O3–N4–C4–C3 = -1.9 (3)° and O4–N4–C4–C5 = -0.8 (3)°]. The mean plane through the central N1/N2/C7 bridge makes dihedral angles of 6.8 (2)° and 12.3 (2)° with the two adjacent C1–C6 and C8–C13 benzene rings, respectively. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two meta-methoxy groups (at C10 and C12) are co-planar with the benzene ring plane (Fig. 3) with torsion angles C14–O5–C10–C9 = -3.7 (3)° and C16–O7–C12–C13 = -0.1 (4)° whereas the para-methoxy substituent (at C11) is out of the plane with the torsion angle C15–O6–C11–C10 = -86.0 (3)°. An intramolecular N1—H1N1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). Bond distances for (I) are comparable to those found in closely related structures (Fun et al., 2011, 2012, 2013).

In the crystal packing (Fig. 2), molecules are linked by a weak intermolecular C16—H16C···O2 interaction (Table 1) into screw chains. These chains are arranged into sheets and further stacked along the a axis by π···π interactions with distances of Cg1···Cg2iii, iv = 3.9420 (13) Å [Cg1 and Cg2 are the centroids of the C1···C6 and C8···C13 benzene rings, respectively; symmetry codes (iii) = 1/2-x, 1-y, -1/2+z and (iv) = 1/2+x, 1-y, 1/2+z] (Fig. 3). The molecules are linked into two dimensional network by weak C—H···O interactions. These C—H···π contacts further stabilize the two-dimensional network (Table 1).

Related literature top

For background to the biological activity of hydrozones, see: Angelusiu et al. (2010); Cui et al. (2010), Gokce et al. (2009); Molyneux (2004); Sathyadevi et al. (2012); Wang et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011, 2012, 2013).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98 %, 0.50 ml) was added slowly with stirring. A solution of 3,4,5-trimethoxybenzaldehyde (0.40 g, 2 mmol) in ethanol (20.00 ml) was then added to the solution with continuous stirring for 1 hr, yielding an orange solid which was filtered off and washed with methanol. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from acetone by slow evaporation of the solvent at room temperature over a few weeks, Mp. 496–497 K.

Refinement top

The hydrazine H atom was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for CH and aromatic, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

There are numerous reports of the various biological activities of hydrazones and their complexes which show antibacterial, antifungal, antitumor, anti-inflammatory and antioxidant activities (Angelusiu et al., 2010; Cui et al., 2010; Gokce et al., 2009; Sathyadevi et al., 2012 and Wang et al., 2009).

In previous works, we synthesized a number of hydrazone derivatives from the reaction of 2,4-dinitrophenylhydrazine and various substituted aldehydes (Fun et al., 2011, 2012 and 2013). The title hydrazone (I) was again synthesized using 2,4-dinitrophenylhydrazine but with 3,4,5-trimethoxybenzaldehyde as the aldehyde. Our evaluation of the antioxidant activity of (I) by the DPPH free radical scavenging method [DPPH = 2,2-diphenyl-1-picrylhydrazyl] (Molyneux, 2004) showed that it displays weak antioxidant activity with 17.6% inhibition. This further confirms observations from previous works (Fun et al., 2011, 2012 and 2013) that the antioxidant ability of such compounds is controlled by the number and substitution pattern of the methoxy substituents. Herein we report the synthesis and crystal structure of (I).

In Fig. 1, the whole molecular structure of (I), C16H16N4O7 is not planar, with the dihedral angle between the two substituted benzene rings being 5.50 (11)°. Both nitro groups lie close to the plane of the attached benzene ring [torsion angles O1–N3–C2–C1 = 4.7 (4)°, O2–N3–C2–C3 = 5.1 (4)°, O3–N4–C4–C3 = -1.9 (3)° and O4–N4–C4–C5 = -0.8 (3)°]. The mean plane through the central N1/N2/C7 bridge makes dihedral angles of 6.8 (2)° and 12.3 (2)° with the two adjacent C1–C6 and C8–C13 benzene rings, respectively. The three methoxy groups of the 3,4,5-trimethoxyphenyl unit have two different orientations: the two meta-methoxy groups (at C10 and C12) are co-planar with the benzene ring plane (Fig. 3) with torsion angles C14–O5–C10–C9 = -3.7 (3)° and C16–O7–C12–C13 = -0.1 (4)° whereas the para-methoxy substituent (at C11) is out of the plane with the torsion angle C15–O6–C11–C10 = -86.0 (3)°. An intramolecular N1—H1N1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). Bond distances for (I) are comparable to those found in closely related structures (Fun et al., 2011, 2012, 2013).

In the crystal packing (Fig. 2), molecules are linked by a weak intermolecular C16—H16C···O2 interaction (Table 1) into screw chains. These chains are arranged into sheets and further stacked along the a axis by π···π interactions with distances of Cg1···Cg2iii, iv = 3.9420 (13) Å [Cg1 and Cg2 are the centroids of the C1···C6 and C8···C13 benzene rings, respectively; symmetry codes (iii) = 1/2-x, 1-y, -1/2+z and (iv) = 1/2+x, 1-y, 1/2+z] (Fig. 3). The molecules are linked into two dimensional network by weak C—H···O interactions. These C—H···π contacts further stabilize the two-dimensional network (Table 1).

For background to the biological activity of hydrozones, see: Angelusiu et al. (2010); Cui et al. (2010), Gokce et al. (2009); Molyneux (2004); Sathyadevi et al. (2012); Wang et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011, 2012, 2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. An intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The π···π stacking interaction between the two substituted benzene rings. H atoms were omitted for clarity.
1-(2,4-Dinitrophenyl)-2-[(E)-(3,4,5-trimethoxybenzylidene)]hydrazine top
Crystal data top
C16H16N4O7Dx = 1.447 Mg m3
Mr = 376.33Melting point = 496–497 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2855 reflections
a = 7.4724 (4) Åθ = 2.5–30.0°
b = 14.3106 (7) ŵ = 0.12 mm1
c = 16.1549 (7) ÅT = 100 K
V = 1727.52 (15) Å3Block, orange
Z = 40.58 × 0.30 × 0.24 mm
F(000) = 784
Data collection top
Bruker APEXII CCD area detector
diffractometer
2855 independent reflections
Radiation source: sealed tube2243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.936, Tmax = 0.972k = 1720
20053 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1811P]
where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H16N4O7V = 1727.52 (15) Å3
Mr = 376.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4724 (4) ŵ = 0.12 mm1
b = 14.3106 (7) ÅT = 100 K
c = 16.1549 (7) Å0.58 × 0.30 × 0.24 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2855 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2243 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.972Rint = 0.039
20053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.14 e Å3
2855 reflectionsΔρmin = 0.22 e Å3
251 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4866 (3)0.35711 (12)0.69622 (11)0.0629 (5)
O20.4403 (4)0.38109 (15)0.56725 (12)0.0928 (9)
O30.2099 (3)0.66252 (15)0.46266 (11)0.0705 (6)
O40.1541 (4)0.77886 (16)0.54355 (13)0.0804 (7)
O50.6955 (2)0.40878 (11)1.21814 (9)0.0482 (4)
O60.6333 (2)0.58591 (11)1.26663 (9)0.0467 (4)
O70.5222 (3)0.71519 (11)1.16062 (10)0.0620 (5)
N10.4733 (3)0.49707 (14)0.80101 (11)0.0419 (4)
H1N10.520 (3)0.4462 (17)0.7932 (14)0.041 (7)*
N20.4873 (3)0.53900 (13)0.87742 (10)0.0436 (4)
N30.4436 (3)0.40829 (14)0.63849 (13)0.0516 (5)
N40.2094 (3)0.69931 (16)0.53100 (13)0.0535 (5)
C10.4052 (3)0.54403 (15)0.73618 (12)0.0374 (4)
C20.3933 (3)0.50496 (15)0.65539 (13)0.0391 (5)
C30.3317 (3)0.55573 (17)0.58869 (13)0.0428 (5)
H3A0.32790.52920.53620.051*
C40.2756 (3)0.64651 (16)0.60122 (14)0.0425 (5)
C50.2773 (3)0.68693 (16)0.67997 (14)0.0445 (5)
H5A0.23490.74740.68780.053*
C60.3416 (3)0.63669 (16)0.74534 (14)0.0434 (5)
H6A0.34380.66420.79750.052*
C70.5672 (3)0.48885 (17)0.93111 (13)0.0439 (5)
H7A0.61490.43170.91480.053*
C80.5867 (3)0.51809 (16)1.01780 (13)0.0422 (5)
C90.6408 (3)0.45032 (17)1.07387 (13)0.0419 (5)
H9A0.67170.39091.05540.050*
C100.6487 (3)0.47149 (16)1.15789 (13)0.0401 (5)
C110.6106 (3)0.56190 (16)1.18476 (13)0.0408 (5)
C120.5579 (3)0.63001 (15)1.12739 (14)0.0446 (5)
C130.5446 (4)0.60796 (16)1.04410 (13)0.0467 (6)
H13A0.50800.65291.00610.056*
C140.7279 (4)0.31452 (17)1.19216 (17)0.0543 (6)
H14A0.76770.27821.23860.081*
H14B0.81820.31401.14990.081*
H14C0.61930.28821.17060.081*
C150.4822 (4)0.5655 (2)1.31779 (15)0.0589 (7)
H15A0.50730.58401.37370.088*
H15B0.45810.49961.31620.088*
H15C0.37970.59911.29780.088*
C160.4671 (7)0.78726 (19)1.10517 (18)0.0905 (13)
H16A0.44940.84421.13550.136*
H16B0.35710.76951.07880.136*
H16C0.55780.79661.06390.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0928 (15)0.0415 (8)0.0545 (10)0.0056 (11)0.0095 (11)0.0040 (8)
O20.157 (3)0.0725 (13)0.0492 (11)0.0356 (16)0.0179 (14)0.0286 (10)
O30.0917 (15)0.0789 (13)0.0410 (10)0.0034 (13)0.0048 (10)0.0092 (9)
O40.1078 (19)0.0642 (13)0.0691 (13)0.0249 (14)0.0022 (13)0.0156 (10)
O50.0592 (11)0.0459 (9)0.0394 (8)0.0015 (8)0.0075 (7)0.0025 (7)
O60.0545 (10)0.0552 (9)0.0304 (7)0.0098 (8)0.0006 (7)0.0059 (7)
O70.1072 (16)0.0410 (8)0.0376 (8)0.0064 (11)0.0011 (10)0.0034 (7)
N10.0522 (12)0.0412 (10)0.0322 (9)0.0014 (10)0.0006 (8)0.0061 (7)
N20.0522 (12)0.0476 (10)0.0309 (8)0.0034 (9)0.0013 (8)0.0056 (7)
N30.0627 (14)0.0454 (10)0.0468 (11)0.0015 (11)0.0025 (10)0.0120 (9)
N40.0556 (13)0.0585 (13)0.0465 (12)0.0041 (11)0.0039 (10)0.0121 (10)
C10.0364 (11)0.0419 (11)0.0338 (10)0.0058 (9)0.0027 (8)0.0034 (8)
C20.0432 (12)0.0397 (11)0.0345 (10)0.0020 (10)0.0015 (9)0.0079 (9)
C30.0442 (12)0.0530 (13)0.0313 (10)0.0056 (11)0.0008 (9)0.0057 (9)
C40.0409 (12)0.0473 (13)0.0393 (11)0.0054 (10)0.0002 (9)0.0051 (9)
C50.0461 (12)0.0395 (12)0.0479 (12)0.0003 (10)0.0027 (11)0.0031 (10)
C60.0472 (13)0.0444 (12)0.0387 (11)0.0001 (11)0.0033 (10)0.0086 (9)
C70.0505 (14)0.0474 (12)0.0338 (10)0.0023 (11)0.0026 (10)0.0050 (9)
C80.0451 (13)0.0502 (13)0.0312 (10)0.0030 (10)0.0011 (9)0.0019 (8)
C90.0438 (13)0.0434 (12)0.0384 (11)0.0010 (10)0.0004 (10)0.0060 (9)
C100.0389 (12)0.0452 (12)0.0361 (10)0.0036 (10)0.0039 (9)0.0004 (8)
C110.0455 (12)0.0455 (12)0.0315 (10)0.0065 (10)0.0008 (9)0.0027 (9)
C120.0573 (15)0.0409 (11)0.0356 (10)0.0028 (11)0.0012 (10)0.0036 (9)
C130.0617 (16)0.0462 (12)0.0321 (10)0.0020 (12)0.0023 (10)0.0012 (8)
C140.0585 (15)0.0468 (14)0.0576 (15)0.0035 (12)0.0082 (13)0.0014 (11)
C150.0664 (17)0.0673 (16)0.0429 (13)0.0129 (15)0.0121 (13)0.0077 (11)
C160.172 (4)0.0442 (14)0.0557 (16)0.019 (2)0.002 (2)0.0042 (12)
Geometric parameters (Å, º) top
O1—N31.229 (3)C5—C61.365 (3)
O2—N31.215 (3)C5—H5A0.9300
O3—N41.223 (3)C6—H6A0.9300
O4—N41.228 (3)C7—C81.469 (3)
O5—C101.369 (3)C7—H7A0.9300
O5—C141.433 (3)C8—C91.387 (3)
O6—C111.377 (2)C8—C131.391 (3)
O6—C151.430 (3)C9—C101.392 (3)
O7—C121.358 (3)C9—H9A0.9300
O7—C161.427 (3)C10—C111.394 (3)
N1—C11.344 (3)C11—C121.402 (3)
N1—N21.376 (2)C12—C131.386 (3)
N1—H1N10.82 (2)C13—H13A0.9300
N2—C71.274 (3)C14—H14A0.9600
N3—C21.459 (3)C14—H14B0.9600
N4—C41.450 (3)C14—H14C0.9600
C1—C61.416 (3)C15—H15A0.9600
C1—C21.423 (3)C15—H15B0.9600
C2—C31.379 (3)C15—H15C0.9600
C3—C41.380 (3)C16—H16A0.9600
C3—H3A0.9300C16—H16B0.9600
C4—C51.398 (3)C16—H16C0.9600
C10—O5—C14116.87 (18)C9—C8—C7116.9 (2)
C11—O6—C15114.02 (18)C13—C8—C7122.2 (2)
C12—O7—C16117.21 (18)C8—C9—C10119.8 (2)
C1—N1—N2120.63 (18)C8—C9—H9A120.1
C1—N1—H1N1119.1 (17)C10—C9—H9A120.1
N2—N1—H1N1119.6 (17)O5—C10—C9124.1 (2)
C7—N2—N1113.60 (19)O5—C10—C11116.05 (19)
O2—N3—O1122.2 (2)C9—C10—C11119.8 (2)
O2—N3—C2118.4 (2)O6—C11—C10120.4 (2)
O1—N3—C2119.38 (19)O6—C11—C12119.7 (2)
O3—N4—O4123.3 (2)C10—C11—C12119.80 (19)
O3—N4—C4118.7 (2)O7—C12—C13125.0 (2)
O4—N4—C4118.0 (2)O7—C12—C11114.71 (18)
N1—C1—C6120.90 (19)C13—C12—C11120.3 (2)
N1—C1—C2122.81 (19)C12—C13—C8119.4 (2)
C6—C1—C2116.3 (2)C12—C13—H13A120.3
C3—C2—C1122.1 (2)C8—C13—H13A120.3
C3—C2—N3116.06 (18)O5—C14—H14A109.5
C1—C2—N3121.9 (2)O5—C14—H14B109.5
C2—C3—C4118.87 (19)H14A—C14—H14B109.5
C2—C3—H3A120.6O5—C14—H14C109.5
C4—C3—H3A120.6H14A—C14—H14C109.5
C3—C4—C5121.4 (2)H14B—C14—H14C109.5
C3—C4—N4118.6 (2)O6—C15—H15A109.5
C5—C4—N4120.0 (2)O6—C15—H15B109.5
C6—C5—C4119.3 (2)H15A—C15—H15B109.5
C6—C5—H5A120.4O6—C15—H15C109.5
C4—C5—H5A120.4H15A—C15—H15C109.5
C5—C6—C1122.0 (2)H15B—C15—H15C109.5
C5—C6—H6A119.0O7—C16—H16A109.5
C1—C6—H6A119.0O7—C16—H16B109.5
N2—C7—C8122.3 (2)H16A—C16—H16B109.5
N2—C7—H7A118.8O7—C16—H16C109.5
C8—C7—H7A118.8H16A—C16—H16C109.5
C9—C8—C13120.9 (2)H16B—C16—H16C109.5
C1—N1—N2—C7174.7 (2)N2—C7—C8—C9166.5 (2)
N2—N1—C1—C61.8 (3)N2—C7—C8—C1310.3 (4)
N2—N1—C1—C2177.9 (2)C13—C8—C9—C101.8 (4)
N1—C1—C2—C3176.6 (2)C7—C8—C9—C10175.1 (2)
C6—C1—C2—C33.1 (3)C14—O5—C10—C93.7 (3)
N1—C1—C2—N34.2 (4)C14—O5—C10—C11177.5 (2)
C6—C1—C2—N3176.1 (2)C8—C9—C10—O5178.1 (2)
O2—N3—C2—C35.1 (4)C8—C9—C10—C113.1 (4)
O1—N3—C2—C3174.5 (2)C15—O6—C11—C1086.0 (3)
O2—N3—C2—C1175.7 (3)C15—O6—C11—C1297.3 (3)
O1—N3—C2—C14.7 (4)O5—C10—C11—O64.6 (3)
C1—C2—C3—C41.7 (4)C9—C10—C11—O6174.2 (2)
N3—C2—C3—C4177.6 (2)O5—C10—C11—C12178.6 (2)
C2—C3—C4—C51.2 (4)C9—C10—C11—C122.5 (4)
C2—C3—C4—N4179.4 (2)C16—O7—C12—C130.1 (4)
O3—N4—C4—C31.9 (3)C16—O7—C12—C11179.8 (3)
O4—N4—C4—C3177.5 (3)O6—C11—C12—O74.0 (3)
O3—N4—C4—C5179.8 (2)C10—C11—C12—O7179.2 (2)
O4—N4—C4—C50.8 (3)O6—C11—C12—C13176.3 (2)
C3—C4—C5—C62.4 (4)C10—C11—C12—C130.5 (4)
N4—C4—C5—C6179.4 (2)O7—C12—C13—C8179.4 (2)
C4—C5—C6—C10.8 (4)C11—C12—C13—C80.9 (4)
N1—C1—C6—C5177.8 (2)C9—C8—C13—C120.3 (4)
C2—C1—C6—C51.8 (3)C7—C8—C13—C12177.0 (2)
N1—N2—C7—C8176.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.82 (2)2.04 (2)2.624 (3)129 (2)
C16—H16C···O2i0.962.443.169 (4)133
C14—H14B···Cg1ii0.962.893.514 (3)123
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.82 (2)2.04 (2)2.624 (3)129 (2)
C16—H16C···O2i0.962.443.169 (4)133
C14—H14B···Cg1ii0.962.893.514 (3)123
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Prince of Songkla University for generous support. CSCK thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. The authors extend their appreciation to the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAngelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGokce, M., Utku, S. & Kupeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  Web of Science CrossRef PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationSathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K., Multhiah, P. T. & Dharmaraj, N. (2012). Polyhedron 31, 294–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Yang, Z. Y., Qi, G.-F. & Qin, D.-D. (2009). Eur. J. Med. Chem. 44, 2425–2433.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o188-o189
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds