organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bi(9,9-di­ethyl­fluorene)

aResearch Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea, and bDivision of Science Education, Kangwon National University, Chuncheon 200-701, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

(Received 14 January 2014; accepted 20 January 2014; online 22 January 2014)

The title compound, C34H34, systematic name 9,9,9′,9′-tetra­ethyl-2,2′-bi(9H-fluorene), crystallized with two crystallographically independent mol­ecules (A and B) in the asymmetric unit. These differ mainly in the orientation of the lateral ethyl chains: in mol­ecule A, they are both on the same side of the mol­ecule whereas in mol­ecule B, one di­ethyl­fluorene moiety has undergone a 180° rotation such that the two pairs of ethyl residues appear on opposite sides of the mol­ecule. The fluorene ring systems subtend dihedral angles of 31.37 (4) and 43.18 (3)° in mol­ecules A and B, respectively. Hence the two fluorene moieties are tilted slightly toward one another. This may be due to the presence of inter­molecular C—H⋯π inter­actions between neighboring mol­ecules. The lateral ethyl chains (excluding H atoms) are also almost planar, with each pair almost perpendicular to the plane of the fluorene system to which they are attached with dihedral angles between the ethyl and fluorene planes in the range 86.04 (8)–89.5 (1)°.

Related literature

For details of conductive small mol­ecules and their applications in organic electronics, see: Chao et al. (2005[Chao, T. C., Lin, Y. T., Yang, C. Y., Hung, T. S., Chou, H. C., Wu, C. C. & Wong, K. T. (2005). Adv. Mater. 17, 992-996.]); Gong & Lagowski (2008[Gong, Z. & Lagowski, J. B. (2008). J. Mol. Struct. THEOCHEM, 866, 27-33.]); Hapiot et al. (2005[Hapiot, P., Lagrost, C., Le Floch, F., Raoult, E. & Rault-Berthelot, J. (2005). Chem. Mater. 17, 2003-2012.]). For details of the synthesis of the title compound, see: Hapiot et al. (2005[Hapiot, P., Lagrost, C., Le Floch, F., Raoult, E. & Rault-Berthelot, J. (2005). Chem. Mater. 17, 2003-2012.]). For the crystal structures of other fluorene derivatives, see: Han et al. (2006[Han, M., Lee, S., Jung, J., Park, K.-M., Kwon, S.-K., Ko, J., Lee, P. H. & Kang, Y. (2006). Tetrahedron, 62, 9769-9777.]); Jasinski et al. (2003[Jasinski, J. P., Jasinski, J. M. & Crosby, D. J. (2003). J. Chem. Crystallogr. 33, 365-374.]); Suchod et al. (2000[Suchod, B., Stéphan, O. & Kervella, Y. (2000). Acta Cryst. C56, e297.]).

[Scheme 1]

Experimental

Crystal data
  • C34H34

  • Mr = 442.61

  • Triclinic, [P \overline 1]

  • a = 12.3149 (6) Å

  • b = 14.8415 (7) Å

  • c = 15.8795 (8) Å

  • α = 69.725 (1)°

  • β = 89.368 (1)°

  • γ = 73.433 (1)°

  • V = 2597.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 173 K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.984

  • 14768 measured reflections

  • 10001 independent reflections

  • 7320 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.135

  • S = 1.08

  • 10001 reflections

  • 613 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C14–C16/C24–C26 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C43—H43⋯Cg3i 0.95 2.64 3.49 150
C60—H60⋯Cg4i 0.95 3.15 3.83 130
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a potential conductive small molecule, 2,2'-bi(9,9-diethylfluorene) is regarded as one of the most promising candidate materials for organic electronics due to its unique photophysical properties, good thermal stability as well as a stable glass phase at room temperature (Chao et al., 2005; Hapiot et al., 2005). Therefore, the crystal structure of 2,2'-bi(9,9-diethylfluorene) plays key role in understanding the reasons that this compound has a high thermal stability and a stable glass form (Gong & Lagowski, 2008).

The title compound (Scheme 1, Fig.1) crystallized with two crystallographically independent molecules (A and B) in the asymmetric unit, which differ mainly in the orientation of the lateral ethyl chains in each molecule. The ethyl substituents in A are found on the same side of the molecule whereas in molecule B one diethylfluorene moiety has undergone a 180° rotation such that the two pairs of ethyl residues appear on opposite sides of the molecule. In both molecules the fluorene segments are planar with a maximum r.m.s. deviation of 0.048 ° for the C48–C60 ring system. The ethyl chains (excluding H atoms) are also planar, with each pair almost perpendicular to the plane of the fluorene system to which they are attached, with dihedral angles between the ethyl and fluorene planes in the range 86.04 (8)° to 89.5 (1)°. This interruption of π-conjugation of two fluorene segments may be caused by intermolecular intermolecular C—H···π interactions between neighboring molecules (Table 1). All bond lengths and bond angles are normal and comparable to those of observed in the structures of other fluorene derivatives (Han et al., 2006; Jasinski et al., 2003; Suchod et al., 2000).

Related literature top

For details of conductive small molecules and their applications in organic electronics, see: Chao et al. (2005); Gong & Lagowski (2008); Hapiot et al. (2005). For details of the synthesis of the title compound, see: Hapiot et al. (2005). For the crystal structures of other fluorene derivatives, see: Han et al. (2006); Jasinski et al. (2003); Suchod et al. (2000).

Experimental top

The title compound was synthesized by a literature method (Hapiot et al., 2005). Slow evaporation of a solution of the title compound in dichloromethane and hexane (1:2 v/v) gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic, d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for methylene, and d(C—H) = 0.98 Å, Uiso = 1.2Ueq(C) for methyl protons.

Structure description top

As a potential conductive small molecule, 2,2'-bi(9,9-diethylfluorene) is regarded as one of the most promising candidate materials for organic electronics due to its unique photophysical properties, good thermal stability as well as a stable glass phase at room temperature (Chao et al., 2005; Hapiot et al., 2005). Therefore, the crystal structure of 2,2'-bi(9,9-diethylfluorene) plays key role in understanding the reasons that this compound has a high thermal stability and a stable glass form (Gong & Lagowski, 2008).

The title compound (Scheme 1, Fig.1) crystallized with two crystallographically independent molecules (A and B) in the asymmetric unit, which differ mainly in the orientation of the lateral ethyl chains in each molecule. The ethyl substituents in A are found on the same side of the molecule whereas in molecule B one diethylfluorene moiety has undergone a 180° rotation such that the two pairs of ethyl residues appear on opposite sides of the molecule. In both molecules the fluorene segments are planar with a maximum r.m.s. deviation of 0.048 ° for the C48–C60 ring system. The ethyl chains (excluding H atoms) are also planar, with each pair almost perpendicular to the plane of the fluorene system to which they are attached, with dihedral angles between the ethyl and fluorene planes in the range 86.04 (8)° to 89.5 (1)°. This interruption of π-conjugation of two fluorene segments may be caused by intermolecular intermolecular C—H···π interactions between neighboring molecules (Table 1). All bond lengths and bond angles are normal and comparable to those of observed in the structures of other fluorene derivatives (Han et al., 2006; Jasinski et al., 2003; Suchod et al., 2000).

For details of conductive small molecules and their applications in organic electronics, see: Chao et al. (2005); Gong & Lagowski (2008); Hapiot et al. (2005). For details of the synthesis of the title compound, see: Hapiot et al. (2005). For the crystal structures of other fluorene derivatives, see: Han et al. (2006); Jasinski et al. (2003); Suchod et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
9,9,9',9'-Tetraethyl-2,2'-bi(9H-fluorene) top
Crystal data top
C34H34Z = 4
Mr = 442.61F(000) = 952
Triclinic, P1Dx = 1.132 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.3149 (6) ÅCell parameters from 6198 reflections
b = 14.8415 (7) Åθ = 2.3–28.3°
c = 15.8795 (8) ŵ = 0.06 mm1
α = 69.725 (1)°T = 173 K
β = 89.368 (1)°Block, colourless
γ = 73.433 (1)°0.40 × 0.35 × 0.25 mm
V = 2597.0 (2) Å3
Data collection top
Bruker APEXII CCD area detector
diffractometer
10001 independent reflections
Radiation source: fine-focus sealed tube7320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1215
Tmin = 0.975, Tmax = 0.984k = 1818
14768 measured reflectionsl = 1914
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0373P)2 + 1.6362P]
where P = (Fo2 + 2Fc2)/3
10001 reflections(Δ/σ)max < 0.001
613 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C34H34γ = 73.433 (1)°
Mr = 442.61V = 2597.0 (2) Å3
Triclinic, P1Z = 4
a = 12.3149 (6) ÅMo Kα radiation
b = 14.8415 (7) ŵ = 0.06 mm1
c = 15.8795 (8) ÅT = 173 K
α = 69.725 (1)°0.40 × 0.35 × 0.25 mm
β = 89.368 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
10001 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7320 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.032
14768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
10001 reflectionsΔρmin = 0.26 e Å3
613 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34960 (19)0.12638 (16)0.07528 (15)0.0320 (5)
C20.33666 (18)0.21742 (16)0.01130 (15)0.0315 (5)
C30.3600 (2)0.21887 (18)0.09731 (16)0.0408 (6)
H30.39010.15780.10810.049*
C40.3385 (2)0.31178 (19)0.16778 (16)0.0425 (6)
H40.35400.31380.22700.051*
C50.2948 (2)0.40117 (17)0.15222 (16)0.0366 (5)
H50.28010.46370.20100.044*
C60.27234 (18)0.39989 (16)0.06604 (15)0.0303 (5)
H60.24270.46100.05530.036*
C70.29396 (16)0.30763 (16)0.00414 (14)0.0266 (5)
C80.27622 (16)0.28309 (15)0.10035 (14)0.0254 (4)
C90.23575 (17)0.34442 (15)0.14993 (14)0.0273 (5)
H90.21550.41560.12190.033*
C100.22538 (17)0.30043 (15)0.24073 (14)0.0271 (5)
H100.19780.34240.27470.033*
C110.25446 (16)0.19547 (15)0.28429 (14)0.0247 (4)
C120.29613 (17)0.13462 (15)0.23337 (14)0.0273 (5)
H120.31700.06340.26120.033*
C130.30680 (17)0.17834 (15)0.14255 (14)0.0267 (5)
C140.23690 (16)0.15167 (15)0.38076 (14)0.0245 (4)
C150.24091 (16)0.20295 (15)0.43988 (14)0.0258 (5)
H150.25960.26440.41880.031*
C160.21796 (17)0.16465 (15)0.52783 (14)0.0260 (5)
C170.22179 (18)0.20635 (17)0.60234 (15)0.0310 (5)
C180.17970 (18)0.13300 (17)0.67919 (15)0.0320 (5)
C190.1576 (2)0.13455 (19)0.76502 (16)0.0400 (6)
H190.16660.18750.78220.048*
C200.1221 (2)0.0573 (2)0.82521 (17)0.0438 (6)
H200.10590.05810.88360.053*
C210.1101 (2)0.02093 (19)0.80109 (17)0.0419 (6)
H210.08660.07340.84330.050*
C220.13196 (19)0.02323 (17)0.71561 (15)0.0350 (5)
H220.12380.07680.69900.042*
C230.16601 (17)0.05458 (16)0.65500 (14)0.0283 (5)
C240.19018 (16)0.07423 (15)0.56038 (14)0.0258 (5)
C250.18838 (18)0.02103 (15)0.50411 (15)0.0293 (5)
H250.17140.04110.52600.035*
C260.21181 (17)0.05987 (16)0.41523 (15)0.0289 (5)
H260.21080.02330.37670.035*
C270.4756 (2)0.06177 (19)0.10259 (17)0.0448 (7)
H27A0.47940.00180.15670.054*
H27B0.50420.03780.05320.054*
C280.5540 (2)0.1161 (2)0.1227 (2)0.0598 (8)
H28A0.63170.07010.13950.072*
H28B0.52790.13860.17270.072*
H28C0.55280.17450.06900.072*
C290.2755 (2)0.06115 (17)0.06740 (17)0.0404 (6)
H29A0.30300.03250.02060.048*
H29B0.28580.00430.12550.048*
C300.1493 (2)0.11732 (19)0.04379 (19)0.0481 (7)
H30A0.10810.07090.04030.058*
H30B0.13770.17250.01460.058*
H30C0.12060.14480.09040.058*
C310.3473 (2)0.1978 (2)0.62692 (17)0.0421 (6)
H31A0.37110.24800.57690.051*
H31B0.35030.21570.68120.051*
C320.4327 (2)0.0948 (2)0.64500 (18)0.0504 (7)
H32A0.50880.09640.66020.061*
H32B0.43280.07700.59100.061*
H32C0.41140.04450.69550.061*
C330.1486 (2)0.31692 (17)0.57677 (16)0.0378 (6)
H33A0.15100.33690.62990.045*
H33B0.18300.35960.52840.045*
C340.0246 (2)0.33856 (18)0.54482 (18)0.0443 (6)
H34A0.01530.41030.52990.053*
H34B0.01140.29850.59280.053*
H34C0.02070.32080.49120.053*
C350.38207 (18)0.33106 (17)0.59294 (15)0.0321 (5)
C360.33463 (18)0.27599 (17)0.49421 (15)0.0311 (5)
C370.3905 (2)0.27170 (19)0.41756 (16)0.0387 (6)
H370.46940.30630.42250.046*
C380.3300 (2)0.2161 (2)0.33283 (17)0.0444 (6)
H380.36820.21200.27990.053*
C390.2141 (2)0.16648 (19)0.32548 (17)0.0433 (6)
H390.17360.12890.26750.052*
C400.1573 (2)0.17142 (17)0.40182 (16)0.0360 (5)
H400.07820.13750.39660.043*
C410.21772 (18)0.22685 (16)0.48666 (15)0.0292 (5)
C420.18096 (17)0.24496 (15)0.57759 (14)0.0262 (5)
C430.07414 (17)0.21580 (16)0.60712 (15)0.0295 (5)
H430.00900.17820.56490.035*
C440.06406 (17)0.24229 (16)0.69869 (15)0.0295 (5)
H440.00900.22320.71870.035*
C450.15895 (17)0.29669 (15)0.76306 (14)0.0257 (5)
C460.26606 (17)0.32621 (15)0.73185 (14)0.0271 (5)
H460.33160.36290.77390.033*
C470.27660 (17)0.30221 (15)0.64076 (14)0.0271 (5)
C480.14490 (16)0.32232 (15)0.86046 (14)0.0247 (4)
C490.22403 (16)0.31726 (15)0.92071 (14)0.0261 (5)
H490.28780.29540.89890.031*
C500.20895 (16)0.34417 (15)1.01157 (14)0.0252 (5)
C510.28110 (18)0.34259 (17)1.08828 (15)0.0299 (5)
C520.22231 (18)0.38944 (16)1.17006 (15)0.0295 (5)
C530.2525 (2)0.41327 (18)1.26060 (16)0.0369 (5)
H530.31980.40341.27930.044*
C540.1828 (2)0.45193 (19)1.32392 (17)0.0437 (6)
H540.20340.46941.38630.052*
C550.0833 (2)0.46527 (19)1.29676 (16)0.0412 (6)
H550.03610.49091.34070.049*
C560.05245 (19)0.44147 (17)1.20620 (16)0.0343 (5)
H560.01560.45051.18770.041*
C570.12285 (17)0.40417 (15)1.14287 (15)0.0278 (5)
C580.11462 (16)0.37654 (15)1.04451 (14)0.0251 (4)
C590.03473 (17)0.38021 (16)0.98548 (15)0.0278 (5)
H590.02970.40091.00720.033*
C600.05033 (17)0.35335 (16)0.89466 (15)0.0285 (5)
H600.00420.35590.85440.034*
C610.48020 (18)0.2970 (2)0.61827 (17)0.0404 (6)
H61A0.50760.33640.68260.048*
H61B0.54390.31350.58230.048*
C620.4501 (2)0.1860 (2)0.60386 (19)0.0496 (7)
H62A0.51700.17140.62210.060*
H62B0.38830.16870.64020.060*
H62C0.42570.14600.53990.060*
C630.4234 (2)0.44648 (18)0.61561 (18)0.0442 (6)
H63A0.49200.46290.58410.053*
H63B0.44630.48000.68120.053*
C640.3363 (2)0.4901 (2)0.59015 (19)0.0530 (7)
H64A0.36940.56300.60690.064*
H64B0.31470.45920.52500.064*
H64C0.26870.47610.62220.064*
C650.2708 (2)0.23223 (19)1.07764 (17)0.0425 (6)
H65A0.31840.23351.12810.051*
H65B0.30220.20101.02100.051*
C660.1507 (2)0.16619 (19)1.07594 (19)0.0508 (7)
H66A0.15230.09831.06870.061*
H66B0.11940.19481.13270.061*
H66C0.10290.16291.02540.061*
C670.40812 (18)0.40071 (19)1.09331 (16)0.0387 (6)
H67A0.43920.36621.03770.046*
H67B0.44930.39741.14480.046*
C680.43250 (19)0.51055 (19)1.10397 (17)0.0448 (6)
H68A0.51470.54111.10610.054*
H68B0.39370.51501.05270.054*
H68C0.40480.54641.16010.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (13)0.0252 (11)0.0252 (12)0.0006 (9)0.0053 (9)0.0095 (9)
C20.0311 (12)0.0310 (12)0.0290 (12)0.0045 (9)0.0046 (9)0.0104 (10)
C30.0546 (15)0.0333 (13)0.0322 (14)0.0066 (11)0.0085 (11)0.0144 (11)
C40.0557 (16)0.0471 (15)0.0256 (13)0.0171 (12)0.0088 (11)0.0129 (11)
C50.0416 (13)0.0330 (13)0.0312 (13)0.0140 (10)0.0007 (10)0.0044 (10)
C60.0297 (11)0.0261 (11)0.0327 (13)0.0073 (9)0.0021 (9)0.0085 (10)
C70.0207 (10)0.0305 (11)0.0286 (12)0.0065 (8)0.0029 (8)0.0114 (9)
C80.0192 (10)0.0266 (11)0.0297 (12)0.0051 (8)0.0033 (8)0.0107 (9)
C90.0251 (11)0.0228 (11)0.0331 (13)0.0056 (8)0.0034 (9)0.0100 (9)
C100.0262 (11)0.0266 (11)0.0314 (12)0.0060 (9)0.0062 (9)0.0155 (10)
C110.0169 (10)0.0290 (11)0.0282 (12)0.0048 (8)0.0012 (8)0.0118 (9)
C120.0261 (11)0.0210 (10)0.0299 (12)0.0013 (8)0.0038 (9)0.0078 (9)
C130.0217 (10)0.0262 (11)0.0297 (12)0.0007 (8)0.0033 (8)0.0124 (9)
C140.0171 (10)0.0270 (11)0.0279 (12)0.0029 (8)0.0017 (8)0.0110 (9)
C150.0227 (10)0.0259 (11)0.0299 (12)0.0088 (8)0.0039 (8)0.0104 (9)
C160.0221 (10)0.0301 (11)0.0291 (12)0.0095 (9)0.0029 (8)0.0132 (9)
C170.0341 (12)0.0375 (13)0.0292 (12)0.0179 (10)0.0065 (9)0.0156 (10)
C180.0287 (11)0.0387 (13)0.0308 (13)0.0123 (10)0.0044 (9)0.0135 (10)
C190.0458 (14)0.0492 (15)0.0324 (14)0.0195 (12)0.0095 (11)0.0197 (12)
C200.0431 (14)0.0605 (17)0.0282 (13)0.0156 (12)0.0116 (11)0.0165 (12)
C210.0393 (14)0.0458 (15)0.0354 (14)0.0159 (11)0.0092 (11)0.0058 (12)
C220.0379 (13)0.0333 (13)0.0319 (13)0.0123 (10)0.0049 (10)0.0080 (10)
C230.0239 (11)0.0317 (12)0.0273 (12)0.0058 (9)0.0027 (9)0.0103 (10)
C240.0206 (10)0.0286 (11)0.0258 (12)0.0055 (8)0.0005 (8)0.0082 (9)
C250.0329 (12)0.0217 (11)0.0316 (13)0.0070 (9)0.0017 (9)0.0085 (9)
C260.0289 (11)0.0277 (11)0.0306 (13)0.0037 (9)0.0028 (9)0.0151 (10)
C270.0484 (15)0.0391 (14)0.0310 (14)0.0101 (11)0.0091 (11)0.0123 (11)
C280.0306 (14)0.0637 (19)0.0582 (19)0.0000 (13)0.0118 (13)0.0008 (15)
C290.0617 (16)0.0244 (12)0.0347 (14)0.0080 (11)0.0088 (12)0.0141 (10)
C300.0561 (17)0.0387 (14)0.0562 (18)0.0176 (12)0.0030 (13)0.0221 (13)
C310.0426 (14)0.0608 (17)0.0345 (14)0.0299 (13)0.0037 (11)0.0192 (12)
C320.0372 (14)0.0680 (19)0.0410 (16)0.0232 (13)0.0058 (11)0.0072 (14)
C330.0509 (15)0.0391 (13)0.0378 (14)0.0238 (11)0.0157 (11)0.0231 (11)
C340.0472 (15)0.0348 (13)0.0540 (17)0.0097 (11)0.0133 (12)0.0220 (12)
C350.0241 (11)0.0402 (13)0.0294 (12)0.0064 (9)0.0059 (9)0.0120 (10)
C360.0303 (11)0.0348 (12)0.0322 (13)0.0146 (10)0.0039 (9)0.0128 (10)
C370.0361 (13)0.0513 (15)0.0373 (14)0.0200 (11)0.0100 (10)0.0207 (12)
C380.0531 (16)0.0619 (17)0.0328 (14)0.0324 (14)0.0138 (12)0.0227 (13)
C390.0518 (16)0.0513 (16)0.0314 (14)0.0256 (13)0.0020 (11)0.0121 (12)
C400.0364 (13)0.0382 (13)0.0348 (14)0.0144 (10)0.0030 (10)0.0120 (11)
C410.0276 (11)0.0304 (12)0.0324 (13)0.0127 (9)0.0008 (9)0.0114 (10)
C420.0252 (11)0.0240 (10)0.0288 (12)0.0075 (8)0.0008 (9)0.0087 (9)
C430.0211 (10)0.0330 (12)0.0330 (13)0.0055 (9)0.0033 (9)0.0121 (10)
C440.0197 (10)0.0332 (12)0.0358 (13)0.0057 (9)0.0034 (9)0.0144 (10)
C450.0235 (10)0.0244 (11)0.0299 (12)0.0080 (8)0.0016 (9)0.0101 (9)
C460.0198 (10)0.0289 (11)0.0288 (12)0.0049 (8)0.0019 (8)0.0076 (9)
C470.0223 (10)0.0274 (11)0.0313 (13)0.0072 (8)0.0018 (9)0.0104 (9)
C480.0203 (10)0.0233 (10)0.0285 (12)0.0029 (8)0.0029 (8)0.0097 (9)
C490.0198 (10)0.0274 (11)0.0310 (12)0.0083 (8)0.0040 (8)0.0096 (9)
C500.0205 (10)0.0229 (10)0.0320 (12)0.0049 (8)0.0017 (8)0.0110 (9)
C510.0265 (11)0.0371 (12)0.0297 (12)0.0123 (9)0.0034 (9)0.0141 (10)
C520.0277 (11)0.0290 (11)0.0319 (13)0.0052 (9)0.0029 (9)0.0134 (10)
C530.0341 (12)0.0464 (14)0.0334 (14)0.0108 (11)0.0014 (10)0.0191 (11)
C540.0522 (16)0.0508 (16)0.0275 (13)0.0099 (12)0.0097 (11)0.0179 (12)
C550.0468 (15)0.0462 (15)0.0339 (14)0.0154 (12)0.0197 (11)0.0177 (12)
C560.0331 (12)0.0361 (13)0.0387 (14)0.0117 (10)0.0130 (10)0.0186 (11)
C570.0268 (11)0.0232 (11)0.0333 (12)0.0038 (8)0.0056 (9)0.0128 (9)
C580.0230 (10)0.0227 (10)0.0298 (12)0.0051 (8)0.0061 (8)0.0110 (9)
C590.0206 (10)0.0301 (11)0.0351 (13)0.0095 (9)0.0072 (9)0.0131 (10)
C600.0203 (10)0.0311 (12)0.0352 (13)0.0078 (9)0.0017 (9)0.0131 (10)
C610.0207 (11)0.0612 (17)0.0352 (14)0.0096 (11)0.0024 (9)0.0146 (12)
C620.0348 (14)0.0692 (19)0.0551 (18)0.0259 (13)0.0044 (12)0.0263 (15)
C630.0393 (14)0.0423 (14)0.0397 (15)0.0019 (11)0.0110 (11)0.0125 (12)
C640.0702 (19)0.0364 (14)0.0520 (18)0.0134 (13)0.0148 (14)0.0177 (13)
C650.0518 (15)0.0493 (15)0.0400 (15)0.0296 (13)0.0086 (12)0.0208 (12)
C660.0671 (18)0.0323 (14)0.0549 (18)0.0128 (13)0.0071 (14)0.0195 (13)
C670.0236 (11)0.0597 (16)0.0342 (14)0.0142 (11)0.0005 (9)0.0171 (12)
C680.0249 (12)0.0565 (16)0.0389 (15)0.0026 (11)0.0001 (10)0.0120 (12)
Geometric parameters (Å, º) top
C1—C21.528 (3)C35—C361.525 (3)
C1—C131.530 (3)C35—C471.528 (3)
C1—C291.541 (3)C35—C611.542 (3)
C1—C271.547 (3)C35—C631.550 (3)
C2—C31.387 (3)C36—C371.383 (3)
C2—C71.397 (3)C36—C411.401 (3)
C3—C41.397 (3)C37—C381.396 (3)
C3—H30.9500C37—H370.9500
C4—C51.388 (3)C38—C391.392 (4)
C4—H40.9500C38—H380.9500
C5—C61.388 (3)C39—C401.383 (3)
C5—H50.9500C39—H390.9500
C6—C71.389 (3)C40—C411.396 (3)
C6—H60.9500C40—H400.9500
C7—C81.472 (3)C41—C421.466 (3)
C8—C91.388 (3)C42—C431.393 (3)
C8—C131.399 (3)C42—C471.407 (3)
C9—C101.383 (3)C43—C441.383 (3)
C9—H90.9500C43—H430.9500
C10—C111.405 (3)C44—C451.407 (3)
C10—H100.9500C44—H440.9500
C11—C121.402 (3)C45—C461.409 (3)
C11—C141.483 (3)C45—C481.480 (3)
C12—C131.384 (3)C46—C471.379 (3)
C12—H120.9500C46—H460.9500
C14—C261.404 (3)C48—C601.408 (3)
C14—C151.407 (3)C48—C491.408 (3)
C15—C161.373 (3)C49—C501.383 (3)
C15—H150.9500C49—H490.9500
C16—C241.401 (3)C50—C581.409 (3)
C16—C171.520 (3)C50—C511.526 (3)
C17—C181.526 (3)C51—C521.528 (3)
C17—C331.541 (3)C51—C671.544 (3)
C17—C311.558 (3)C51—C651.555 (3)
C18—C191.394 (3)C52—C531.384 (3)
C18—C231.398 (3)C52—C571.401 (3)
C19—C201.392 (3)C53—C541.392 (3)
C19—H190.9500C53—H530.9500
C20—C211.387 (4)C54—C551.391 (4)
C20—H200.9500C54—H540.9500
C21—C221.391 (3)C55—C561.386 (3)
C21—H210.9500C55—H550.9500
C22—C231.390 (3)C56—C571.392 (3)
C22—H220.9500C56—H560.9500
C23—C241.472 (3)C57—C581.468 (3)
C24—C251.386 (3)C58—C591.391 (3)
C25—C261.389 (3)C59—C601.384 (3)
C25—H250.9500C59—H590.9500
C26—H260.9500C60—H600.9500
C27—C281.521 (4)C61—C621.516 (4)
C27—H27A0.9900C61—H61A0.9900
C27—H27B0.9900C61—H61B0.9900
C28—H28A0.9800C62—H62A0.9800
C28—H28B0.9800C62—H62B0.9800
C28—H28C0.9800C62—H62C0.9800
C29—C301.520 (3)C63—C641.524 (4)
C29—H29A0.9900C63—H63A0.9900
C29—H29B0.9900C63—H63B0.9900
C30—H30A0.9800C64—H64A0.9800
C30—H30B0.9800C64—H64B0.9800
C30—H30C0.9800C64—H64C0.9800
C31—C321.521 (4)C65—C661.518 (4)
C31—H31A0.9900C65—H65A0.9900
C31—H31B0.9900C65—H65B0.9900
C32—H32A0.9800C66—H66A0.9800
C32—H32B0.9800C66—H66B0.9800
C32—H32C0.9800C66—H66C0.9800
C33—C341.522 (3)C67—C681.519 (3)
C33—H33A0.9900C67—H67A0.9900
C33—H33B0.9900C67—H67B0.9900
C34—H34A0.9800C68—H68A0.9800
C34—H34B0.9800C68—H68B0.9800
C34—H34C0.9800C68—H68C0.9800
C2—C1—C13100.90 (17)C36—C35—C47101.28 (17)
C2—C1—C29111.98 (19)C36—C35—C61112.77 (19)
C13—C1—C29111.30 (18)C47—C35—C61112.22 (19)
C2—C1—C27111.39 (19)C36—C35—C63110.72 (19)
C13—C1—C27110.58 (18)C47—C35—C63110.34 (18)
C29—C1—C27110.38 (19)C61—C35—C63109.32 (19)
C3—C2—C7120.2 (2)C37—C36—C41120.1 (2)
C3—C2—C1128.5 (2)C37—C36—C35128.9 (2)
C7—C2—C1111.33 (19)C41—C36—C35110.94 (19)
C2—C3—C4118.8 (2)C36—C37—C38119.4 (2)
C2—C3—H3120.6C36—C37—H37120.3
C4—C3—H3120.6C38—C37—H37120.3
C5—C4—C3120.8 (2)C39—C38—C37120.3 (2)
C5—C4—H4119.6C39—C38—H38119.8
C3—C4—H4119.6C37—C38—H38119.8
C6—C5—C4120.5 (2)C40—C39—C38120.6 (2)
C6—C5—H5119.7C40—C39—H39119.7
C4—C5—H5119.7C38—C39—H39119.7
C5—C6—C7118.8 (2)C39—C40—C41119.2 (2)
C5—C6—H6120.6C39—C40—H40120.4
C7—C6—H6120.6C41—C40—H40120.4
C6—C7—C2121.0 (2)C40—C41—C36120.3 (2)
C6—C7—C8130.8 (2)C40—C41—C42131.2 (2)
C2—C7—C8108.17 (18)C36—C41—C42108.52 (19)
C9—C8—C13119.96 (19)C43—C42—C47120.0 (2)
C9—C8—C7131.27 (19)C43—C42—C41131.43 (19)
C13—C8—C7108.77 (18)C47—C42—C41108.61 (18)
C10—C9—C8119.05 (19)C44—C43—C42119.20 (19)
C10—C9—H9120.5C44—C43—H43120.4
C8—C9—H9120.5C42—C43—H43120.4
C9—C10—C11121.96 (19)C43—C44—C45121.89 (19)
C9—C10—H10119.0C43—C44—H44119.1
C11—C10—H10119.0C45—C44—H44119.1
C12—C11—C10118.24 (19)C44—C45—C46118.03 (19)
C12—C11—C14121.58 (18)C44—C45—C48120.27 (18)
C10—C11—C14120.14 (18)C46—C45—C48121.70 (18)
C13—C12—C11119.97 (19)C47—C46—C45120.52 (19)
C13—C12—H12120.0C47—C46—H46119.7
C11—C12—H12120.0C45—C46—H46119.7
C12—C13—C8120.82 (19)C46—C47—C42120.34 (19)
C12—C13—C1128.36 (19)C46—C47—C35129.15 (19)
C8—C13—C1110.82 (18)C42—C47—C35110.50 (18)
C26—C14—C15117.96 (19)C60—C48—C49118.57 (19)
C26—C14—C11121.23 (19)C60—C48—C45119.50 (18)
C15—C14—C11120.77 (18)C49—C48—C45121.93 (18)
C16—C15—C14120.35 (19)C50—C49—C48119.98 (18)
C16—C15—H15119.8C50—C49—H49120.0
C14—C15—H15119.8C48—C49—H49120.0
C15—C16—C24120.85 (19)C49—C50—C58120.47 (19)
C15—C16—C17128.28 (19)C49—C50—C51129.25 (18)
C24—C16—C17110.83 (18)C58—C50—C51110.26 (18)
C16—C17—C18101.15 (17)C50—C51—C52101.41 (17)
C16—C17—C33113.38 (18)C50—C51—C67112.91 (18)
C18—C17—C33113.56 (18)C52—C51—C67113.67 (19)
C16—C17—C31109.23 (18)C50—C51—C65110.23 (18)
C18—C17—C31110.45 (19)C52—C51—C65109.73 (18)
C33—C17—C31108.86 (18)C67—C51—C65108.73 (18)
C19—C18—C23119.8 (2)C53—C52—C57120.2 (2)
C19—C18—C17129.2 (2)C53—C52—C51129.0 (2)
C23—C18—C17110.95 (19)C57—C52—C51110.72 (19)
C20—C19—C18118.9 (2)C52—C53—C54119.1 (2)
C20—C19—H19120.5C52—C53—H53120.4
C18—C19—H19120.5C54—C53—H53120.4
C21—C20—C19120.9 (2)C55—C54—C53120.6 (2)
C21—C20—H20119.6C55—C54—H54119.7
C19—C20—H20119.6C53—C54—H54119.7
C20—C21—C22120.6 (2)C56—C55—C54120.6 (2)
C20—C21—H21119.7C56—C55—H55119.7
C22—C21—H21119.7C54—C55—H55119.7
C23—C22—C21118.5 (2)C55—C56—C57118.8 (2)
C23—C22—H22120.7C55—C56—H56120.6
C21—C22—H22120.7C57—C56—H56120.6
C22—C23—C18121.2 (2)C56—C57—C52120.6 (2)
C22—C23—C24130.6 (2)C56—C57—C58130.9 (2)
C18—C23—C24108.22 (19)C52—C57—C58108.44 (18)
C25—C24—C16119.91 (19)C59—C58—C50120.14 (19)
C25—C24—C23131.6 (2)C59—C58—C57131.10 (19)
C16—C24—C23108.49 (18)C50—C58—C57108.74 (18)
C24—C25—C26119.1 (2)C60—C59—C58119.15 (19)
C24—C25—H25120.5C60—C59—H59120.4
C26—C25—H25120.5C58—C59—H59120.4
C25—C26—C14121.8 (2)C59—C60—C48121.68 (19)
C25—C26—H26119.1C59—C60—H60119.2
C14—C26—H26119.1C48—C60—H60119.2
C28—C27—C1114.6 (2)C62—C61—C35115.13 (19)
C28—C27—H27A108.6C62—C61—H61A108.5
C1—C27—H27A108.6C35—C61—H61A108.5
C28—C27—H27B108.6C62—C61—H61B108.5
C1—C27—H27B108.6C35—C61—H61B108.5
H27A—C27—H27B107.6H61A—C61—H61B107.5
C27—C28—H28A109.5C61—C62—H62A109.5
C27—C28—H28B109.5C61—C62—H62B109.5
H28A—C28—H28B109.5H62A—C62—H62B109.5
C27—C28—H28C109.5C61—C62—H62C109.5
H28A—C28—H28C109.5H62A—C62—H62C109.5
H28B—C28—H28C109.5H62B—C62—H62C109.5
C30—C29—C1114.36 (18)C64—C63—C35115.0 (2)
C30—C29—H29A108.7C64—C63—H63A108.5
C1—C29—H29A108.7C35—C63—H63A108.5
C30—C29—H29B108.7C64—C63—H63B108.5
C1—C29—H29B108.7C35—C63—H63B108.5
H29A—C29—H29B107.6H63A—C63—H63B107.5
C29—C30—H30A109.5C63—C64—H64A109.5
C29—C30—H30B109.5C63—C64—H64B109.5
H30A—C30—H30B109.5H64A—C64—H64B109.5
C29—C30—H30C109.5C63—C64—H64C109.5
H30A—C30—H30C109.5H64A—C64—H64C109.5
H30B—C30—H30C109.5H64B—C64—H64C109.5
C32—C31—C17115.2 (2)C66—C65—C51115.11 (19)
C32—C31—H31A108.5C66—C65—H65A108.5
C17—C31—H31A108.5C51—C65—H65A108.5
C32—C31—H31B108.5C66—C65—H65B108.5
C17—C31—H31B108.5C51—C65—H65B108.5
H31A—C31—H31B107.5H65A—C65—H65B107.5
C31—C32—H32A109.5C65—C66—H66A109.5
C31—C32—H32B109.5C65—C66—H66B109.5
H32A—C32—H32B109.5H66A—C66—H66B109.5
C31—C32—H32C109.5C65—C66—H66C109.5
H32A—C32—H32C109.5H66A—C66—H66C109.5
H32B—C32—H32C109.5H66B—C66—H66C109.5
C34—C33—C17115.01 (18)C68—C67—C51115.13 (19)
C34—C33—H33A108.5C68—C67—H67A108.5
C17—C33—H33A108.5C51—C67—H67A108.5
C34—C33—H33B108.5C68—C67—H67B108.5
C17—C33—H33B108.5C51—C67—H67B108.5
H33A—C33—H33B107.5H67A—C67—H67B107.5
C33—C34—H34A109.5C67—C68—H68A109.5
C33—C34—H34B109.5C67—C68—H68B109.5
H34A—C34—H34B109.5H68A—C68—H68B109.5
C33—C34—H34C109.5C67—C68—H68C109.5
H34A—C34—H34C109.5H68A—C68—H68C109.5
H34B—C34—H34C109.5H68B—C68—H68C109.5
C13—C1—C2—C3178.7 (2)C47—C35—C36—C37178.8 (2)
C29—C1—C2—C360.2 (3)C61—C35—C36—C3758.6 (3)
C27—C1—C2—C363.9 (3)C63—C35—C36—C3764.2 (3)
C13—C1—C2—C70.4 (2)C47—C35—C36—C412.5 (2)
C29—C1—C2—C7118.9 (2)C61—C35—C36—C41122.7 (2)
C27—C1—C2—C7116.9 (2)C63—C35—C36—C41114.5 (2)
C7—C2—C3—C40.9 (4)C41—C36—C37—C381.5 (3)
C1—C2—C3—C4178.1 (2)C35—C36—C37—C38179.9 (2)
C2—C3—C4—C50.1 (4)C36—C37—C38—C390.9 (4)
C3—C4—C5—C60.5 (4)C37—C38—C39—C400.1 (4)
C4—C5—C6—C70.3 (3)C38—C39—C40—C410.0 (4)
C5—C6—C7—C20.5 (3)C39—C40—C41—C360.6 (3)
C5—C6—C7—C8178.3 (2)C39—C40—C41—C42179.8 (2)
C3—C2—C7—C61.1 (3)C37—C36—C41—C401.4 (3)
C1—C2—C7—C6178.08 (19)C35—C36—C41—C40179.8 (2)
C3—C2—C7—C8179.3 (2)C37—C36—C41—C42179.2 (2)
C1—C2—C7—C80.1 (2)C35—C36—C41—C420.4 (2)
C6—C7—C8—C92.0 (4)C40—C41—C42—C432.9 (4)
C2—C7—C8—C9180.0 (2)C36—C41—C42—C43177.9 (2)
C6—C7—C8—C13177.2 (2)C40—C41—C42—C47177.1 (2)
C2—C7—C8—C130.7 (2)C36—C41—C42—C472.2 (2)
C13—C8—C9—C100.6 (3)C47—C42—C43—C441.1 (3)
C7—C8—C9—C10178.6 (2)C41—C42—C43—C44178.8 (2)
C8—C9—C10—C110.1 (3)C42—C43—C44—C450.9 (3)
C9—C10—C11—C120.6 (3)C43—C44—C45—C461.5 (3)
C9—C10—C11—C14177.13 (19)C43—C44—C45—C48179.1 (2)
C10—C11—C12—C130.5 (3)C44—C45—C46—C470.1 (3)
C14—C11—C12—C13177.22 (18)C48—C45—C46—C47179.35 (19)
C11—C12—C13—C80.1 (3)C45—C46—C47—C422.1 (3)
C11—C12—C13—C1179.8 (2)C45—C46—C47—C35176.5 (2)
C9—C8—C13—C120.7 (3)C43—C42—C47—C462.7 (3)
C7—C8—C13—C12178.66 (19)C41—C42—C47—C46177.29 (19)
C9—C8—C13—C1179.60 (19)C43—C42—C47—C35176.16 (19)
C7—C8—C13—C11.0 (2)C41—C42—C47—C353.9 (2)
C2—C1—C13—C12178.8 (2)C36—C35—C47—C46177.4 (2)
C29—C1—C13—C1259.8 (3)C61—C35—C47—C4656.9 (3)
C27—C1—C13—C1263.3 (3)C63—C35—C47—C4665.3 (3)
C2—C1—C13—C80.9 (2)C36—C35—C47—C423.9 (2)
C29—C1—C13—C8119.9 (2)C61—C35—C47—C42124.4 (2)
C27—C1—C13—C8117.1 (2)C63—C35—C47—C42113.4 (2)
C12—C11—C14—C2628.5 (3)C44—C45—C48—C6040.5 (3)
C10—C11—C14—C26149.19 (19)C46—C45—C48—C60138.9 (2)
C12—C11—C14—C15153.81 (19)C44—C45—C48—C49139.9 (2)
C10—C11—C14—C1528.5 (3)C46—C45—C48—C4940.7 (3)
C26—C14—C15—C161.6 (3)C60—C48—C49—C501.1 (3)
C11—C14—C15—C16176.17 (18)C45—C48—C49—C50178.48 (19)
C14—C15—C16—C240.0 (3)C48—C49—C50—C580.1 (3)
C14—C15—C16—C17177.69 (19)C48—C49—C50—C51178.5 (2)
C15—C16—C17—C18176.2 (2)C49—C50—C51—C52175.5 (2)
C24—C16—C17—C185.9 (2)C58—C50—C51—C526.0 (2)
C15—C16—C17—C3354.3 (3)C49—C50—C51—C6753.5 (3)
C24—C16—C17—C33127.80 (19)C58—C50—C51—C67128.04 (19)
C15—C16—C17—C3167.3 (3)C49—C50—C51—C6568.4 (3)
C24—C16—C17—C31110.6 (2)C58—C50—C51—C65110.1 (2)
C16—C17—C18—C19175.7 (2)C50—C51—C52—C53176.2 (2)
C33—C17—C18—C1953.9 (3)C67—C51—C52—C5354.7 (3)
C31—C17—C18—C1968.7 (3)C65—C51—C52—C5367.2 (3)
C16—C17—C18—C235.7 (2)C50—C51—C52—C576.3 (2)
C33—C17—C18—C23127.6 (2)C67—C51—C52—C57127.8 (2)
C31—C17—C18—C23109.8 (2)C65—C51—C52—C57110.2 (2)
C23—C18—C19—C200.0 (3)C57—C52—C53—C540.0 (3)
C17—C18—C19—C20178.4 (2)C51—C52—C53—C54177.3 (2)
C18—C19—C20—C210.8 (4)C52—C53—C54—C550.9 (4)
C19—C20—C21—C220.8 (4)C53—C54—C55—C560.8 (4)
C20—C21—C22—C230.1 (4)C54—C55—C56—C570.1 (3)
C21—C22—C23—C180.9 (3)C55—C56—C57—C521.0 (3)
C21—C22—C23—C24177.2 (2)C55—C56—C57—C58177.4 (2)
C19—C18—C23—C220.9 (3)C53—C52—C57—C560.9 (3)
C17—C18—C23—C22177.8 (2)C51—C52—C57—C56176.79 (19)
C19—C18—C23—C24177.6 (2)C53—C52—C57—C58177.81 (19)
C17—C18—C23—C243.7 (2)C51—C52—C57—C584.5 (2)
C15—C16—C24—C251.6 (3)C49—C50—C58—C591.0 (3)
C17—C16—C24—C25176.48 (18)C51—C50—C58—C59177.66 (18)
C15—C16—C24—C23177.86 (18)C49—C50—C58—C57177.56 (18)
C17—C16—C24—C234.1 (2)C51—C50—C58—C573.8 (2)
C22—C23—C24—C251.3 (4)C56—C57—C58—C590.6 (4)
C18—C23—C24—C25179.6 (2)C52—C57—C58—C59177.9 (2)
C22—C23—C24—C16178.1 (2)C56—C57—C58—C50179.0 (2)
C18—C23—C24—C160.2 (2)C52—C57—C58—C500.4 (2)
C16—C24—C25—C261.5 (3)C50—C58—C59—C601.1 (3)
C23—C24—C25—C26177.9 (2)C57—C58—C59—C60177.1 (2)
C24—C25—C26—C140.2 (3)C58—C59—C60—C480.1 (3)
C15—C14—C26—C251.7 (3)C49—C48—C60—C591.0 (3)
C11—C14—C26—C25176.03 (19)C45—C48—C60—C59178.57 (19)
C2—C1—C27—C2861.6 (3)C36—C35—C61—C6259.2 (3)
C13—C1—C27—C2849.7 (3)C47—C35—C61—C6254.4 (3)
C29—C1—C27—C28173.3 (2)C63—C35—C61—C62177.2 (2)
C2—C1—C29—C3057.2 (3)C36—C35—C63—C6452.6 (3)
C13—C1—C29—C3054.9 (3)C47—C35—C63—C6458.7 (3)
C27—C1—C29—C30178.1 (2)C61—C35—C63—C64177.4 (2)
C16—C17—C31—C3250.0 (3)C50—C51—C65—C6658.4 (3)
C18—C17—C31—C3260.4 (3)C52—C51—C65—C6652.5 (3)
C33—C17—C31—C32174.3 (2)C67—C51—C65—C66177.4 (2)
C16—C17—C33—C3454.3 (3)C50—C51—C67—C6857.4 (3)
C18—C17—C33—C3460.5 (3)C52—C51—C67—C6857.4 (3)
C31—C17—C33—C34176.0 (2)C65—C51—C67—C68179.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C14–C16/C24–C26 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C43—H43···Cg3i0.952.643.49150
C60—H60···Cg4i0.953.153.83130
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C14–C16/C24–C26 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C43—H43···Cg3i0.952.643.49150
C60—H60···Cg4i0.953.153.83130
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This study was supported by a 2013 Research Grant from Kangwon National University (No. 120131375).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, T. C., Lin, Y. T., Yang, C. Y., Hung, T. S., Chou, H. C., Wu, C. C. & Wong, K. T. (2005). Adv. Mater. 17, 992–996.  Web of Science CrossRef CAS Google Scholar
First citationGong, Z. & Lagowski, J. B. (2008). J. Mol. Struct. THEOCHEM, 866, 27–33.  Web of Science CrossRef CAS Google Scholar
First citationHan, M., Lee, S., Jung, J., Park, K.-M., Kwon, S.-K., Ko, J., Lee, P. H. & Kang, Y. (2006). Tetrahedron, 62, 9769–9777.  Web of Science CSD CrossRef CAS Google Scholar
First citationHapiot, P., Lagrost, C., Le Floch, F., Raoult, E. & Rault-Berthelot, J. (2005). Chem. Mater. 17, 2003–2012.  Web of Science CrossRef CAS Google Scholar
First citationJasinski, J. P., Jasinski, J. M. & Crosby, D. J. (2003). J. Chem. Crystallogr. 33, 365–374.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuchod, B., Stéphan, O. & Kervella, Y. (2000). Acta Cryst. C56, e297.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds