organic compounds
5-Propyl-6-(p-tolylsulfanyl)pyrimidine-2,4(1H,3H)-dione
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa
In the title pymiridine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 66.69 (10)°. The molecule is twisted about the Cp—S (p = pyrimidine) bond, with a C—S—C—N torsion angle of −19.57 (16)°. In the crystal, adjacent molecules form inversion dimers through pairs of strong N—H⋯O hydrogen bonds, generating an R22(8) ring motif. The dimers are connected into chains extending along the c-axis direction through additional N—H⋯O hydrogen bonds.
CCDC reference: 981111
Related literature
For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011); El-Emam et al. (2004); Hopkins et al. (1996); Klein et al. (2001); Miyasaka et al. (1989); Nencka et al. (2006); Russ et al. (2003); Tanaka et al. (1995); For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2009); Wang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 981111
10.1107/S1600536814000749/sj5382sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000749/sj5382Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814000749/sj5382Isup3.cml
A mixture of 6-chloro-5-propyluracil (943 mg, 0.005 mol), p-thiocresol (621 mg, 0.005 mol) and potassium hydroxide (281 mg, 0.005 mol), in ethanol (10 ml), was heated under reflux for 3 h. The solvent was then distilled off in vacuo and the residue was washed with cold water, dried and crystallized from ethanol to yield 995 mg (72%) of the title compound (C14H16N2O2S) as colorless needle-like crystals. M·P.: 446–448 K.
1H NMR (DMSO-d6, 500.13 MHz): δ 0.84 (t, 3H, CH2CH3, J = 7.0 Hz), 1.38–1.40 (m, 2H, CH2CH3), 2.31 (s, 3H, Ar—CH3), 2.44 (t, 2H, CH2CH2CH3, J = 7.0 Hz), 7.22 (d, 2H, Ar—H, J = 7.0 Hz), 7.30 (d, 2H, Ar—H, J = 7.0 Hz), 10.74 (s, 1H, NH), 11.21 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): δ 13.73 (CH2CH3), 20.54 (CH2CH3), 22.05 (CH2CH2CH3), 28.11 (Ar—CH3), 116.60 (pyrimidine C-5), 128.10, 130.01, 130.18, 130.55 (Ar—C), 143.84 (pyrimidine C-6), 150.46 (C=O), 163.19 (C=O).
The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.
Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities including antiviral activity against the HIV (Miyasaka et al., 1989; Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Klein et al., 2001; Nencka et al., 2006). In continuation to our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.
The title compound (I) is a derivative of pymiridine-2,4-dione. The heterocycle contains the structural unit CON2H2CO, forming the dihedral angle of 66.69 (10)° with the adjacent benzene ring. The molecule is bent (Fig. 1) at the S atom with a C–S–C–N torsion angle of -19.57 (16)°. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier (El-Brollosy et al., 2009; Wang et al., 2006). The
features for two types of intermolecular N–H···O hydrogen bonds (Table 1). Two adjacent molecules form inversion-related dimers through strong N2–H2A···O1 hydrogen bonds (symmetry code: -x + 1, -y, -z + 1), generating an R22(8) ring motif (Bernstein et al., 1995) (Fig. 2). These dimers are further connected into chains extending along c axis through additional N1–H1N1···O2 hydrogen bonds (symmetry code: x, -y +1/2, z + 1/2) (Fig. 2). Crystal stability is mainly consolidated by these hydrogen bonding interactions forming two-dimensional networks parallel to the bc plane.For the pharmacological activity of pyrimidine-2,4-dione derivatives, see: Al-Abdullah et al. (2011); El-Emam et al. (2004); Hopkins et al. (1996); Klein et al. (2001); Miyasaka et al. (1989); Nencka et al. (2006); Russ et al. (2003); Tanaka et al. (1995); For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2009); Wang et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C14H16N2O2S | F(000) = 584 |
Mr = 276.35 | Dx = 1.295 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 5622 reflections |
a = 11.8356 (3) Å | θ = 3.8–69.5° |
b = 10.3040 (2) Å | µ = 2.03 mm−1 |
c = 13.3999 (3) Å | T = 293 K |
β = 119.850 (2)° | Needle, colourless |
V = 1417.37 (6) Å3 | 0.82 × 0.71 × 0.08 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2658 independent reflections |
Radiation source: fine-focus sealed tube | 2450 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 69.9°, θmin = 4.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.287, Tmax = 0.855 | k = −12→10 |
9643 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0707P)2 + 0.439P] where P = (Fo2 + 2Fc2)/3 |
2658 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C14H16N2O2S | V = 1417.37 (6) Å3 |
Mr = 276.35 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.8356 (3) Å | µ = 2.03 mm−1 |
b = 10.3040 (2) Å | T = 293 K |
c = 13.3999 (3) Å | 0.82 × 0.71 × 0.08 mm |
β = 119.850 (2)° |
Bruker APEXII CCD diffractometer | 2658 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2450 reflections with I > 2σ(I) |
Tmin = 0.287, Tmax = 0.855 | Rint = 0.024 |
9643 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.33 e Å−3 |
2658 reflections | Δρmin = −0.39 e Å−3 |
180 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.28497 (6) | 0.53022 (5) | 0.47950 (5) | 0.0610 (2) | |
O1 | 0.45217 (15) | 0.07980 (13) | 0.58320 (11) | 0.0594 (4) | |
N1 | 0.38171 (14) | 0.28614 (14) | 0.53086 (12) | 0.0434 (3) | |
C1 | 0.35088 (16) | 0.38803 (16) | 0.45499 (14) | 0.0426 (4) | |
O2 | 0.44741 (15) | 0.24368 (14) | 0.26889 (11) | 0.0584 (4) | |
N2 | 0.45477 (15) | 0.16770 (15) | 0.42914 (12) | 0.0441 (3) | |
C2 | 0.43133 (16) | 0.17195 (16) | 0.51850 (13) | 0.0418 (4) | |
C3 | 0.42669 (17) | 0.26374 (17) | 0.34806 (14) | 0.0438 (4) | |
C4 | 0.37290 (17) | 0.38287 (17) | 0.36542 (14) | 0.0460 (4) | |
C5 | 0.3446 (2) | 0.49234 (19) | 0.28137 (16) | 0.0529 (4) | |
H5A | 0.4150 | 0.4980 | 0.2642 | 0.063* | |
H5B | 0.3424 | 0.5733 | 0.3173 | 0.063* | |
C6 | 0.2176 (2) | 0.4763 (2) | 0.17021 (19) | 0.0625 (5) | |
H6A | 0.1478 | 0.4628 | 0.1872 | 0.075* | |
H6B | 0.2225 | 0.4002 | 0.1300 | 0.075* | |
C7 | 0.1865 (3) | 0.5949 (3) | 0.0927 (2) | 0.0891 (8) | |
H7A | 0.1054 | 0.5816 | 0.0229 | 0.134* | |
H7B | 0.2547 | 0.6076 | 0.0746 | 0.134* | |
H7C | 0.1800 | 0.6702 | 0.1317 | 0.134* | |
C8 | 0.22523 (18) | 0.47959 (18) | 0.57142 (16) | 0.0489 (4) | |
C9 | 0.1270 (2) | 0.3881 (2) | 0.53692 (18) | 0.0586 (5) | |
H9A | 0.0937 | 0.3477 | 0.4657 | 0.070* | |
C10 | 0.0791 (2) | 0.3573 (2) | 0.6090 (2) | 0.0669 (6) | |
H10A | 0.0149 | 0.2941 | 0.5866 | 0.080* | |
C11 | 0.1244 (2) | 0.4185 (3) | 0.7138 (2) | 0.0694 (6) | |
C12 | 0.2192 (2) | 0.5123 (3) | 0.74454 (19) | 0.0720 (6) | |
H12A | 0.2485 | 0.5565 | 0.8136 | 0.086* | |
C13 | 0.2718 (2) | 0.5423 (2) | 0.67553 (18) | 0.0587 (5) | |
H13A | 0.3376 | 0.6040 | 0.6990 | 0.070* | |
C14 | 0.0734 (3) | 0.3817 (4) | 0.7929 (3) | 0.1124 (13) | |
H14A | 0.0086 | 0.3151 | 0.7575 | 0.169* | |
H14B | 0.0353 | 0.4564 | 0.8074 | 0.169* | |
H14C | 0.1438 | 0.3501 | 0.8643 | 0.169* | |
H2N2 | 0.483 (2) | 0.096 (2) | 0.4206 (19) | 0.055 (6)* | |
H1N1 | 0.3791 (19) | 0.291 (2) | 0.5883 (19) | 0.046 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0879 (4) | 0.0444 (3) | 0.0701 (4) | 0.0183 (2) | 0.0541 (3) | 0.0103 (2) |
O1 | 0.0977 (10) | 0.0498 (7) | 0.0494 (7) | 0.0248 (7) | 0.0507 (7) | 0.0134 (6) |
N1 | 0.0588 (8) | 0.0447 (8) | 0.0356 (7) | 0.0101 (6) | 0.0303 (6) | 0.0027 (6) |
C1 | 0.0483 (8) | 0.0411 (9) | 0.0399 (8) | 0.0035 (7) | 0.0231 (7) | 0.0013 (7) |
O2 | 0.0888 (9) | 0.0579 (8) | 0.0487 (7) | 0.0058 (7) | 0.0494 (7) | 0.0040 (6) |
N2 | 0.0609 (8) | 0.0421 (8) | 0.0392 (7) | 0.0091 (6) | 0.0323 (7) | 0.0029 (6) |
C2 | 0.0523 (8) | 0.0434 (9) | 0.0335 (7) | 0.0081 (7) | 0.0243 (7) | 0.0018 (7) |
C3 | 0.0545 (9) | 0.0461 (9) | 0.0367 (8) | −0.0002 (7) | 0.0271 (7) | 0.0009 (7) |
C4 | 0.0560 (9) | 0.0443 (9) | 0.0414 (8) | 0.0019 (7) | 0.0270 (7) | 0.0026 (7) |
C5 | 0.0677 (11) | 0.0465 (9) | 0.0514 (10) | −0.0021 (8) | 0.0348 (9) | 0.0033 (8) |
C6 | 0.0705 (12) | 0.0537 (11) | 0.0591 (12) | 0.0046 (9) | 0.0291 (10) | 0.0076 (9) |
C7 | 0.108 (2) | 0.0711 (16) | 0.0669 (14) | 0.0175 (14) | 0.0272 (14) | 0.0261 (12) |
C8 | 0.0557 (10) | 0.0460 (10) | 0.0498 (10) | 0.0145 (7) | 0.0299 (8) | 0.0031 (7) |
C9 | 0.0604 (11) | 0.0551 (11) | 0.0600 (11) | 0.0097 (9) | 0.0298 (9) | −0.0052 (9) |
C10 | 0.0603 (11) | 0.0616 (12) | 0.0860 (15) | 0.0110 (9) | 0.0417 (11) | 0.0096 (11) |
C11 | 0.0625 (12) | 0.0885 (16) | 0.0680 (13) | 0.0275 (12) | 0.0407 (11) | 0.0210 (12) |
C12 | 0.0752 (14) | 0.0937 (17) | 0.0485 (11) | 0.0216 (13) | 0.0318 (10) | −0.0030 (11) |
C13 | 0.0596 (11) | 0.0623 (12) | 0.0544 (11) | 0.0090 (9) | 0.0285 (9) | −0.0054 (9) |
C14 | 0.099 (2) | 0.167 (4) | 0.102 (2) | 0.038 (2) | 0.0731 (19) | 0.044 (2) |
S1—C1 | 1.7658 (17) | C6—H6B | 0.9700 |
S1—C8 | 1.7766 (19) | C7—H7A | 0.9600 |
O1—C2 | 1.225 (2) | C7—H7B | 0.9600 |
N1—C2 | 1.361 (2) | C7—H7C | 0.9600 |
N1—C1 | 1.378 (2) | C8—C13 | 1.379 (3) |
N1—H1N1 | 0.79 (2) | C8—C9 | 1.385 (3) |
C1—C4 | 1.350 (2) | C9—C10 | 1.378 (3) |
O2—C3 | 1.220 (2) | C9—H9A | 0.9300 |
N2—C2 | 1.358 (2) | C10—C11 | 1.381 (4) |
N2—C3 | 1.382 (2) | C10—H10A | 0.9300 |
N2—H2N2 | 0.84 (3) | C11—C12 | 1.378 (4) |
C3—C4 | 1.454 (2) | C11—C14 | 1.508 (3) |
C4—C5 | 1.509 (2) | C12—C13 | 1.383 (3) |
C5—C6 | 1.509 (3) | C12—H12A | 0.9300 |
C5—H5A | 0.9700 | C13—H13A | 0.9300 |
C5—H5B | 0.9700 | C14—H14A | 0.9600 |
C6—C7 | 1.526 (3) | C14—H14B | 0.9600 |
C6—H6A | 0.9700 | C14—H14C | 0.9600 |
C1—S1—C8 | 104.50 (8) | C6—C7—H7A | 109.5 |
C2—N1—C1 | 122.71 (14) | C6—C7—H7B | 109.5 |
C2—N1—H1N1 | 114.1 (16) | H7A—C7—H7B | 109.5 |
C1—N1—H1N1 | 122.9 (16) | C6—C7—H7C | 109.5 |
C4—C1—N1 | 121.90 (15) | H7A—C7—H7C | 109.5 |
C4—C1—S1 | 119.78 (13) | H7B—C7—H7C | 109.5 |
N1—C1—S1 | 118.30 (12) | C13—C8—C9 | 120.23 (19) |
C2—N2—C3 | 126.53 (15) | C13—C8—S1 | 117.82 (16) |
C2—N2—H2N2 | 114.9 (16) | C9—C8—S1 | 121.72 (15) |
C3—N2—H2N2 | 118.3 (16) | C10—C9—C8 | 119.5 (2) |
O1—C2—N2 | 122.78 (15) | C10—C9—H9A | 120.3 |
O1—C2—N1 | 122.06 (14) | C8—C9—H9A | 120.3 |
N2—C2—N1 | 115.16 (14) | C9—C10—C11 | 121.3 (2) |
O2—C3—N2 | 119.25 (16) | C9—C10—H10A | 119.3 |
O2—C3—C4 | 125.16 (16) | C11—C10—H10A | 119.3 |
N2—C3—C4 | 115.59 (14) | C12—C11—C10 | 118.1 (2) |
C1—C4—C3 | 117.98 (15) | C12—C11—C14 | 121.2 (3) |
C1—C4—C5 | 124.38 (16) | C10—C11—C14 | 120.8 (3) |
C3—C4—C5 | 117.64 (15) | C11—C12—C13 | 121.8 (2) |
C4—C5—C6 | 113.39 (16) | C11—C12—H12A | 119.1 |
C4—C5—H5A | 108.9 | C13—C12—H12A | 119.1 |
C6—C5—H5A | 108.9 | C8—C13—C12 | 119.0 (2) |
C4—C5—H5B | 108.9 | C8—C13—H13A | 120.5 |
C6—C5—H5B | 108.9 | C12—C13—H13A | 120.5 |
H5A—C5—H5B | 107.7 | C11—C14—H14A | 109.5 |
C5—C6—C7 | 111.6 (2) | C11—C14—H14B | 109.5 |
C5—C6—H6A | 109.3 | H14A—C14—H14B | 109.5 |
C7—C6—H6A | 109.3 | C11—C14—H14C | 109.5 |
C5—C6—H6B | 109.3 | H14A—C14—H14C | 109.5 |
C7—C6—H6B | 109.3 | H14B—C14—H14C | 109.5 |
H6A—C6—H6B | 108.0 | ||
C2—N1—C1—C4 | −2.7 (3) | N2—C3—C4—C5 | 178.08 (16) |
C2—N1—C1—S1 | 179.11 (13) | C1—C4—C5—C6 | −99.1 (2) |
C8—S1—C1—C4 | 162.19 (15) | C3—C4—C5—C6 | 80.5 (2) |
C8—S1—C1—N1 | −19.57 (16) | C4—C5—C6—C7 | 174.6 (2) |
C3—N2—C2—O1 | 175.69 (18) | C1—S1—C8—C13 | 123.21 (15) |
C3—N2—C2—N1 | −3.8 (3) | C1—S1—C8—C9 | −62.23 (17) |
C1—N1—C2—O1 | −176.24 (17) | C13—C8—C9—C10 | −2.0 (3) |
C1—N1—C2—N2 | 3.3 (2) | S1—C8—C9—C10 | −176.42 (15) |
C2—N2—C3—O2 | −176.34 (17) | C8—C9—C10—C11 | 1.8 (3) |
C2—N2—C3—C4 | 3.4 (3) | C9—C10—C11—C12 | 0.3 (3) |
N1—C1—C4—C3 | 2.1 (3) | C9—C10—C11—C14 | −178.5 (2) |
S1—C1—C4—C3 | −179.72 (13) | C10—C11—C12—C13 | −2.2 (3) |
N1—C1—C4—C5 | −178.32 (17) | C14—C11—C12—C13 | 176.6 (2) |
S1—C1—C4—C5 | −0.1 (2) | C9—C8—C13—C12 | 0.1 (3) |
O2—C3—C4—C1 | 177.39 (17) | S1—C8—C13—C12 | 174.76 (16) |
N2—C3—C4—C1 | −2.3 (2) | C11—C12—C13—C8 | 2.0 (3) |
O2—C3—C4—C5 | −2.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O1i | 0.84 (2) | 1.98 (2) | 2.815 (2) | 173 (2) |
N1—H1N1···O2ii | 0.79 (2) | 2.17 (2) | 2.8988 (18) | 155 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N2···O1i | 0.84 (2) | 1.98 (2) | 2.815 (2) | 173 (2) |
N1—H1N1···O2ii | 0.79 (2) | 2.17 (2) | 2.8988 (18) | 155 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.
References
Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647. Web of Science CAS PubMed Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663–670. CAS Google Scholar
El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc. 25, 991–996. CAS Google Scholar
Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600. CrossRef CAS PubMed Web of Science Google Scholar
Klein, R. S., Lenzi, M., Lim, T. H., Hotchkiss, K. A., Wilson, P. & Schwartz, E. L. (2001). Biochem. Pharmacol. 62, 1257–1263. Web of Science CrossRef PubMed CAS Google Scholar
Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. & Clercq, E. D. (1989). J. Med. Chem. 32, 2507–2509. CrossRef CAS PubMed Web of Science Google Scholar
Nencka, R., Votruba, I., Hrebabecky, H., Tloust'ova, E., Horska, K., Masojidkova, M. & Holý, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335–1337. Web of Science CrossRef PubMed CAS Google Scholar
Russ, P., Schelling, P., Scapozza, L., Folkers, G., De Clercq, E. & Marquez, V. E. (2003). J. Med. Chem. 46, 5045–5054. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., Clercq, E. D. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865. CrossRef CAS PubMed Web of Science Google Scholar
Wang, X., Lou, Q., Guo, Y., Xu, Y., Zhang, Z. & Liu, J. (2006). Org. Biomol. Chem. 4, 3252–3258. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities including antiviral activity against the HIV (Miyasaka et al., 1989; Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004), and HSV viruses (Russ et al., 2003). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Klein et al., 2001; Nencka et al., 2006). In continuation to our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Abdullah et al., 2011; El-Brollosy et al., 2009), we have synthesized the title compound (I) as a potential chemotherapeutic agent.
The title compound (I) is a derivative of pymiridine-2,4-dione. The heterocycle contains the structural unit CON2H2CO, forming the dihedral angle of 66.69 (10)° with the adjacent benzene ring. The molecule is bent (Fig. 1) at the S atom with a C–S–C–N torsion angle of -19.57 (16)°. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier (El-Brollosy et al., 2009; Wang et al., 2006). The crystal structure features for two types of intermolecular N–H···O hydrogen bonds (Table 1). Two adjacent molecules form inversion-related dimers through strong N2–H2A···O1 hydrogen bonds (symmetry code: -x + 1, -y, -z + 1), generating an R22(8) ring motif (Bernstein et al., 1995) (Fig. 2). These dimers are further connected into chains extending along c axis through additional N1–H1N1···O2 hydrogen bonds (symmetry code: x, -y +1/2, z + 1/2) (Fig. 2). Crystal stability is mainly consolidated by these hydrogen bonding interactions forming two-dimensional networks parallel to the bc plane.