organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o179-o180

5-Propyl-6-(p-tolyl­sulfan­yl)pyrimidine-2,4(1H,3H)-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 9 January 2014; accepted 11 January 2014; online 22 January 2014)

In the title pymiridine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 66.69 (10)°. The mol­ecule is twisted about the Cp—S (p = pyrimidine) bond, with a C—S—C—N torsion angle of −19.57 (16)°. In the crystal, adjacent mol­ecules form inversion dimers through pairs of strong N—H⋯O hydrogen bonds, generating an R22(8) ring motif. The dimers are connected into chains extending along the c-axis direction through additional N—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011[Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.]); El-Emam et al. (2004[El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991-996.]); Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.]); Klein et al. (2001[Klein, R. S., Lenzi, M., Lim, T. H., Hotchkiss, K. A., Wilson, P. & Schwartz, E. L. (2001). Biochem. Pharmacol. 62, 1257-1263.]); Miyasaka et al. (1989[Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. & Clercq, E. D. (1989). J. Med. Chem. 32, 2507-2509.]); Nencka et al. (2006[Nencka, R., Votruba, I., Hrebabecky, H., Tloust'ova, E., Horska, K., Masojidkova, M. & Holý, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335-1337.]); Russ et al. (2003[Russ, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem. 46, 5045-5054.]); Tanaka et al. (1995[Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860-2865.]); For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663-670.]); Wang et al. (2006[Wang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252-3258.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O2S

  • Mr = 276.35

  • Monoclinic, P 21 /c

  • a = 11.8356 (3) Å

  • b = 10.3040 (2) Å

  • c = 13.3999 (3) Å

  • β = 119.850 (2)°

  • V = 1417.37 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.03 mm−1

  • T = 293 K

  • 0.82 × 0.71 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.287, Tmax = 0.855

  • 9643 measured reflections

  • 2658 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.06

  • 2658 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N2⋯O1i 0.84 (2) 1.98 (2) 2.815 (2) 173 (2)
N1—H1N1⋯O2ii 0.79 (2) 2.17 (2) 2.8988 (18) 155 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities including antiviral activity against the HIV (Miyasaka et al., 1989; Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Klein et al., 2001; Nencka et al., 2006). In continuation to our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

The title compound (I) is a derivative of pymiridine-2,4-dione. The heterocycle contains the structural unit CON2H2CO, forming the dihedral angle of 66.69 (10)° with the adjacent benzene ring. The molecule is bent (Fig. 1) at the S atom with a C–S–C–N torsion angle of -19.57 (16)°. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier (El-Brollosy et al., 2009; Wang et al., 2006). The crystal structure features for two types of intermolecular N–H···O hydrogen bonds (Table 1). Two adjacent molecules form inversion-related dimers through strong N2–H2A···O1 hydrogen bonds (symmetry code: -x + 1, -y, -z + 1), generating an R22(8) ring motif (Bernstein et al., 1995) (Fig. 2). These dimers are further connected into chains extending along c axis through additional N1–H1N1···O2 hydrogen bonds (symmetry code: x, -y +1/2, z + 1/2) (Fig. 2). Crystal stability is mainly consolidated by these hydrogen bonding interactions forming two-dimensional networks parallel to the bc plane.

Related literature top

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011); El-Emam et al. (2004); Hopkins et al. (1996); Klein et al. (2001); Miyasaka et al. (1989); Nencka et al. (2006); Russ et al. (2003); Tanaka et al. (1995); For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2009); Wang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 6-chloro-5-propyluracil (943 mg, 0.005 mol), p-thiocresol (621 mg, 0.005 mol) and potassium hydroxide (281 mg, 0.005 mol), in ethanol (10 ml), was heated under reflux for 3 h. The solvent was then distilled off in vacuo and the residue was washed with cold water, dried and crystallized from ethanol to yield 995 mg (72%) of the title compound (C14H16N2O2S) as colorless needle-like crystals. M·P.: 446–448 K.

1H NMR (DMSO-d6, 500.13 MHz): δ 0.84 (t, 3H, CH2CH3, J = 7.0 Hz), 1.38–1.40 (m, 2H, CH2CH3), 2.31 (s, 3H, Ar—CH3), 2.44 (t, 2H, CH2CH2CH3, J = 7.0 Hz), 7.22 (d, 2H, Ar—H, J = 7.0 Hz), 7.30 (d, 2H, Ar—H, J = 7.0 Hz), 10.74 (s, 1H, NH), 11.21 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): δ 13.73 (CH2CH3), 20.54 (CH2CH3), 22.05 (CH2CH2CH3), 28.11 (Ar—CH3), 116.60 (pyrimidine C-5), 128.10, 130.01, 130.18, 130.55 (Ar—C), 143.84 (pyrimidine C-6), 150.46 (C=O), 163.19 (C=O).

Refinement top

The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.

Structure description top

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities including antiviral activity against the HIV (Miyasaka et al., 1989; Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Klein et al., 2001; Nencka et al., 2006). In continuation to our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

The title compound (I) is a derivative of pymiridine-2,4-dione. The heterocycle contains the structural unit CON2H2CO, forming the dihedral angle of 66.69 (10)° with the adjacent benzene ring. The molecule is bent (Fig. 1) at the S atom with a C–S–C–N torsion angle of -19.57 (16)°. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier (El-Brollosy et al., 2009; Wang et al., 2006). The crystal structure features for two types of intermolecular N–H···O hydrogen bonds (Table 1). Two adjacent molecules form inversion-related dimers through strong N2–H2A···O1 hydrogen bonds (symmetry code: -x + 1, -y, -z + 1), generating an R22(8) ring motif (Bernstein et al., 1995) (Fig. 2). These dimers are further connected into chains extending along c axis through additional N1–H1N1···O2 hydrogen bonds (symmetry code: x, -y +1/2, z + 1/2) (Fig. 2). Crystal stability is mainly consolidated by these hydrogen bonding interactions forming two-dimensional networks parallel to the bc plane.

For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011); El-Emam et al. (2004); Hopkins et al. (1996); Klein et al. (2001); Miyasaka et al. (1989); Nencka et al. (2006); Russ et al. (2003); Tanaka et al. (1995); For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2009); Wang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labelling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis, showing the N1–H1N1···O2 and N2–H2N2···O1 intermolecular hydrogen bonds as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity.
5-Propyl-6-(p-tolylsulfanyl)pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C14H16N2O2SF(000) = 584
Mr = 276.35Dx = 1.295 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 5622 reflections
a = 11.8356 (3) Åθ = 3.8–69.5°
b = 10.3040 (2) ŵ = 2.03 mm1
c = 13.3999 (3) ÅT = 293 K
β = 119.850 (2)°Needle, colourless
V = 1417.37 (6) Å30.82 × 0.71 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2658 independent reflections
Radiation source: fine-focus sealed tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 69.9°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.287, Tmax = 0.855k = 1210
9643 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.439P]
where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H16N2O2SV = 1417.37 (6) Å3
Mr = 276.35Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.8356 (3) ŵ = 2.03 mm1
b = 10.3040 (2) ÅT = 293 K
c = 13.3999 (3) Å0.82 × 0.71 × 0.08 mm
β = 119.850 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2450 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.855Rint = 0.024
9643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
2658 reflectionsΔρmin = 0.39 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28497 (6)0.53022 (5)0.47950 (5)0.0610 (2)
O10.45217 (15)0.07980 (13)0.58320 (11)0.0594 (4)
N10.38171 (14)0.28614 (14)0.53086 (12)0.0434 (3)
C10.35088 (16)0.38803 (16)0.45499 (14)0.0426 (4)
O20.44741 (15)0.24368 (14)0.26889 (11)0.0584 (4)
N20.45477 (15)0.16770 (15)0.42914 (12)0.0441 (3)
C20.43133 (16)0.17195 (16)0.51850 (13)0.0418 (4)
C30.42669 (17)0.26374 (17)0.34806 (14)0.0438 (4)
C40.37290 (17)0.38287 (17)0.36542 (14)0.0460 (4)
C50.3446 (2)0.49234 (19)0.28137 (16)0.0529 (4)
H5A0.41500.49800.26420.063*
H5B0.34240.57330.31730.063*
C60.2176 (2)0.4763 (2)0.17021 (19)0.0625 (5)
H6A0.14780.46280.18720.075*
H6B0.22250.40020.13000.075*
C70.1865 (3)0.5949 (3)0.0927 (2)0.0891 (8)
H7A0.10540.58160.02290.134*
H7B0.25470.60760.07460.134*
H7C0.18000.67020.13170.134*
C80.22523 (18)0.47959 (18)0.57142 (16)0.0489 (4)
C90.1270 (2)0.3881 (2)0.53692 (18)0.0586 (5)
H9A0.09370.34770.46570.070*
C100.0791 (2)0.3573 (2)0.6090 (2)0.0669 (6)
H10A0.01490.29410.58660.080*
C110.1244 (2)0.4185 (3)0.7138 (2)0.0694 (6)
C120.2192 (2)0.5123 (3)0.74454 (19)0.0720 (6)
H12A0.24850.55650.81360.086*
C130.2718 (2)0.5423 (2)0.67553 (18)0.0587 (5)
H13A0.33760.60400.69900.070*
C140.0734 (3)0.3817 (4)0.7929 (3)0.1124 (13)
H14A0.00860.31510.75750.169*
H14B0.03530.45640.80740.169*
H14C0.14380.35010.86430.169*
H2N20.483 (2)0.096 (2)0.4206 (19)0.055 (6)*
H1N10.3791 (19)0.291 (2)0.5883 (19)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0879 (4)0.0444 (3)0.0701 (4)0.0183 (2)0.0541 (3)0.0103 (2)
O10.0977 (10)0.0498 (7)0.0494 (7)0.0248 (7)0.0507 (7)0.0134 (6)
N10.0588 (8)0.0447 (8)0.0356 (7)0.0101 (6)0.0303 (6)0.0027 (6)
C10.0483 (8)0.0411 (9)0.0399 (8)0.0035 (7)0.0231 (7)0.0013 (7)
O20.0888 (9)0.0579 (8)0.0487 (7)0.0058 (7)0.0494 (7)0.0040 (6)
N20.0609 (8)0.0421 (8)0.0392 (7)0.0091 (6)0.0323 (7)0.0029 (6)
C20.0523 (8)0.0434 (9)0.0335 (7)0.0081 (7)0.0243 (7)0.0018 (7)
C30.0545 (9)0.0461 (9)0.0367 (8)0.0002 (7)0.0271 (7)0.0009 (7)
C40.0560 (9)0.0443 (9)0.0414 (8)0.0019 (7)0.0270 (7)0.0026 (7)
C50.0677 (11)0.0465 (9)0.0514 (10)0.0021 (8)0.0348 (9)0.0033 (8)
C60.0705 (12)0.0537 (11)0.0591 (12)0.0046 (9)0.0291 (10)0.0076 (9)
C70.108 (2)0.0711 (16)0.0669 (14)0.0175 (14)0.0272 (14)0.0261 (12)
C80.0557 (10)0.0460 (10)0.0498 (10)0.0145 (7)0.0299 (8)0.0031 (7)
C90.0604 (11)0.0551 (11)0.0600 (11)0.0097 (9)0.0298 (9)0.0052 (9)
C100.0603 (11)0.0616 (12)0.0860 (15)0.0110 (9)0.0417 (11)0.0096 (11)
C110.0625 (12)0.0885 (16)0.0680 (13)0.0275 (12)0.0407 (11)0.0210 (12)
C120.0752 (14)0.0937 (17)0.0485 (11)0.0216 (13)0.0318 (10)0.0030 (11)
C130.0596 (11)0.0623 (12)0.0544 (11)0.0090 (9)0.0285 (9)0.0054 (9)
C140.099 (2)0.167 (4)0.102 (2)0.038 (2)0.0731 (19)0.044 (2)
Geometric parameters (Å, º) top
S1—C11.7658 (17)C6—H6B0.9700
S1—C81.7766 (19)C7—H7A0.9600
O1—C21.225 (2)C7—H7B0.9600
N1—C21.361 (2)C7—H7C0.9600
N1—C11.378 (2)C8—C131.379 (3)
N1—H1N10.79 (2)C8—C91.385 (3)
C1—C41.350 (2)C9—C101.378 (3)
O2—C31.220 (2)C9—H9A0.9300
N2—C21.358 (2)C10—C111.381 (4)
N2—C31.382 (2)C10—H10A0.9300
N2—H2N20.84 (3)C11—C121.378 (4)
C3—C41.454 (2)C11—C141.508 (3)
C4—C51.509 (2)C12—C131.383 (3)
C5—C61.509 (3)C12—H12A0.9300
C5—H5A0.9700C13—H13A0.9300
C5—H5B0.9700C14—H14A0.9600
C6—C71.526 (3)C14—H14B0.9600
C6—H6A0.9700C14—H14C0.9600
C1—S1—C8104.50 (8)C6—C7—H7A109.5
C2—N1—C1122.71 (14)C6—C7—H7B109.5
C2—N1—H1N1114.1 (16)H7A—C7—H7B109.5
C1—N1—H1N1122.9 (16)C6—C7—H7C109.5
C4—C1—N1121.90 (15)H7A—C7—H7C109.5
C4—C1—S1119.78 (13)H7B—C7—H7C109.5
N1—C1—S1118.30 (12)C13—C8—C9120.23 (19)
C2—N2—C3126.53 (15)C13—C8—S1117.82 (16)
C2—N2—H2N2114.9 (16)C9—C8—S1121.72 (15)
C3—N2—H2N2118.3 (16)C10—C9—C8119.5 (2)
O1—C2—N2122.78 (15)C10—C9—H9A120.3
O1—C2—N1122.06 (14)C8—C9—H9A120.3
N2—C2—N1115.16 (14)C9—C10—C11121.3 (2)
O2—C3—N2119.25 (16)C9—C10—H10A119.3
O2—C3—C4125.16 (16)C11—C10—H10A119.3
N2—C3—C4115.59 (14)C12—C11—C10118.1 (2)
C1—C4—C3117.98 (15)C12—C11—C14121.2 (3)
C1—C4—C5124.38 (16)C10—C11—C14120.8 (3)
C3—C4—C5117.64 (15)C11—C12—C13121.8 (2)
C4—C5—C6113.39 (16)C11—C12—H12A119.1
C4—C5—H5A108.9C13—C12—H12A119.1
C6—C5—H5A108.9C8—C13—C12119.0 (2)
C4—C5—H5B108.9C8—C13—H13A120.5
C6—C5—H5B108.9C12—C13—H13A120.5
H5A—C5—H5B107.7C11—C14—H14A109.5
C5—C6—C7111.6 (2)C11—C14—H14B109.5
C5—C6—H6A109.3H14A—C14—H14B109.5
C7—C6—H6A109.3C11—C14—H14C109.5
C5—C6—H6B109.3H14A—C14—H14C109.5
C7—C6—H6B109.3H14B—C14—H14C109.5
H6A—C6—H6B108.0
C2—N1—C1—C42.7 (3)N2—C3—C4—C5178.08 (16)
C2—N1—C1—S1179.11 (13)C1—C4—C5—C699.1 (2)
C8—S1—C1—C4162.19 (15)C3—C4—C5—C680.5 (2)
C8—S1—C1—N119.57 (16)C4—C5—C6—C7174.6 (2)
C3—N2—C2—O1175.69 (18)C1—S1—C8—C13123.21 (15)
C3—N2—C2—N13.8 (3)C1—S1—C8—C962.23 (17)
C1—N1—C2—O1176.24 (17)C13—C8—C9—C102.0 (3)
C1—N1—C2—N23.3 (2)S1—C8—C9—C10176.42 (15)
C2—N2—C3—O2176.34 (17)C8—C9—C10—C111.8 (3)
C2—N2—C3—C43.4 (3)C9—C10—C11—C120.3 (3)
N1—C1—C4—C32.1 (3)C9—C10—C11—C14178.5 (2)
S1—C1—C4—C3179.72 (13)C10—C11—C12—C132.2 (3)
N1—C1—C4—C5178.32 (17)C14—C11—C12—C13176.6 (2)
S1—C1—C4—C50.1 (2)C9—C8—C13—C120.1 (3)
O2—C3—C4—C1177.39 (17)S1—C8—C13—C12174.76 (16)
N2—C3—C4—C12.3 (2)C11—C12—C13—C82.0 (3)
O2—C3—C4—C52.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1i0.84 (2)1.98 (2)2.815 (2)173 (2)
N1—H1N1···O2ii0.79 (2)2.17 (2)2.8988 (18)155 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N2···O1i0.84 (2)1.98 (2)2.815 (2)173 (2)
N1—H1N1···O2ii0.79 (2)2.17 (2)2.8988 (18)155 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2.
 

Footnotes

Additonal correspondence author, e-mail: elemam5@hotmail.com.

§Thomson Reuters ResearcherID: C-3194-2011.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647.  Web of Science CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663–670.  CAS Google Scholar
First citationEl-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991–996.  CAS Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKlein, R. S., Lenzi, M., Lim, T. H., Hotchkiss, K. A., Wilson, P. & Schwartz, E. L. (2001). Biochem. Pharmacol. 62, 1257–1263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. & Clercq, E. D. (1989). J. Med. Chem. 32, 2507–2509.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNencka, R., Votruba, I., Hrebabecky, H., Tloust'ova, E., Horska, K., Masojidkova, M. & Holý, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335–1337.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuss, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem. 46, 5045–5054.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252–3258.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o179-o180
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds