organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S)-3-Methyl-5,6,7,8-tetra­hydro-4H-spiro­[[1,2]oxazolo[5,4-b]quinoline-4,3′-indole]-2′,5-dione

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Chemistry, D. G. Vaishnav College (Autonomous), Arumbakkam, Chennai 600 106, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 7 December 2013; accepted 3 January 2014; online 18 January 2014)

In the title compound, C18H15N3O3, the dihedral angle between the mean planes of the quinoline and indole ring systems [r.m.s. deviations = 0.189 (2) and 0.027 (2) Å, respectively] is 88.65 (5)°. The cyclo­hexene ring of the quinoline ring system adopts an envelope conformation with the central –CH2– C atom as the flap. In the crystal, mol­ecules are linked by two pairs of N—H⋯O hydrogen bonds, forming inversion dimers, and enclosing R22(14) ring motifs. This arrangement results in the formation of chains propagating along [100].

Related literature

For general background to indole, quinoline and pyrrolidine derivatives, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For puckering parameters, see: Cremer & Pople et al. (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O3

  • Mr = 321.33

  • Monoclinic, P 21 /c

  • a = 10.9160 (3) Å

  • b = 11.9027 (3) Å

  • c = 12.4848 (4) Å

  • β = 111.602 (1)°

  • V = 1508.21 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 14019 measured reflections

  • 3772 independent reflections

  • 3088 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.04

  • 3772 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 1.97 2.7620 (16) 153
N3—H3⋯O2ii 0.86 2.01 2.8415 (16) 161
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A large number of natural products contain the quinoline and indole heterocycles, and are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). In view of the above importance we have synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The quinoline group and indoline ring mean planes [r.m.s = 0.189 (2) and 0.027 (2) Å, respectively] are in axial orientations with a dihedral angle of 88.65 (5)°. The indole ring adopts an almost planar conformation with a maximum deviation 0.0486 (4) Å for the spiro C atom, C10. The quinoline ring system has an envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli,1983) are: q2 = 0.3087 (2) Å, φ2 = 209.3 (3)° and the closest pucker descriptor is an envelope on atom C6 of the cyclohexene ring. The sum of the bond angles around atoms N2 and N3 (360 °) of both the quinoline and indole rings indicates sp2 hybridization. The keto atoms O3 and O2 deviate from the attached ring system of indole and quinoline by -0.032 (1) and -0.021 (1) Å, respectively.

In the crystal, molecules are linked by two pairs of N—H···O hydrogen bonds (Table 1), forming two inversion dimers and containing two R22(14) ring motifs (Bernstein et al., 1995); see Fig. 2. These interactions result in the formation of chains along the a axis direction (Fig. 3 and Table 1).

Related literature top

For general background to indole, quinoline and pyrrolidine derivatives, see: Padwa et al. (1999). For puckering parameters, see: Cremer & Pople et al. (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of isatin (1 mmol), cyclohexane-1,3 dione (1 mmol) and 5-Amino-3-methylisoxazole (1 mmol) in 5 ml of ethanol was heated to 353 K for 6–10 h. The reaction was monitored by TLC. When finished the reaction mixture was filtered hot and the resulting solid products were washed with ethanol, dried in air and recrystallized from ethanol, giving colourless block-like crystals.

Refinement top

N and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: N-H = 0.86 Å, C–H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Structure description top

A large number of natural products contain the quinoline and indole heterocycles, and are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). In view of the above importance we have synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The quinoline group and indoline ring mean planes [r.m.s = 0.189 (2) and 0.027 (2) Å, respectively] are in axial orientations with a dihedral angle of 88.65 (5)°. The indole ring adopts an almost planar conformation with a maximum deviation 0.0486 (4) Å for the spiro C atom, C10. The quinoline ring system has an envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli,1983) are: q2 = 0.3087 (2) Å, φ2 = 209.3 (3)° and the closest pucker descriptor is an envelope on atom C6 of the cyclohexene ring. The sum of the bond angles around atoms N2 and N3 (360 °) of both the quinoline and indole rings indicates sp2 hybridization. The keto atoms O3 and O2 deviate from the attached ring system of indole and quinoline by -0.032 (1) and -0.021 (1) Å, respectively.

In the crystal, molecules are linked by two pairs of N—H···O hydrogen bonds (Table 1), forming two inversion dimers and containing two R22(14) ring motifs (Bernstein et al., 1995); see Fig. 2. These interactions result in the formation of chains along the a axis direction (Fig. 3 and Table 1).

For general background to indole, quinoline and pyrrolidine derivatives, see: Padwa et al. (1999). For puckering parameters, see: Cremer & Pople et al. (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view along the b-axis of the crystal packing of the title compound. It shows the two R22(14) inversion dimer formations due to the presence of two pairs of N—H···O hydrogen bonds (dashed lines; see Table 1 for details).
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the a-axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; C-bound H atoms have been omitted for clarity).
(4S)-3-Methyl-5,6,7,8-tetrahydro-4H-spiro[[1,2]oxazolo[5,4-b]quinoline-4,3'-indole]-2',5-dione top
Crystal data top
C18H15N3O3F(000) = 672
Mr = 321.33Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3088 reflections
a = 10.9160 (3) Åθ = 2.0–28.4°
b = 11.9027 (3) ŵ = 0.10 mm1
c = 12.4848 (4) ÅT = 293 K
β = 111.602 (1)°Block, colourless
V = 1508.21 (7) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3772 independent reflections
Radiation source: fine-focus sealed tube3088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and φ scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.979, Tmax = 0.982k = 1515
14019 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.067P)2 + 0.5984P]
where P = (Fo2 + 2Fc2)/3
3772 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C18H15N3O3V = 1508.21 (7) Å3
Mr = 321.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9160 (3) ŵ = 0.10 mm1
b = 11.9027 (3) ÅT = 293 K
c = 12.4848 (4) Å0.21 × 0.19 × 0.18 mm
β = 111.602 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3088 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.020
14019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
3772 reflectionsΔρmin = 0.35 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.75216 (16)1.11349 (13)0.22069 (13)0.0379 (3)
C20.78149 (13)1.02411 (12)0.30195 (12)0.0305 (3)
C30.90595 (14)0.99600 (13)0.31647 (13)0.0352 (3)
C40.91557 (13)0.84446 (12)0.43585 (12)0.0318 (3)
C50.99809 (15)0.74920 (14)0.50327 (15)0.0404 (3)
H5A1.05270.72080.46310.048*
H5B1.05590.77650.57800.048*
C60.9153 (2)0.65604 (17)0.5196 (2)0.0634 (6)
H6A0.97150.60240.57420.076*
H6B0.87300.61750.44680.076*
C70.8122 (2)0.69692 (18)0.5624 (2)0.0632 (6)
H7A0.85410.71630.64320.076*
H7B0.75080.63620.55650.076*
C80.73613 (14)0.79727 (13)0.49828 (13)0.0356 (3)
C90.78951 (13)0.86471 (11)0.42928 (12)0.0297 (3)
C100.70456 (12)0.96318 (11)0.36267 (11)0.0281 (3)
C110.56686 (13)0.93371 (12)0.27954 (12)0.0309 (3)
C120.52498 (16)0.86478 (14)0.18423 (13)0.0395 (3)
H120.58490.82220.16440.047*
C130.39008 (18)0.86039 (15)0.11791 (15)0.0477 (4)
H130.35980.81410.05350.057*
C140.30162 (17)0.92411 (16)0.14721 (16)0.0501 (4)
H140.21250.92010.10170.060*
C150.34238 (15)0.99406 (15)0.24296 (15)0.0433 (4)
H150.28251.03660.26280.052*
C160.47563 (13)0.99759 (12)0.30727 (12)0.0320 (3)
C170.67211 (13)1.04533 (11)0.44623 (12)0.0294 (3)
C180.62743 (19)1.17717 (16)0.16867 (16)0.0501 (4)
H18A0.64391.24520.13490.075*
H18B0.59321.19530.22720.075*
H18C0.56441.13220.11020.075*
N10.85270 (15)1.13783 (13)0.19114 (13)0.0492 (4)
N20.97711 (12)0.91031 (12)0.38120 (12)0.0402 (3)
H21.05710.89790.38760.048*
N30.54091 (11)1.06336 (10)0.40459 (10)0.0328 (3)
H30.50201.10980.43430.039*
O10.95520 (11)1.05973 (11)0.25399 (11)0.0477 (3)
O20.63136 (11)0.82301 (10)0.50785 (11)0.0443 (3)
O30.75076 (10)1.08902 (10)0.53253 (9)0.0400 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (8)0.0408 (8)0.0340 (7)0.0003 (6)0.0181 (6)0.0004 (6)
C20.0302 (6)0.0326 (7)0.0325 (7)0.0004 (5)0.0159 (5)0.0017 (5)
C30.0315 (7)0.0414 (8)0.0382 (7)0.0035 (6)0.0193 (6)0.0007 (6)
C40.0270 (6)0.0347 (7)0.0361 (7)0.0020 (5)0.0144 (5)0.0035 (5)
C50.0308 (7)0.0422 (8)0.0499 (8)0.0099 (6)0.0168 (6)0.0033 (7)
C60.0460 (10)0.0454 (10)0.1040 (17)0.0139 (8)0.0338 (11)0.0199 (10)
C70.0557 (11)0.0594 (12)0.0914 (15)0.0243 (9)0.0471 (11)0.0374 (11)
C80.0330 (7)0.0350 (7)0.0446 (8)0.0048 (6)0.0210 (6)0.0029 (6)
C90.0262 (6)0.0303 (7)0.0354 (7)0.0025 (5)0.0147 (5)0.0007 (5)
C100.0242 (6)0.0308 (7)0.0325 (6)0.0012 (5)0.0142 (5)0.0018 (5)
C110.0275 (6)0.0319 (7)0.0344 (7)0.0000 (5)0.0129 (5)0.0006 (5)
C120.0408 (8)0.0411 (8)0.0394 (8)0.0027 (6)0.0180 (6)0.0054 (6)
C130.0473 (9)0.0492 (10)0.0402 (8)0.0090 (7)0.0084 (7)0.0073 (7)
C140.0316 (8)0.0535 (10)0.0532 (10)0.0037 (7)0.0016 (7)0.0006 (8)
C150.0274 (7)0.0456 (9)0.0536 (9)0.0042 (6)0.0110 (7)0.0004 (7)
C160.0267 (6)0.0332 (7)0.0368 (7)0.0010 (5)0.0124 (5)0.0012 (5)
C170.0265 (6)0.0306 (7)0.0341 (7)0.0019 (5)0.0147 (5)0.0004 (5)
C180.0540 (10)0.0531 (10)0.0483 (9)0.0138 (8)0.0247 (8)0.0146 (8)
N10.0489 (8)0.0562 (9)0.0500 (8)0.0036 (7)0.0271 (7)0.0130 (7)
N20.0259 (6)0.0485 (8)0.0521 (8)0.0051 (5)0.0212 (6)0.0070 (6)
N30.0265 (6)0.0345 (6)0.0402 (6)0.0047 (4)0.0155 (5)0.0044 (5)
O10.0399 (6)0.0584 (7)0.0549 (7)0.0002 (5)0.0293 (5)0.0115 (6)
O20.0385 (6)0.0459 (6)0.0609 (7)0.0082 (5)0.0328 (6)0.0084 (5)
O30.0289 (5)0.0498 (6)0.0411 (6)0.0005 (4)0.0125 (4)0.0127 (5)
Geometric parameters (Å, º) top
C1—N11.312 (2)C10—C111.5201 (18)
C1—C21.423 (2)C10—C171.5628 (18)
C1—C181.483 (2)C11—C121.377 (2)
C2—C31.3451 (19)C11—C161.3941 (19)
C2—C101.5082 (18)C12—C131.400 (2)
C3—O11.3348 (17)C12—H120.9300
C3—N21.355 (2)C13—C141.379 (3)
C4—N21.3668 (19)C13—H130.9300
C4—C91.3695 (18)C14—C151.389 (3)
C4—C51.499 (2)C14—H140.9300
C5—C61.491 (3)C15—C161.379 (2)
C5—H5A0.9700C15—H150.9300
C5—H5B0.9700C16—N31.3998 (19)
C6—C71.494 (3)C17—O31.2195 (17)
C6—H6A0.9700C17—N31.3487 (17)
C6—H6B0.9700C18—H18A0.9600
C7—C81.506 (2)C18—H18B0.9600
C7—H7A0.9700C18—H18C0.9600
C7—H7B0.9700N1—O11.4440 (19)
C8—O21.2315 (17)N2—H20.8600
C8—C91.448 (2)N3—H30.8600
C9—C101.5354 (19)
N1—C1—C2111.93 (14)C2—C10—C17109.86 (11)
N1—C1—C18119.47 (14)C11—C10—C17100.95 (10)
C2—C1—C18128.59 (14)C9—C10—C17110.86 (11)
C3—C2—C1103.48 (13)C12—C11—C16119.94 (13)
C3—C2—C10122.29 (13)C12—C11—C10131.11 (13)
C1—C2—C10134.21 (13)C16—C11—C10108.77 (12)
O1—C3—C2112.58 (14)C11—C12—C13118.39 (15)
O1—C3—N2120.71 (13)C11—C12—H12120.8
C2—C3—N2126.63 (13)C13—C12—H12120.8
N2—C4—C9122.47 (13)C14—C13—C12120.63 (16)
N2—C4—C5114.19 (12)C14—C13—H13119.7
C9—C4—C5123.34 (13)C12—C13—H13119.7
C6—C5—C4111.73 (13)C13—C14—C15121.62 (15)
C6—C5—H5A109.3C13—C14—H14119.2
C4—C5—H5A109.3C15—C14—H14119.2
C6—C5—H5B109.3C16—C15—C14117.02 (15)
C4—C5—H5B109.3C16—C15—H15121.5
H5A—C5—H5B107.9C14—C15—H15121.5
C5—C6—C7112.39 (17)C15—C16—C11122.38 (14)
C5—C6—H6A109.1C15—C16—N3127.81 (13)
C7—C6—H6A109.1C11—C16—N3109.79 (12)
C5—C6—H6B109.1O3—C17—N3125.10 (13)
C7—C6—H6B109.1O3—C17—C10126.70 (12)
H6A—C6—H6B107.9N3—C17—C10108.16 (11)
C6—C7—C8114.14 (16)C1—C18—H18A109.5
C6—C7—H7A108.7C1—C18—H18B109.5
C8—C7—H7A108.7H18A—C18—H18B109.5
C6—C7—H7B108.7C1—C18—H18C109.5
C8—C7—H7B108.7H18A—C18—H18C109.5
H7A—C7—H7B107.6H18B—C18—H18C109.5
O2—C8—C9120.75 (13)C1—N1—O1105.43 (12)
O2—C8—C7119.74 (14)C3—N2—C4116.76 (12)
C9—C8—C7119.47 (13)C3—N2—H2121.6
C4—C9—C8118.85 (13)C4—N2—H2121.6
C4—C9—C10124.05 (12)C17—N3—C16112.00 (11)
C8—C9—C10116.77 (11)C17—N3—H3124.0
C2—C10—C11111.19 (11)C16—N3—H3124.0
C2—C10—C9107.60 (10)C3—O1—N1106.57 (11)
C11—C10—C9116.23 (11)
N1—C1—C2—C31.17 (18)C9—C10—C11—C1260.3 (2)
C18—C1—C2—C3178.32 (17)C17—C10—C11—C12179.74 (15)
N1—C1—C2—C10179.41 (15)C2—C10—C11—C16111.75 (13)
C18—C1—C2—C100.1 (3)C9—C10—C11—C16124.72 (13)
C1—C2—C3—O10.85 (17)C17—C10—C11—C164.74 (14)
C10—C2—C3—O1179.36 (12)C16—C11—C12—C130.5 (2)
C1—C2—C3—N2176.02 (15)C10—C11—C12—C13175.05 (15)
C10—C2—C3—N22.5 (2)C11—C12—C13—C140.3 (3)
N2—C4—C5—C6156.45 (16)C12—C13—C14—C150.3 (3)
C9—C4—C5—C623.7 (2)C13—C14—C15—C160.4 (3)
C4—C5—C6—C749.1 (2)C14—C15—C16—C110.6 (2)
C5—C6—C7—C847.0 (3)C14—C15—C16—N3177.92 (15)
C6—C7—C8—O2164.00 (19)C12—C11—C16—C150.7 (2)
C6—C7—C8—C918.2 (3)C10—C11—C16—C15176.31 (14)
N2—C4—C9—C8174.34 (13)C12—C11—C16—N3178.08 (13)
C5—C4—C9—C85.5 (2)C10—C11—C16—N32.43 (16)
N2—C4—C9—C101.1 (2)C2—C10—C17—O366.12 (18)
C5—C4—C9—C10178.73 (13)C11—C10—C17—O3176.41 (14)
O2—C8—C9—C4169.38 (15)C9—C10—C17—O352.67 (19)
C7—C8—C9—C48.4 (2)C2—C10—C17—N3111.85 (13)
O2—C8—C9—C104.4 (2)C11—C10—C17—N35.62 (14)
C7—C8—C9—C10177.81 (16)C9—C10—C17—N3129.36 (12)
C3—C2—C10—C11132.98 (14)C2—C1—N1—O11.00 (18)
C1—C2—C10—C1145.0 (2)C18—C1—N1—O1178.54 (15)
C3—C2—C10—C94.65 (18)O1—C3—N2—C4175.45 (13)
C1—C2—C10—C9173.33 (15)C2—C3—N2—C41.2 (2)
C3—C2—C10—C17116.13 (15)C9—C4—N2—C31.9 (2)
C1—C2—C10—C1765.9 (2)C5—C4—N2—C3178.32 (14)
C4—C9—C10—C24.05 (18)O3—C17—N3—C16177.34 (14)
C8—C9—C10—C2177.46 (12)C10—C17—N3—C164.65 (16)
C4—C9—C10—C11129.43 (14)C15—C16—N3—C17179.84 (15)
C8—C9—C10—C1157.17 (16)C11—C16—N3—C171.51 (17)
C4—C9—C10—C17116.09 (15)C2—C3—O1—N10.29 (17)
C8—C9—C10—C1757.31 (16)N2—C3—O1—N1176.78 (14)
C2—C10—C11—C1263.2 (2)C1—N1—O1—C30.45 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.972.7620 (16)153
N3—H3···O2ii0.862.012.8415 (16)161
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.972.7620 (16)153
N3—H3···O2ii0.862.012.8415 (16)161
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds