metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m37-m38

catena-Poly[[aqua­bis­­(4-formyl­benzoato-κ2O1,O1′)cadmium]-μ-pyrazine-κ2N:N′]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bAksaray University, Department of Physics, 68100, Aksaray, Turkey, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 26 December 2013; accepted 31 December 2013; online 11 January 2014)

The polymeric title compound, [Cd(C8H5O3)2(C4H4N2)(H2O)]n, contains two 4-formyl­benzoate (FB) anions, one pyrazine mol­ecule and one coordinating water mol­ecule; the FB anions act as bidentate ligands. The O atom, the aldehyde H atom and the benzene ring of one of the FB anions are disordered over two positions. The O atoms were freely refined [refined occupancy ratio 0.79 (2):0.21 (2)], while the aldehyde H atoms and the benzene ring atoms were refined with fixed occupancy ratios of 0.8:0.2 and 0.5:0.5, respectively. In the ordered FB anion, the carboxyl­ate group is twisted away from the attached benzene ring (A) by 22.7 (8)°. In the disordered FB anion, the corresponding angles are 15.6 (10) and 11.4 (11)° for rings B and B′, respectively. Benzene rings A and B are oriented at a dihedral angle of 24.2 (7), A and B′ at 43.0 (8)°. The pyrazine ring makes dihedral angles of 67.5 (4), 89.6 (7) and 86.2 (7)°, respectively, with benzene rings A, B and B′. The pyrazine ligands bridge the CdII cations, forming polymeric chains running along the b-axis direction. In the crystal, O—Hwater ⋯ Ocarboxyl­ate hydrogen bonds link adjacent chains into layers parallel to the bc plane. These layers are linked via C—Hpyrazine ⋯ Oform­yl hydrogen bonds, forming a three-dimensional network. ππ interactions [centroid–centroid distances = 3.870 (11)–3.951 (5) Å] further stabilize the crystal structure. There is also a weak C—H⋯π inter­action present.

Related literature

For structural functions and coordination relationships of the aryl­carboxyl­ate ion in transition metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For applications of transition metal complexes with biochemical mol­ecules in biological systems, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives such as 4-amino­benzoic acid have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes, see: Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta 329, 13-21.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]). For related structures, see: Hökelek et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416-m1417.]); Sertçelik et al. (2013[Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290-m291.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H5O3)2(C4H4N2)(H2O)]

  • Mr = 508.76

  • Monoclinic, P 21 /c

  • a = 22.6016 (5) Å

  • b = 7.4947 (2) Å

  • c = 11.9196 (3) Å

  • β = 99.673 (4)°

  • V = 1990.38 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 294 K

  • 0.45 × 0.35 × 0.15 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.625, Tmax = 0.842

  • 40178 measured reflections

  • 3587 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.144

  • S = 1.35

  • 3587 reflections

  • 287 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyrazine ring N1/N2/C17—C20.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H72⋯O5i 0.82 (2) 2.10 (6) 2.727 (7) 133 (7)
C18—H18⋯O6Aii 0.93 2.52 3.394 (14) 157
C19—H19⋯O3iii 0.93 2.43 3.085 (10) 127
C8—H8⋯Cg1iv 0.93 2.93 3.691 (10) 147
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported on herein.

The asymmetric unit of the title polymeric compound contains one CdII ion, two 4-formylbenzoate (FB) anions, one pyrazine molecule and one coordinated water molecule; the FB anions act as bidentate ligands (Fig. 1). The pyrazine ligands bridge the adjacent CdII ions forming polymeric chains running along the b-axis direction (Fig. 2). The distances between the symmetry related CdII ions [Cd1 ···Cd1i; symmetry code (i) = x, y + 1, z] is 7.495 (3) Å.

The O1—Cd1—O2 and O4—Cd1—O5 angles are 53.89 (17)° and 53.88 (18) °, respectively. The corresponding O—M—O (M = metal) angles are 52.91 (4)° and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009) and 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4] (Sertçelik et al., 2013).

The near equality of the C1—O1 [1.262 (9) Å], C1—O2 [1.234 (9) Å] and C9—O4 [1.242 (9) Å], C9—O5 [1.247 (9) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Cd—O and Cd—N distances are 2.373 (5) and 2.307 (6) Å, respectively, close to standard values (Allen et al., 1987). The Cd atom lies 0.0175 (5) Å and 0.0153 (4) Å below of the carboxylate groups [(O1/O2/C1) and (O4/O5/C9)], respectively. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O4/O5/C9)] and the adjacent benzene rings [A (C2—C7), B (C10/C11A,C12A,C13/C14A/C15A) and B' (C10/C11B/C12B/C13/C14B/C15B)] are 22.7 (8) and 15.6 (10) and 11.4 (11) °, respectively, while the benzene rings, A to B and A to B', are oriented at dihedral angles of 24.2 (7) and 43.0 (8) °, respectively. On the other hand, the pyrazine ring C (N1/N2/C17—C20) is oriented with respect to benzene rings A, B and B' at dihedral angles of 67.5 (4), 89.6 (7) and 86.2 (7) °, respectively.

In the crystal, O–Hwater ··· Ocarboxylate hydrogen bonds (Table 1) link adjacent chains into layers parallel to the bc plane. The layers are linked via C–Hpyrazine ··· Oformyl hydrogen bonds (Table 1), forming a three-dimensional network.

There is a slipped parallel π-π contact between inversion related benzene rings, A···Ai, with a centroid-centroid distance of 3.951 (5) Å [normal distance 3.581 (4) Å, slippage 1.668 Å; symmetry code: (i) - x +1, - y, - z +1], and π-π interactions between the disordered benzene rings, B···Bii and B'···B'ii with centroid-centroid distances of 3.870 (11) and 3.873 (12) Å, respectively [symmetry code: (ii) -x, y+1/2, -z+1/2] . There is also a weak C—H···π interaction present (Table 1).

Related literature top

For structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Some benzoic acid derivatives such as 4-aminobenzoic acid have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For related structures, see: Hökelek et al. (2009); Sertçelik et al. (2013). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CdSO4.8/3H2O (1.28 g, 5 mmol) in H2O (50 ml) and pyrazine (0.80 g, 10 mmol) in H2O (30 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving plate-like colourless single crystals.

Refinement top

Atoms H71 and H72 (for H2O) were located in a difference and refined with a distance restraint: 0-H = 0.82 (2) Å and H···H = 1.35 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were positioned geometrically and constrained to ride on their parent atom: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). In one of the two FB anions, the O atom, O6, the aldehyde H atom, H16, and the benzene ring B (C10—C15) are disordered over two positions. The O atoms (O6A and O6B) were freely refined [ratio 0.79 (2):0.21 (2)]. The aldehyde H atoms (H16A and H16B) were refined with a fixed occupancy ratio of 0.8:0.2. The benzene ring atoms [(C11A, H11A, C12A, H12A, C14A, H14A, C15A, H15A) and (C11B, H11B, C12B, H12B, C14B, H14B, C15B, H15B)] were refined with a fixed occupancy ratio of 0.5:0.5.

Structure description top

The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported on herein.

The asymmetric unit of the title polymeric compound contains one CdII ion, two 4-formylbenzoate (FB) anions, one pyrazine molecule and one coordinated water molecule; the FB anions act as bidentate ligands (Fig. 1). The pyrazine ligands bridge the adjacent CdII ions forming polymeric chains running along the b-axis direction (Fig. 2). The distances between the symmetry related CdII ions [Cd1 ···Cd1i; symmetry code (i) = x, y + 1, z] is 7.495 (3) Å.

The O1—Cd1—O2 and O4—Cd1—O5 angles are 53.89 (17)° and 53.88 (18) °, respectively. The corresponding O—M—O (M = metal) angles are 52.91 (4)° and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009) and 53.50 (14)° in [Cu2(C8H5O3)4(C6H6N2O)4] (Sertçelik et al., 2013).

The near equality of the C1—O1 [1.262 (9) Å], C1—O2 [1.234 (9) Å] and C9—O4 [1.242 (9) Å], C9—O5 [1.247 (9) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Cd—O and Cd—N distances are 2.373 (5) and 2.307 (6) Å, respectively, close to standard values (Allen et al., 1987). The Cd atom lies 0.0175 (5) Å and 0.0153 (4) Å below of the carboxylate groups [(O1/O2/C1) and (O4/O5/C9)], respectively. The dihedral angles between the planar carboxylate groups [(O1/O2/C1) and (O4/O5/C9)] and the adjacent benzene rings [A (C2—C7), B (C10/C11A,C12A,C13/C14A/C15A) and B' (C10/C11B/C12B/C13/C14B/C15B)] are 22.7 (8) and 15.6 (10) and 11.4 (11) °, respectively, while the benzene rings, A to B and A to B', are oriented at dihedral angles of 24.2 (7) and 43.0 (8) °, respectively. On the other hand, the pyrazine ring C (N1/N2/C17—C20) is oriented with respect to benzene rings A, B and B' at dihedral angles of 67.5 (4), 89.6 (7) and 86.2 (7) °, respectively.

In the crystal, O–Hwater ··· Ocarboxylate hydrogen bonds (Table 1) link adjacent chains into layers parallel to the bc plane. The layers are linked via C–Hpyrazine ··· Oformyl hydrogen bonds (Table 1), forming a three-dimensional network.

There is a slipped parallel π-π contact between inversion related benzene rings, A···Ai, with a centroid-centroid distance of 3.951 (5) Å [normal distance 3.581 (4) Å, slippage 1.668 Å; symmetry code: (i) - x +1, - y, - z +1], and π-π interactions between the disordered benzene rings, B···Bii and B'···B'ii with centroid-centroid distances of 3.870 (11) and 3.873 (12) Å, respectively [symmetry code: (ii) -x, y+1/2, -z+1/2] . There is also a weak C—H···π interaction present (Table 1).

For structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Some benzoic acid derivatives such as 4-aminobenzoic acid have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For related structures, see: Hökelek et al. (2009); Sertçelik et al. (2013). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the polymeric chain of the title compound. Only the water H atoms and the major components of the disordered aldehyde and benzene ring are shown.
catena-Poly[[aquabis(4-formylbenzoato-κ2O1,O1')cadmium]-µ-pyrazine-κ2N:N'] top
Crystal data top
[Cd(C8H5O3)2(C4H4N2)(H2O)]F(000) = 1016
Mr = 508.76Dx = 1.684 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9816 reflections
a = 22.6016 (5) Åθ = 2.7–28.4°
b = 7.4947 (2) ŵ = 1.14 mm1
c = 11.9196 (3) ÅT = 294 K
β = 99.673 (4)°Plate, colourless
V = 1990.38 (9) Å30.45 × 0.35 × 0.15 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3587 independent reflections
Radiation source: fine-focus sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2727
Tmin = 0.625, Tmax = 0.842k = 88
40178 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.35 w = 1/[σ2(Fo2) + (0.0316P)2 + 14.8406P]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 1.77 e Å3
3 restraintsΔρmin = 1.85 e Å3
Crystal data top
[Cd(C8H5O3)2(C4H4N2)(H2O)]V = 1990.38 (9) Å3
Mr = 508.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.6016 (5) ŵ = 1.14 mm1
b = 7.4947 (2) ÅT = 294 K
c = 11.9196 (3) Å0.45 × 0.35 × 0.15 mm
β = 99.673 (4)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3587 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
3497 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.842Rint = 0.048
40178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0593 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.35 w = 1/[σ2(Fo2) + (0.0316P)2 + 14.8406P]
where P = (Fo2 + 2Fc2)/3
3587 reflectionsΔρmax = 1.77 e Å3
287 parametersΔρmin = 1.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.25229 (2)0.17641 (6)0.12918 (4)0.02711 (18)
O10.3237 (2)0.1914 (8)0.2983 (4)0.0451 (13)
O20.3601 (2)0.1504 (9)0.1430 (5)0.0567 (16)
O30.6257 (4)0.2685 (15)0.5777 (8)0.105 (3)
O40.1447 (2)0.1687 (9)0.0798 (5)0.0551 (16)
O50.1829 (2)0.1597 (8)0.2594 (5)0.0503 (15)
O6A0.1449 (4)0.134 (2)0.2280 (11)0.124 (6)0.79 (2)
O6B0.111 (2)0.139 (9)0.378 (6)0.16 (3)0.21 (2)
O70.2521 (2)0.1713 (7)0.0625 (4)0.0362 (11)
H710.263 (3)0.278 (4)0.054 (7)0.056*
H720.221 (2)0.168 (9)0.109 (6)0.056*
N10.2519 (2)0.4797 (9)0.1242 (4)0.0299 (13)
N20.2503 (2)0.8645 (6)0.1216 (5)0.0263 (11)
C10.3678 (3)0.1700 (9)0.2472 (6)0.0330 (15)
C20.4297 (3)0.1712 (9)0.3143 (6)0.0304 (14)
C30.4421 (3)0.2522 (11)0.4201 (6)0.0406 (17)
H30.41120.30250.45210.049*
C40.5005 (4)0.2584 (12)0.4780 (6)0.047 (2)
H40.50890.31580.54800.056*
C50.5460 (3)0.1806 (12)0.4330 (7)0.047 (2)
C60.5336 (4)0.0950 (14)0.3294 (8)0.059 (2)
H60.56450.04020.29960.071*
C70.4760 (3)0.0897 (12)0.2694 (7)0.0452 (19)
H70.46810.03210.19930.054*
C80.6082 (4)0.1889 (19)0.4960 (10)0.082 (4)
H80.63660.12210.46620.099*
C90.1387 (3)0.1613 (9)0.1813 (6)0.0335 (15)
C100.0767 (3)0.1475 (10)0.2111 (6)0.0351 (16)
C130.0386 (4)0.1296 (14)0.2620 (8)0.054 (2)
C11A0.0653 (14)0.171 (3)0.320 (3)0.050 (4)0.50
H11A0.09720.18800.37970.060*0.50
C12A0.0074 (12)0.170 (3)0.342 (2)0.050 (4)0.50
H12A0.00050.19850.41510.060*0.50
C14A0.0278 (12)0.089 (3)0.153 (2)0.050 (4)0.50
H14A0.05920.05290.09660.060*0.50
C15A0.0301 (13)0.104 (3)0.128 (3)0.050 (4)0.50
H15A0.03690.08290.05480.060*0.50
C11B0.0702 (14)0.106 (4)0.319 (3)0.057 (5)0.50
H11B0.10380.08560.37470.068*0.50
C12B0.0126 (12)0.093 (3)0.348 (2)0.057 (5)0.50
H12B0.00760.06060.42080.068*0.50
C14B0.0305 (12)0.171 (3)0.153 (2)0.057 (5)0.50
H14B0.06350.19660.09760.068*0.50
C15B0.0255 (13)0.174 (3)0.126 (3)0.057 (5)0.50
H15B0.03030.19450.05150.068*0.50
C160.0996 (5)0.1259 (19)0.2908 (12)0.081 (3)
H16A0.10210.11610.36770.097*0.80
H16B0.13130.11040.23100.097*0.20
C170.2264 (3)0.5861 (11)0.0310 (7)0.0441 (18)
H170.20870.52830.03520.053*
C180.2260 (3)0.7705 (9)0.0313 (6)0.0391 (17)
H180.20800.83060.03390.047*
C190.2755 (3)0.7728 (10)0.2113 (6)0.0381 (17)
H190.29330.83400.27620.046*
C200.2764 (3)0.5877 (9)0.2121 (6)0.0375 (16)
H200.29540.53230.27830.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0334 (3)0.0204 (3)0.0268 (3)0.00118 (19)0.00312 (19)0.00010 (18)
O10.031 (3)0.060 (4)0.045 (3)0.007 (2)0.007 (2)0.010 (3)
O20.042 (3)0.092 (5)0.035 (3)0.008 (3)0.002 (2)0.001 (3)
O30.068 (5)0.147 (9)0.084 (6)0.017 (5)0.030 (4)0.003 (6)
O40.036 (3)0.087 (5)0.043 (3)0.002 (3)0.008 (2)0.009 (3)
O50.034 (3)0.071 (4)0.045 (3)0.006 (3)0.001 (2)0.021 (3)
O6A0.036 (6)0.233 (17)0.102 (10)0.008 (7)0.013 (5)0.026 (10)
O6B0.10 (4)0.21 (7)0.20 (7)0.00 (4)0.10 (4)0.04 (5)
O70.044 (3)0.037 (3)0.027 (2)0.000 (2)0.004 (2)0.002 (2)
N10.010 (2)0.068 (4)0.011 (2)0.000 (2)0.0008 (17)0.005 (3)
N20.035 (3)0.006 (2)0.038 (3)0.002 (2)0.003 (2)0.001 (2)
C10.035 (4)0.023 (4)0.041 (4)0.001 (3)0.004 (3)0.002 (3)
C20.035 (3)0.024 (3)0.033 (3)0.003 (3)0.007 (3)0.004 (3)
C30.039 (4)0.048 (5)0.037 (4)0.003 (3)0.012 (3)0.008 (3)
C40.047 (4)0.060 (6)0.031 (4)0.007 (4)0.000 (3)0.006 (4)
C50.034 (4)0.057 (5)0.050 (5)0.001 (4)0.001 (3)0.010 (4)
C60.038 (4)0.078 (7)0.064 (6)0.008 (4)0.014 (4)0.006 (5)
C70.040 (4)0.054 (5)0.043 (4)0.003 (4)0.012 (3)0.008 (4)
C80.042 (5)0.123 (11)0.075 (7)0.004 (6)0.011 (5)0.002 (7)
C90.037 (4)0.021 (3)0.042 (4)0.001 (3)0.006 (3)0.004 (3)
C100.034 (4)0.035 (4)0.034 (4)0.002 (3)0.002 (3)0.003 (3)
C130.041 (4)0.068 (6)0.057 (5)0.002 (4)0.013 (4)0.006 (5)
C11A0.039 (6)0.070 (11)0.042 (6)0.009 (8)0.006 (4)0.002 (8)
C12A0.039 (6)0.070 (11)0.042 (6)0.009 (8)0.006 (4)0.002 (8)
C14A0.039 (6)0.070 (11)0.042 (6)0.009 (8)0.006 (4)0.002 (8)
C15A0.039 (6)0.070 (11)0.042 (6)0.009 (8)0.006 (4)0.002 (8)
C11B0.039 (6)0.089 (14)0.040 (6)0.012 (10)0.002 (4)0.004 (10)
C12B0.039 (6)0.089 (14)0.040 (6)0.012 (10)0.002 (4)0.004 (10)
C14B0.039 (6)0.089 (14)0.040 (6)0.012 (10)0.002 (4)0.004 (10)
C15B0.039 (6)0.089 (14)0.040 (6)0.012 (10)0.002 (4)0.004 (10)
C160.055 (7)0.117 (10)0.075 (7)0.005 (6)0.023 (6)0.002 (7)
C170.045 (4)0.036 (4)0.047 (4)0.004 (3)0.003 (3)0.013 (3)
C180.049 (4)0.022 (4)0.041 (4)0.005 (3)0.007 (3)0.005 (3)
C190.056 (5)0.026 (4)0.030 (4)0.011 (3)0.002 (3)0.002 (3)
C200.051 (4)0.023 (4)0.037 (4)0.001 (3)0.004 (3)0.006 (3)
Geometric parameters (Å, º) top
Cd1—N12.274 (6)C6—H60.9300
Cd1—O72.284 (5)C7—H70.9300
Cd1—N2i2.340 (5)C8—H80.9300
Cd1—O12.364 (5)C9—C101.505 (10)
Cd1—O52.388 (5)C10—C15A1.36 (3)
Cd1—O42.405 (5)C10—C11B1.36 (3)
Cd1—O22.423 (6)C10—C11A1.38 (3)
Cd1—C92.744 (7)C10—C15B1.42 (3)
Cd1—C12.750 (7)C13—C12A1.33 (3)
O1—C11.262 (9)C13—C14B1.38 (3)
O2—C11.234 (9)C13—C14A1.40 (3)
O3—C81.154 (14)C13—C12B1.44 (3)
O4—C91.242 (9)C13—C161.475 (13)
O5—C91.247 (9)C11A—C12A1.38 (3)
O6A—C161.165 (15)C11A—H11A0.9300
O6A—H16B0.3504C12A—H12A0.9300
O6B—C161.12 (6)C14A—C15A1.39 (3)
O7—H710.83 (2)C14A—H14A0.9300
O7—H720.82 (2)C15A—H15A0.9300
N1—C201.365 (9)C11B—C12B1.40 (3)
N1—C171.410 (10)C11B—H11B0.9300
N2—C191.318 (9)C12B—H12B0.9300
N2—C181.326 (9)C14B—C15B1.36 (3)
N2—Cd1ii2.340 (5)C14B—H14B0.9300
C1—C21.491 (9)C15B—H15B0.9300
C2—C31.385 (10)C16—H16A0.9300
C2—C71.394 (10)C16—H16B0.9300
C3—C41.383 (11)C17—C181.382 (11)
C3—H30.9300C17—H170.9300
C4—C51.368 (12)C18—H180.9300
C4—H40.9300C19—C201.387 (10)
C5—C61.378 (12)C19—H190.9300
C5—C81.479 (12)C20—H200.9300
C6—C71.376 (11)
N1—Cd1—O789.51 (17)C6—C7—H7120.2
N1—Cd1—N2i176.30 (17)C2—C7—H7120.2
O7—Cd1—N2i87.02 (18)O3—C8—C5127.7 (12)
N1—Cd1—O188.49 (18)O3—C8—H8116.1
O7—Cd1—O1137.71 (18)C5—C8—H8116.1
N2i—Cd1—O194.94 (19)O4—C9—O5121.6 (7)
N1—Cd1—O593.98 (19)O4—C9—C10119.4 (6)
O7—Cd1—O5139.32 (18)O5—C9—C10119.0 (6)
N2i—Cd1—O587.8 (2)O4—C9—Cd161.2 (4)
O1—Cd1—O582.94 (17)O5—C9—Cd160.4 (4)
N1—Cd1—O491.1 (2)C10—C9—Cd1178.3 (5)
O7—Cd1—O485.57 (18)C15A—C10—C11B116 (2)
N2i—Cd1—O487.4 (2)C15A—C10—C11A118.0 (17)
O1—Cd1—O4136.69 (18)C11B—C10—C15B120.2 (17)
O5—Cd1—O453.88 (18)C11A—C10—C15B113.1 (19)
N1—Cd1—O294.7 (2)C15A—C10—C9119.1 (14)
O7—Cd1—O284.23 (18)C11B—C10—C9119.6 (14)
N2i—Cd1—O286.3 (2)C11A—C10—C9122.9 (15)
O1—Cd1—O253.89 (17)C15B—C10—C9120.3 (14)
O5—Cd1—O2135.59 (18)C12A—C13—C14B114.6 (19)
O4—Cd1—O2168.3 (2)C12A—C13—C14A119.0 (16)
N1—Cd1—C992.74 (18)C14B—C13—C12B119.6 (15)
O7—Cd1—C9112.4 (2)C14A—C13—C12B112.0 (17)
N2i—Cd1—C987.41 (19)C12A—C13—C16119.1 (14)
O1—Cd1—C9109.87 (19)C14B—C13—C16120.2 (14)
O5—Cd1—C926.99 (19)C14A—C13—C16122.0 (14)
O4—Cd1—C926.9 (2)C12B—C13—C16120.2 (14)
O2—Cd1—C9161.8 (2)C12A—C11A—C10121 (2)
N1—Cd1—C191.69 (18)C12A—C11A—H11A119.5
O7—Cd1—C1110.7 (2)C10—C11A—H11A119.5
N2i—Cd1—C190.73 (19)C13—C12A—C11A121.2 (19)
O1—Cd1—C127.25 (19)C13—C12A—H12A119.4
O5—Cd1—C1109.70 (19)C11A—C12A—H12A119.4
O4—Cd1—C1163.5 (2)C15A—C14A—C13119.6 (18)
O2—Cd1—C126.64 (19)C15A—C14A—H14A120.2
C9—Cd1—C1136.7 (2)C13—C14A—H14A120.2
C1—O1—Cd193.7 (4)C10—C15A—C14A121 (2)
C1—O2—Cd191.7 (4)C10—C15A—H15A119.6
C9—O4—Cd191.9 (4)C14A—C15A—H15A119.6
C9—O5—Cd192.6 (4)C10—C11B—C12B120 (2)
Cd1—O7—H7185 (6)C10—C11B—H11B120.1
Cd1—O7—H72123 (6)C12B—C11B—H11B120.1
H71—O7—H72108 (3)C11B—C12B—C13119.2 (19)
C20—N1—C17109.2 (6)C11B—C12B—H12B120.4
C20—N1—Cd1125.0 (4)C13—C12B—H12B120.4
C17—N1—Cd1125.8 (4)C15B—C14B—C13120.3 (18)
C19—N2—C18116.5 (5)C15B—C14B—H14B119.9
C19—N2—Cd1ii119.1 (4)C13—C14B—H14B119.9
C18—N2—Cd1ii124.4 (4)C14B—C15B—C10121 (2)
O2—C1—O1120.8 (7)C14B—C15B—H15B119.5
O2—C1—C2120.1 (6)C10—C15B—H15B119.5
O1—C1—C2119.1 (6)O6B—C16—O6A106 (3)
O2—C1—Cd161.7 (4)O6B—C16—C13126 (3)
O1—C1—Cd159.1 (4)O6A—C16—C13127.2 (13)
C2—C1—Cd1177.9 (5)O6A—C16—H16A116.4
C3—C2—C7119.5 (7)C13—C16—H16A116.4
C3—C2—C1121.2 (6)O6B—C16—H16B117.0
C7—C2—C1119.3 (6)C13—C16—H16B117.0
C4—C3—C2119.9 (7)H16A—C16—H16B125.4
C4—C3—H3120.0C18—C17—N1124.4 (7)
C2—C3—H3120.0C18—C17—H17117.8
C5—C4—C3120.5 (7)N1—C17—H17117.8
C5—C4—H4119.8N2—C18—C17122.0 (7)
C3—C4—H4119.8N2—C18—H18119.0
C4—C5—C6119.7 (7)C17—C18—H18119.0
C4—C5—C8119.7 (9)N2—C19—C20122.1 (7)
C6—C5—C8120.5 (9)N2—C19—H19119.0
C7—C6—C5120.8 (8)C20—C19—H19119.0
C7—C6—H6119.6N1—C20—C19125.7 (7)
C5—C6—H6119.6N1—C20—H20117.1
C6—C7—C2119.5 (7)C19—C20—H20117.1
N1—Cd1—O1—C196.7 (4)Cd1—O5—C9—O40.4 (7)
O7—Cd1—O1—C19.0 (6)Cd1—O5—C9—C10178.2 (5)
N2i—Cd1—O1—C182.0 (4)N1—Cd1—C9—O487.0 (5)
O5—Cd1—O1—C1169.1 (5)O7—Cd1—C9—O43.6 (5)
O4—Cd1—O1—C1173.4 (4)N2i—Cd1—C9—O489.3 (5)
O2—Cd1—O1—C10.2 (4)O1—Cd1—C9—O4176.3 (4)
C9—Cd1—O1—C1171.0 (4)O5—Cd1—C9—O4179.6 (7)
N1—Cd1—O2—C184.5 (5)O2—Cd1—C9—O4159.0 (7)
O7—Cd1—O2—C1173.5 (5)C1—Cd1—C9—O4177.7 (4)
N2i—Cd1—O2—C199.1 (5)N1—Cd1—C9—O593.4 (4)
O1—Cd1—O2—C10.2 (4)O7—Cd1—C9—O5176.0 (4)
O5—Cd1—O2—C116.1 (6)N2i—Cd1—C9—O590.3 (4)
O4—Cd1—O2—C1156.6 (9)O1—Cd1—C9—O54.0 (5)
C9—Cd1—O2—C129.3 (10)O4—Cd1—C9—O5179.6 (7)
N1—Cd1—O4—C994.0 (5)O2—Cd1—C9—O520.6 (9)
O7—Cd1—O4—C9176.6 (5)C1—Cd1—C9—O52.0 (6)
N2i—Cd1—O4—C989.4 (5)O4—C9—C10—C15A14.6 (15)
O1—Cd1—O4—C95.0 (6)O5—C9—C10—C15A163.3 (13)
O5—Cd1—O4—C90.2 (4)O4—C9—C10—C11B167.6 (15)
O2—Cd1—O4—C9146.8 (9)O5—C9—C10—C11B10.3 (16)
C1—Cd1—O4—C95.7 (10)O4—C9—C10—C11A167.9 (13)
N1—Cd1—O5—C988.2 (4)O5—C9—C10—C11A14.2 (15)
O7—Cd1—O5—C95.7 (6)O4—C9—C10—C15B11.1 (16)
N2i—Cd1—O5—C988.6 (4)O5—C9—C10—C15B171.0 (13)
O1—Cd1—O5—C9176.2 (5)C15A—C10—C11A—C12A7 (2)
O4—Cd1—O5—C90.2 (4)C11B—C10—C11A—C12A97 (8)
O2—Cd1—O5—C9171.0 (4)C15B—C10—C11A—C12A17 (3)
C1—Cd1—O5—C9178.6 (4)C9—C10—C11A—C12A175.2 (14)
O7—Cd1—N1—C20150.7 (5)C14B—C13—C12A—C11A29 (2)
O1—Cd1—N1—C2013.0 (5)C14A—C13—C12A—C11A1 (3)
O5—Cd1—N1—C2069.8 (5)C12B—C13—C12A—C11A79 (5)
O4—Cd1—N1—C20123.7 (5)C16—C13—C12A—C11A178.4 (16)
O2—Cd1—N1—C2066.6 (5)C10—C11A—C12A—C137 (3)
C9—Cd1—N1—C2096.9 (5)C12A—C13—C14A—C15A4 (2)
C1—Cd1—N1—C2040.0 (5)C14B—C13—C14A—C15A83 (5)
O7—Cd1—N1—C1729.5 (5)C12B—C13—C14A—C15A30 (2)
O1—Cd1—N1—C17167.3 (5)C16—C13—C14A—C15A176.7 (15)
O5—Cd1—N1—C17109.9 (5)C11B—C10—C15A—C14A26 (3)
O4—Cd1—N1—C1756.0 (5)C11A—C10—C15A—C14A2 (2)
O2—Cd1—N1—C17113.7 (5)C15B—C10—C15A—C14A81 (6)
C9—Cd1—N1—C1782.9 (5)C9—C10—C15A—C14A179.9 (14)
C1—Cd1—N1—C17140.2 (5)C13—C14A—C15A—C103 (3)
Cd1—O2—C1—O10.4 (7)C15A—C10—C11B—C12B26 (3)
Cd1—O2—C1—C2178.8 (5)C11A—C10—C11B—C12B75 (7)
Cd1—O1—C1—O20.4 (8)C15B—C10—C11B—C12B1 (3)
Cd1—O1—C1—C2178.8 (5)C9—C10—C11B—C12B180.0 (16)
N1—Cd1—C1—O297.0 (5)C10—C11B—C12B—C132 (3)
O7—Cd1—C1—O26.9 (5)C12A—C13—C12B—C11B83 (5)
N2i—Cd1—C1—O280.2 (5)C14B—C13—C12B—C11B2 (3)
O1—Cd1—C1—O2179.6 (7)C14A—C13—C12B—C11B29 (3)
O5—Cd1—C1—O2168.1 (5)C16—C13—C12B—C11B176.9 (17)
O4—Cd1—C1—O2163.5 (7)C12A—C13—C14B—C15B28 (3)
C9—Cd1—C1—O2167.2 (4)C14A—C13—C14B—C15B78 (5)
N1—Cd1—C1—O183.4 (4)C12B—C13—C14B—C15B1 (3)
O7—Cd1—C1—O1173.5 (4)C16—C13—C14B—C15B180.0 (17)
N2i—Cd1—C1—O199.4 (4)C13—C14B—C15B—C104 (3)
O5—Cd1—C1—O111.5 (5)C15A—C10—C15B—C14B90 (7)
O4—Cd1—C1—O116.1 (10)C11B—C10—C15B—C14B5 (3)
O2—Cd1—C1—O1179.6 (7)C11A—C10—C15B—C14B18 (3)
C9—Cd1—C1—O112.4 (6)C9—C10—C15B—C14B176.8 (16)
O2—C1—C2—C3157.1 (7)C12A—C13—C16—O6B8 (5)
O1—C1—C2—C322.1 (10)C14B—C13—C16—O6B159 (5)
O2—C1—C2—C722.7 (10)C14A—C13—C16—O6B171 (5)
O1—C1—C2—C7158.2 (7)C12B—C13—C16—O6B21 (5)
C7—C2—C3—C42.7 (11)C12A—C13—C16—O6A160.9 (19)
C1—C2—C3—C4177.0 (7)C14B—C13—C16—O6A10 (3)
C2—C3—C4—C51.8 (13)C14A—C13—C16—O6A20 (3)
C3—C4—C5—C60.2 (14)C12B—C13—C16—O6A171 (2)
C3—C4—C5—C8179.8 (9)C20—N1—C17—C181.0 (10)
C4—C5—C6—C71.2 (15)Cd1—N1—C17—C18178.8 (6)
C8—C5—C6—C7178.8 (10)C19—N2—C18—C170.5 (11)
C5—C6—C7—C20.3 (14)Cd1ii—N2—C18—C17179.5 (6)
C3—C2—C7—C61.7 (12)N1—C17—C18—N20.2 (13)
C1—C2—C7—C6178.0 (8)C18—N2—C19—C200.3 (11)
C4—C5—C8—O37.4 (19)Cd1ii—N2—C19—C20179.4 (6)
C6—C5—C8—O3172.6 (13)C17—N1—C20—C191.2 (10)
Cd1—O4—C9—O50.4 (7)Cd1—N1—C20—C19178.6 (6)
Cd1—O4—C9—C10178.2 (6)N2—C19—C20—N10.6 (13)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrazine ring N1/N2/C17—C20.
D—H···AD—HH···AD···AD—H···A
O7—H72···O5iii0.82 (2)2.10 (6)2.727 (7)133 (7)
C18—H18···O6Aiv0.932.523.394 (14)157
C19—H19···O3v0.932.433.085 (10)127
C8—H8···Cg1vi0.932.933.691 (10)147
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrazine ring N1/N2/C17—C20.
D—H···AD—HH···AD···AD—H···A
O7—H72···O5i0.82 (2)2.10 (6)2.727 (7)133 (7)
C18—H18···O6Aii0.932.523.394 (14)157
C19—H19···O3iii0.932.433.085 (10)127
C8—H8···Cg1iv0.932.933.691 (10)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by Kafkas University Research Fund (grant No. 2012-FEF-12).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009). Acta Cryst. E65, m1416–m1417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m37-m38
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds