organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o208-o209

1-Piperonylpiperazinium picrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 January 2014; accepted 21 January 2014; online 29 January 2014)

In the cation of the title salt [systematic name: 4-(2H-1,3-benzodioxol-5-ylmeth­yl)piperazin-1-ium 2,4,6-tri­nitro­phen­o­late], C12H17N2O2+·C6H2N3O7, the piperazine ring adopts a slightly disordered chair conformation. The piperonyl ring system and the piperazine ring are twisted with respect to each other with an N—C—C—C torsion angle of 40.7 (2)°. In the anion, the dihedral angles between the mean planes of the nitro substituents ortho to the phenolate O atom and the mean plane of the phenyl ring are 28.8 (9) and 32.2 (8)°. In contrast, the nitro group in the para position lies much closer to the aromatic ring plane, subtending a dihedral angle of 3.0 (1)°. In the crystal, the cations and anions inter­act through N—H⋯O hydrogen bonds and a weak C—H⋯O inter­action. Weak C—H⋯O inter­actions are also observed between the anions, forming R22(10) graph-set ring motifs. In addition, a weak centroid–centroid ππ stacking inter­action between the aromatic rings of the cation and the anion, with an inter­centroid distance of 3.7471 (9) Å, contributes to the crystal packing, resulting in a two-dimensional network along (10-1).

Related literature

For pharmaceutical applications of the title cation, see: Millan et al. (2001[Millan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharmacol. Exp. Ther. 297, 876-887.]) and for the pharmacological and toxicological uses of piperazine derivatives, see: Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Choudhary et al. (2006[Choudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819-1826.]); Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]); Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.]). For a related structure, see: Capuano et al. (2000[Capuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339-340.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N2O2+·C6H2N3O7

  • Mr = 449.38

  • Monoclinic, P 21 /n

  • a = 12.0864 (2) Å

  • b = 6.96981 (11) Å

  • c = 23.4898 (4) Å

  • β = 96.5141 (17)°

  • V = 1965.99 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.06 mm−1

  • T = 173 K

  • 0.48 × 0.24 × 0.22 mm

Data collection
  • Agilent Gemini EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.761, Tmax = 1.000

  • 12154 measured reflections

  • 3837 independent reflections

  • 3316 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.05

  • 3837 reflections

  • 298 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O1Bi 0.91 (2) 1.86 (3) 2.7409 (19) 163 (2)
N2A—H2AB⋯O1Bii 0.91 (2) 1.91 (2) 2.7798 (18) 159 (2)
C4A—H4A⋯O6Biii 0.95 2.48 3.335 (2) 150
C3B—H3B⋯O3Biv 0.95 2.54 3.473 (2) 166
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

1-(3,4-Methylenedioxybenzyl)piperazine or 1-piperonylpiperazine is a psychoactive drug of the piperazine class and is used to synthesise the drug, piribedil, an antiparkinsonian agent (Millan et al., 2001). The piperazine moiety is extensively employed to construct various bioactive molecules with anti-bacterial or antimalarial activity and as antipsychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is provided by Kharb et al., (2012). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al. , 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is available (Elliott, 2011). The crystal structure of an N-piperonyl analogue of the atypical antipsychotic clozapine (Capuano et al., 2000) has been reported. In view of the above importance of piperonylpiperazines, this paper reports the crystal structure of the title salt, (I), C12H17N2O2+. C6H2N3O7-.

The asymmetric unit of the title salt, (I), C12H17N2O2+ . C6H2N3O7-, consists of a monoprotonated 1-piperonylpiperazinium cation and a picrate anion (Fig.1). In the cation, the piperazine ring adopts a slightly disordered chair conformation (puckering parameters Q, θ, and φ = 0.5877 (18)Å, 2.28 (16) ° and 6(5) °; (Cremer & Pople, 1975). The piperonyl ring system and the piperazine rings are twisted with respect to each other with an N1A/C1A/C2A/C8A torsion angle of 40.7 (2)°. In the anion, the dihedral angles between the mean planes of the nitro substituents ortho to the phenolate O atom and the mean plane of the phenyl ring are 28.8 (9)° (C6B/N3B/O7B/O6B) and 32.2 (8)°(N1B/O3B/O2B/C2B), respectively. In contrast, the nitro group in the para position lies much closer to the aromatic ring plane, subtending dihedral angles of 3.0 (1)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, the cations and anions interact through intermolecular N—H···O hydrogen bonds and a weak C3B—H3B···O3B intermolecular interaction (Fig.2). Weak C—H···O intermolecular interactions are also observed between adjacent anions forming R22(10) graph set ring motifs. In addition, a weak Cg3–Cg5 ππ stacking interaction with an intercentroid distance of 3.7471 (9)Å (symmetry operation x, y, z; Cg3 and Cg5 are the centroids of the C2A–C8A and C1B–C6B rings respectively) contribute to the crystal packing resulting in a 2D network along (1 0 -1).

Related literature top

For pharmaceutical applications of the title cation, see: Millan et al. (2001) and for the pharmacological and toxicological uses of piperazine derivatives, see: Brockunier et al. (2004); Bogatcheva et al. (2006); Choudhary et al. (2006); Elliott (2011); Kharb et al. (2012). For a related structure, see: Capuano et al. (2000). For puckering parameters, see: Cremer & Pople (1975) and for standard bond lengths, see: Allen et al. (1987).

Experimental top

1-piperonylpiperazine ( 2.2g, 0.01 mol) and picric acid (2.29 g, 0.01 mol), were dissolved in hot N,N-dimethylformamide and stirred for 10 mins at 323 K. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title salt appeared after a few days (m. p: 463-468K).

Refinement top

H2AA and H2AB were located in a difference map and refined isotropically. All of the other H atoms were placed in calculated positions and refined using the riding model with C—H bond lengths of 0.95Å (CH) or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Structure description top

1-(3,4-Methylenedioxybenzyl)piperazine or 1-piperonylpiperazine is a psychoactive drug of the piperazine class and is used to synthesise the drug, piribedil, an antiparkinsonian agent (Millan et al., 2001). The piperazine moiety is extensively employed to construct various bioactive molecules with anti-bacterial or antimalarial activity and as antipsychotic agents (Choudhary et al., 2006). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is provided by Kharb et al., (2012). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds across a number of different therapeutic areas (Brockunier et al., 2004; Bogatcheva et al. , 2006). A review on the current pharmacological and toxicological information for piperazine derivatives is available (Elliott, 2011). The crystal structure of an N-piperonyl analogue of the atypical antipsychotic clozapine (Capuano et al., 2000) has been reported. In view of the above importance of piperonylpiperazines, this paper reports the crystal structure of the title salt, (I), C12H17N2O2+. C6H2N3O7-.

The asymmetric unit of the title salt, (I), C12H17N2O2+ . C6H2N3O7-, consists of a monoprotonated 1-piperonylpiperazinium cation and a picrate anion (Fig.1). In the cation, the piperazine ring adopts a slightly disordered chair conformation (puckering parameters Q, θ, and φ = 0.5877 (18)Å, 2.28 (16) ° and 6(5) °; (Cremer & Pople, 1975). The piperonyl ring system and the piperazine rings are twisted with respect to each other with an N1A/C1A/C2A/C8A torsion angle of 40.7 (2)°. In the anion, the dihedral angles between the mean planes of the nitro substituents ortho to the phenolate O atom and the mean plane of the phenyl ring are 28.8 (9)° (C6B/N3B/O7B/O6B) and 32.2 (8)°(N1B/O3B/O2B/C2B), respectively. In contrast, the nitro group in the para position lies much closer to the aromatic ring plane, subtending dihedral angles of 3.0 (1)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, the cations and anions interact through intermolecular N—H···O hydrogen bonds and a weak C3B—H3B···O3B intermolecular interaction (Fig.2). Weak C—H···O intermolecular interactions are also observed between adjacent anions forming R22(10) graph set ring motifs. In addition, a weak Cg3–Cg5 ππ stacking interaction with an intercentroid distance of 3.7471 (9)Å (symmetry operation x, y, z; Cg3 and Cg5 are the centroids of the C2A–C8A and C1B–C6B rings respectively) contribute to the crystal packing resulting in a 2D network along (1 0 -1).

For pharmaceutical applications of the title cation, see: Millan et al. (2001) and for the pharmacological and toxicological uses of piperazine derivatives, see: Brockunier et al. (2004); Bogatcheva et al. (2006); Choudhary et al. (2006); Elliott (2011); Kharb et al. (2012). For a related structure, see: Capuano et al. (2000). For puckering parameters, see: Cremer & Pople (1975) and for standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C12H17N2O2+. C6H2N3O7-) showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
4-(2H-1,3-Benzodioxol-5-ylmethyl)piperazin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C12H17N2O2+·C6H2N3O7F(000) = 936
Mr = 449.38Dx = 1.518 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 12.0864 (2) ÅCell parameters from 4971 reflections
b = 6.96981 (11) Åθ = 3.7–72.4°
c = 23.4898 (4) ŵ = 1.06 mm1
β = 96.5141 (17)°T = 173 K
V = 1965.99 (6) Å3Irregular, dark yellow
Z = 40.48 × 0.24 × 0.22 mm
Data collection top
Agilent Gemini EOS
diffractometer
3837 independent reflections
Radiation source: Enhance (Cu) X-ray Source3316 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.033
ω scansθmax = 72.5°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1314
Tmin = 0.761, Tmax = 1.000k = 68
12154 measured reflectionsl = 2828
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.5476P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.29 e Å3
3837 reflectionsΔρmin = 0.21 e Å3
298 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0016 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H17N2O2+·C6H2N3O7V = 1965.99 (6) Å3
Mr = 449.38Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.0864 (2) ŵ = 1.06 mm1
b = 6.96981 (11) ÅT = 173 K
c = 23.4898 (4) Å0.48 × 0.24 × 0.22 mm
β = 96.5141 (17)°
Data collection top
Agilent Gemini EOS
diffractometer
3837 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3316 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 1.000Rint = 0.033
12154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3837 reflectionsΔρmin = 0.21 e Å3
298 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1B0.84597 (9)0.58513 (17)0.47124 (5)0.0352 (3)
O2B0.77598 (13)0.8599 (2)0.53866 (6)0.0578 (4)
O3B0.64101 (13)1.01645 (19)0.49224 (7)0.0570 (4)
O4B0.32910 (10)0.61289 (19)0.42367 (6)0.0463 (3)
O5B0.35919 (10)0.34651 (18)0.38117 (6)0.0461 (3)
O6B0.73947 (12)0.1561 (2)0.36561 (7)0.0598 (4)
O7B0.85686 (11)0.2174 (2)0.43946 (7)0.0571 (4)
N1B0.69547 (12)0.8710 (2)0.50202 (6)0.0372 (3)
N2B0.39201 (11)0.4894 (2)0.40823 (6)0.0331 (3)
N3B0.76868 (11)0.2469 (2)0.40934 (6)0.0372 (3)
C1B0.74326 (12)0.5605 (2)0.45716 (6)0.0274 (3)
C2B0.66022 (13)0.6984 (2)0.46929 (6)0.0285 (3)
C3B0.54835 (13)0.6790 (2)0.45310 (6)0.0286 (3)
H3B0.49750.77550.46210.034*
C4B0.51081 (12)0.5151 (2)0.42331 (6)0.0277 (3)
C5B0.58320 (13)0.3750 (2)0.40867 (6)0.0283 (3)
H5B0.55630.26510.38750.034*
C6B0.69516 (12)0.3982 (2)0.42543 (6)0.0288 (3)
O1A0.46181 (10)0.97115 (18)0.33755 (6)0.0418 (3)
O2A0.31610 (10)0.78306 (19)0.29640 (6)0.0478 (3)
N1A0.49795 (10)0.22233 (18)0.18479 (5)0.0281 (3)
N2A0.45154 (12)0.0793 (2)0.07075 (6)0.0403 (4)
C1A0.57171 (13)0.2789 (2)0.23569 (7)0.0335 (4)
H1AA0.64930.28160.22600.040*
H1AB0.56760.18050.26580.040*
C2A0.54431 (13)0.4722 (2)0.25959 (6)0.0293 (3)
C3A0.63089 (12)0.5898 (2)0.28273 (7)0.0314 (3)
H3A0.70540.55140.27980.038*
C4A0.61191 (13)0.7628 (2)0.31028 (7)0.0320 (3)
H4A0.67140.84180.32650.038*
C5A0.50268 (13)0.8118 (2)0.31260 (6)0.0303 (3)
C6A0.34372 (15)0.9629 (3)0.32388 (9)0.0469 (5)
H6AA0.31811.07010.29800.056*
H6AB0.30680.97410.35920.056*
C7A0.41608 (13)0.6991 (2)0.28819 (7)0.0320 (3)
C8A0.43308 (13)0.5274 (2)0.26208 (7)0.0316 (3)
H8A0.37270.44950.24640.038*
C9A0.51724 (14)0.0216 (2)0.17120 (7)0.0342 (4)
H9AA0.50760.05910.20500.041*
H9AB0.59470.00560.16210.041*
C10A0.43710 (14)0.0439 (3)0.12078 (8)0.0403 (4)
H10A0.45210.17940.11170.048*
H10B0.35960.03430.13030.048*
C11A0.43605 (16)0.2859 (3)0.08385 (8)0.0441 (4)
H11A0.35840.30890.09170.053*
H11B0.45050.36530.05050.053*
C12A0.51592 (14)0.3411 (2)0.13567 (7)0.0356 (4)
H12A0.59350.32510.12680.043*
H12B0.50490.47770.14510.043*
H2AA0.522 (2)0.062 (3)0.0623 (9)0.053 (6)*
H2AB0.403 (2)0.044 (3)0.0403 (10)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1B0.0238 (6)0.0469 (7)0.0338 (6)0.0022 (5)0.0014 (4)0.0020 (5)
O2B0.0567 (9)0.0563 (9)0.0564 (9)0.0110 (7)0.0116 (7)0.0159 (7)
O3B0.0560 (9)0.0345 (7)0.0808 (11)0.0035 (6)0.0096 (7)0.0108 (7)
O4B0.0263 (6)0.0505 (8)0.0615 (8)0.0095 (5)0.0023 (5)0.0064 (6)
O5B0.0281 (6)0.0474 (7)0.0620 (8)0.0078 (5)0.0014 (5)0.0133 (6)
O6B0.0429 (8)0.0581 (9)0.0773 (10)0.0081 (6)0.0021 (7)0.0352 (8)
O7B0.0349 (7)0.0571 (9)0.0762 (10)0.0191 (6)0.0069 (7)0.0085 (7)
N1B0.0373 (8)0.0353 (8)0.0397 (8)0.0064 (6)0.0069 (6)0.0046 (6)
N2B0.0244 (7)0.0388 (7)0.0360 (7)0.0011 (5)0.0027 (5)0.0025 (6)
N3B0.0278 (7)0.0346 (7)0.0495 (9)0.0025 (6)0.0055 (6)0.0040 (6)
C1B0.0243 (7)0.0346 (8)0.0227 (7)0.0000 (6)0.0007 (5)0.0048 (6)
C2B0.0294 (8)0.0300 (8)0.0257 (7)0.0016 (6)0.0021 (6)0.0011 (6)
C3B0.0276 (8)0.0313 (7)0.0273 (7)0.0038 (6)0.0051 (6)0.0033 (6)
C4B0.0228 (7)0.0342 (8)0.0259 (7)0.0007 (6)0.0015 (6)0.0033 (6)
C5B0.0275 (8)0.0303 (7)0.0269 (7)0.0010 (6)0.0023 (6)0.0003 (6)
C6B0.0258 (8)0.0304 (8)0.0304 (7)0.0036 (6)0.0035 (6)0.0015 (6)
O1A0.0320 (6)0.0398 (7)0.0528 (8)0.0017 (5)0.0007 (5)0.0153 (5)
O2A0.0259 (6)0.0481 (7)0.0684 (9)0.0020 (5)0.0013 (6)0.0207 (6)
N1A0.0256 (6)0.0306 (6)0.0271 (6)0.0010 (5)0.0008 (5)0.0014 (5)
N2A0.0240 (7)0.0642 (10)0.0313 (7)0.0038 (6)0.0036 (6)0.0126 (7)
C1A0.0297 (8)0.0351 (8)0.0336 (8)0.0028 (6)0.0054 (6)0.0029 (6)
C2A0.0270 (8)0.0328 (8)0.0269 (7)0.0014 (6)0.0015 (6)0.0004 (6)
C3A0.0222 (7)0.0366 (8)0.0350 (8)0.0011 (6)0.0006 (6)0.0003 (6)
C4A0.0251 (8)0.0361 (8)0.0334 (8)0.0062 (6)0.0019 (6)0.0013 (6)
C5A0.0323 (8)0.0306 (8)0.0277 (7)0.0021 (6)0.0015 (6)0.0017 (6)
C6A0.0312 (9)0.0449 (10)0.0639 (12)0.0027 (7)0.0025 (8)0.0148 (9)
C7A0.0228 (7)0.0391 (8)0.0335 (8)0.0006 (6)0.0004 (6)0.0003 (6)
C8A0.0244 (7)0.0355 (8)0.0333 (8)0.0043 (6)0.0032 (6)0.0040 (6)
C9A0.0347 (8)0.0313 (8)0.0353 (8)0.0012 (6)0.0018 (7)0.0021 (6)
C10A0.0316 (9)0.0432 (9)0.0451 (10)0.0040 (7)0.0001 (7)0.0112 (8)
C11A0.0422 (10)0.0556 (11)0.0332 (9)0.0114 (8)0.0009 (7)0.0044 (8)
C12A0.0379 (9)0.0355 (8)0.0330 (8)0.0006 (7)0.0029 (7)0.0023 (6)
Geometric parameters (Å, º) top
O1B—C1B1.2597 (18)N2A—H2AA0.91 (2)
O2B—N1B1.226 (2)N2A—H2AB0.91 (2)
O3B—N1B1.216 (2)C1A—H1AA0.9900
O4B—N2B1.2298 (18)C1A—H1AB0.9900
O5B—N2B1.2234 (18)C1A—C2A1.511 (2)
O6B—N3B1.2240 (19)C2A—C3A1.390 (2)
O7B—N3B1.2278 (18)C2A—C8A1.406 (2)
N1B—C2B1.465 (2)C3A—H3A0.9500
N2B—C4B1.4505 (19)C3A—C4A1.400 (2)
N3B—C6B1.456 (2)C4A—H4A0.9500
C1B—C2B1.441 (2)C4A—C5A1.371 (2)
C1B—C6B1.441 (2)C5A—C7A1.380 (2)
C2B—C3B1.369 (2)C6A—H6AA0.9900
C3B—H3B0.9500C6A—H6AB0.9900
C3B—C4B1.388 (2)C7A—C8A1.371 (2)
C4B—C5B1.381 (2)C8A—H8A0.9500
C5B—H5B0.9500C9A—H9AA0.9900
C5B—C6B1.375 (2)C9A—H9AB0.9900
O1A—C5A1.3735 (19)C9A—C10A1.513 (2)
O1A—C6A1.428 (2)C10A—H10A0.9900
O2A—C6A1.432 (2)C10A—H10B0.9900
O2A—C7A1.3757 (19)C11A—H11A0.9900
N1A—C1A1.4621 (19)C11A—H11B0.9900
N1A—C9A1.460 (2)C11A—C12A1.515 (2)
N1A—C12A1.456 (2)C12A—H12A0.9900
N2A—C10A1.481 (2)C12A—H12B0.9900
N2A—C11A1.489 (2)
O2B—N1B—C2B118.49 (14)C8A—C2A—C1A120.69 (14)
O3B—N1B—O2B123.68 (15)C2A—C3A—H3A118.9
O3B—N1B—C2B117.80 (14)C2A—C3A—C4A122.20 (14)
O4B—N2B—C4B118.01 (14)C4A—C3A—H3A118.9
O5B—N2B—O4B123.24 (14)C3A—C4A—H4A121.9
O5B—N2B—C4B118.76 (13)C5A—C4A—C3A116.24 (14)
O6B—N3B—O7B123.10 (15)C5A—C4A—H4A121.9
O6B—N3B—C6B117.76 (14)O1A—C5A—C7A110.17 (14)
O7B—N3B—C6B119.13 (14)C4A—C5A—O1A127.81 (14)
O1B—C1B—C2B123.00 (14)C4A—C5A—C7A122.01 (15)
O1B—C1B—C6B124.81 (14)O1A—C6A—O2A108.21 (13)
C6B—C1B—C2B112.14 (13)O1A—C6A—H6AA110.1
C1B—C2B—N1B118.95 (13)O1A—C6A—H6AB110.1
C3B—C2B—N1B116.50 (13)O2A—C6A—H6AA110.1
C3B—C2B—C1B124.54 (14)O2A—C6A—H6AB110.1
C2B—C3B—H3B120.7H6AA—C6A—H6AB108.4
C2B—C3B—C4B118.51 (14)O2A—C7A—C5A109.66 (14)
C4B—C3B—H3B120.7C8A—C7A—O2A127.79 (14)
C3B—C4B—N2B118.85 (13)C8A—C7A—C5A122.51 (15)
C5B—C4B—N2B119.31 (14)C2A—C8A—H8A121.6
C5B—C4B—C3B121.83 (14)C7A—C8A—C2A116.75 (14)
C4B—C5B—H5B120.8C7A—C8A—H8A121.6
C6B—C5B—C4B118.45 (14)N1A—C9A—H9AA109.5
C6B—C5B—H5B120.8N1A—C9A—H9AB109.5
C1B—C6B—N3B118.73 (13)N1A—C9A—C10A110.87 (13)
C5B—C6B—N3B116.76 (13)H9AA—C9A—H9AB108.1
C5B—C6B—C1B124.50 (14)C10A—C9A—H9AA109.5
C5A—O1A—C6A105.68 (12)C10A—C9A—H9AB109.5
C7A—O2A—C6A105.78 (12)N2A—C10A—C9A108.90 (14)
C9A—N1A—C1A109.85 (12)N2A—C10A—H10A109.9
C12A—N1A—C1A111.28 (13)N2A—C10A—H10B109.9
C12A—N1A—C9A109.25 (12)C9A—C10A—H10A109.9
C10A—N2A—C11A111.56 (14)C9A—C10A—H10B109.9
C10A—N2A—H2AA107.4 (14)H10A—C10A—H10B108.3
C10A—N2A—H2AB110.1 (15)N2A—C11A—H11A109.9
C11A—N2A—H2AA108.3 (14)N2A—C11A—H11B109.9
C11A—N2A—H2AB109.7 (15)N2A—C11A—C12A109.15 (14)
H2AA—N2A—H2AB110 (2)H11A—C11A—H11B108.3
N1A—C1A—H1AA108.8C12A—C11A—H11A109.9
N1A—C1A—H1AB108.8C12A—C11A—H11B109.9
N1A—C1A—C2A113.90 (13)N1A—C12A—C11A110.72 (14)
H1AA—C1A—H1AB107.7N1A—C12A—H12A109.5
C2A—C1A—H1AA108.8N1A—C12A—H12B109.5
C2A—C1A—H1AB108.8C11A—C12A—H12A109.5
C3A—C2A—C1A118.94 (14)C11A—C12A—H12B109.5
C3A—C2A—C8A120.22 (15)H12A—C12A—H12B108.1
O1B—C1B—C2B—N1B3.2 (2)O2A—C7A—C8A—C2A179.39 (16)
O1B—C1B—C2B—C3B177.92 (14)N1A—C1A—C2A—C3A143.67 (15)
O1B—C1B—C6B—N3B1.8 (2)N1A—C1A—C2A—C8A40.7 (2)
O1B—C1B—C6B—C5B177.91 (14)N1A—C9A—C10A—N2A58.56 (18)
O2B—N1B—C2B—C1B32.4 (2)N2A—C11A—C12A—N1A57.98 (19)
O2B—N1B—C2B—C3B146.50 (16)C1A—N1A—C9A—C10A176.60 (14)
O3B—N1B—C2B—C1B149.48 (15)C1A—N1A—C12A—C11A177.88 (14)
O3B—N1B—C2B—C3B31.6 (2)C1A—C2A—C3A—C4A174.11 (15)
O4B—N2B—C4B—C3B1.5 (2)C1A—C2A—C8A—C7A175.38 (14)
O4B—N2B—C4B—C5B177.30 (14)C2A—C3A—C4A—C5A0.8 (2)
O5B—N2B—C4B—C3B178.82 (14)C3A—C2A—C8A—C7A0.2 (2)
O5B—N2B—C4B—C5B2.4 (2)C3A—C4A—C5A—O1A179.11 (15)
O6B—N3B—C6B—C1B150.82 (16)C3A—C4A—C5A—C7A1.2 (2)
O6B—N3B—C6B—C5B28.9 (2)C4A—C5A—C7A—O2A179.39 (15)
O7B—N3B—C6B—C1B28.4 (2)C4A—C5A—C7A—C8A2.7 (3)
O7B—N3B—C6B—C5B151.86 (16)C5A—O1A—C6A—O2A7.0 (2)
N1B—C2B—C3B—C4B178.32 (13)C5A—C7A—C8A—C2A1.8 (2)
N2B—C4B—C5B—C6B177.33 (13)C6A—O1A—C5A—C4A175.15 (17)
C1B—C2B—C3B—C4B0.6 (2)C6A—O1A—C5A—C7A4.53 (19)
C2B—C1B—C6B—N3B179.38 (13)C6A—O2A—C7A—C5A4.0 (2)
C2B—C1B—C6B—C5B0.4 (2)C6A—O2A—C7A—C8A178.15 (17)
C2B—C3B—C4B—N2B177.29 (13)C7A—O2A—C6A—O1A6.8 (2)
C2B—C3B—C4B—C5B1.5 (2)C8A—C2A—C3A—C4A1.6 (2)
C3B—C4B—C5B—C6B1.4 (2)C9A—N1A—C1A—C2A169.57 (13)
C4B—C5B—C6B—N3B179.77 (13)C9A—N1A—C12A—C11A60.66 (17)
C4B—C5B—C6B—C1B0.5 (2)C10A—N2A—C11A—C12A56.16 (19)
C6B—C1B—C2B—N1B179.19 (13)C11A—N2A—C10A—C9A56.31 (18)
C6B—C1B—C2B—C3B0.3 (2)C12A—N1A—C1A—C2A69.32 (17)
O1A—C5A—C7A—O2A0.31 (19)C12A—N1A—C9A—C10A61.07 (17)
O1A—C5A—C7A—C8A177.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1Bi0.91 (2)1.86 (3)2.7409 (19)163 (2)
N2A—H2AB···O1Bii0.91 (2)1.91 (2)2.7798 (18)159 (2)
C4A—H4A···O6Biii0.952.483.335 (2)150
C3B—H3B···O3Biv0.952.543.473 (2)166
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O1Bi0.91 (2)1.86 (3)2.7409 (19)163 (2)
N2A—H2AB···O1Bii0.91 (2)1.91 (2)2.7798 (18)159 (2)
C4A—H4A···O6Biii0.952.483.335 (2)149.8
C3B—H3B···O3Biv0.952.543.473 (2)165.9
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y+2, z+1.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCapuano, B., Crosby, I. T., Gable, R. W. & Lloyd, E. J. (2000). Acta Cryst. C56, 339–340.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoudhary, P., Kumar, R. & Verma, K. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chem. 4, 2470-2488.  CAS Google Scholar
First citationMillan, M. J., Cussac, D. & Milligan, G. (2001). J. Pharmacol. Exp. Ther. 297, 876–887.  Web of Science PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o208-o209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds