metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthrolin-1-ium) tetra­chlorido­zincate monohydrate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 29 December 2013; accepted 4 January 2014; online 18 January 2014)

In the crystal structure of the title compound, (C12H9N2)2[ZnCl4]·H2O, the two independent 1,10-phenanthrolinium cations are bridged by the water mol­ecule and the tetrahedral tetrachloridozincate anion via N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds, forming chains along [100]. The chains are linked via C—H⋯Cl hydrogen bonds and a number of ππ inter­actions [centroid–centroid distances vary from 3.5594 (14) to 3.7057 (13) Å], forming a three-dimensional network. In each 1,10-phenanthrolinium cation, there is a short N—H⋯N inter­action.

Related literature

For an example of the crystal structure of a hybrid compound combining an organic cation and the tetrachloridozincate anion, see: Dong & Liu (2012[Dong, Z. & Liu, B. (2012). Acta Cryst. E68, m131.]). For details of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H9N2)2[ZnCl4]·H2O

  • Mr = 587.61

  • Monoclinic, P 21 /a

  • a = 14.6046 (5) Å

  • b = 10.8008 (3) Å

  • c = 16.3151 (6) Å

  • β = 107.390 (4)°

  • V = 2455.93 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Eos detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.743, Tmax = 0.803

  • 10373 measured reflections

  • 4293 independent reflections

  • 3414 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.068

  • S = 1.05

  • 4293 reflections

  • 324 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.74 (3) 2.01 (3) 2.711 (4) 158 (2)
O1—H1A⋯Cl1 0.80 (4) 2.44 (4) 3.231 (3) 172 (3)
O1—H1B⋯Cl2ii 0.73 (3) 2.82 (4) 3.317 (3) 128 (4)
N15—H15⋯Cl3 0.83 (3) 2.50 (2) 3.225 (2) 146 (2)
C3—H3⋯Cl2iii 0.93 2.80 3.728 (3) 172
C24—H24⋯Cl2iv 0.93 2.74 3.629 (3) 160
N1—H1⋯N12 0.74 (3) 2.42 (2) 2.737 (3) 107 (2)
N15—H15⋯N26 0.83 (3) 2.41 (2) 2.731 (3) 104 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) -x, -y+2, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of an ongoing investigation of the structures of and non-covalent interactions present in self-assembling organic and inorganic hybrid materials prepared by the combination of an organic cation and the tetrachloridozincate anion we synthesized the title compound. There are only a small number of structures of materials containing bis(1,10-phenanthrolinium) cations and perhalometallate anions in the Cambridge Structural Database (CSD; V5.35, last update Nov. 2013; Allen, 2002), and none of them involve the tetrachloridozincate anion.

The molecule structure of the title compound is shown in Fig. 1. The asymmetric unit contains one inorganic tetrachloridozincate anion and two 1,10-phenanthrolinium organic cations. The compound crystallized as a monohydrate. The tetrachlorozincate anion has a perfect tetrahedral coordination environment. The bond lengths Zn—Cl [2.556 (7) - 2.3085 (7) Å] and C—N [1.320 (3) - 1.362 (3) Å] are comparable with the values reported for Bis(10-methoxybenzo[h]quinolinium) tetrachloridozinc [Dong & Liu, 2012]. The sum of the bond angles around atoms N1 and N15 (360°) in the 1,10-phenanthrolinium cations indicates sp2 hybridization states. The two 1,10-phenanthrolinium ring systems (N1/N12/C2-C11/C13/C14) and (N15/N26/C16-C25/C27/C28) are planar with r.m.s values of 0.029 (3) and 0.022 (2) Å, respectively. In each 1,10-phenanthrolinium cation there is a short N-H···N interaction (Table 1).

In the crystal, the two independent 1,10-phenanthrolinium cations are bridged by the water molecule and the tetrachloridozinc anion via N-H···O, O-H···Cl and N-H···Cl hydrogen bonds (Table 1 and Fig. 2) forming chains along [100]. The chains are linked via C-H···Cl hydrogen bonds (Table 1) and a number of π-π interactions forming a three-dimensional network.

The centroid-centroid distances are 3.5594 (14) Å for Cg1···Cg2i [Cg1 and Cg2 and the centroids of rings N1/C2-C5/C14 and N12/C8-C11/C13, respectively; symmetry code: (i) = -x, -y+2, -z+1 ], 3.6501 (15) Å for Cg1···Cg3i [Cg3 is the centroid of ring C5-C8/C13/C14] and 3.7057 (13) Å for Cg8···Cg9ii [Cg8 and Cg9 are the centroids of rings N26/C22-C25/C27 and C19-C22/C27/C28, respectively; symmetry code: (ii) -x, -y, -z+2].

Related literature top

For an example of the crystal structure of an inorganic hybrid compound combining an organic cation and the tetrachloridozincate anion, see: Dong & Liu (2012). For details of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Zinc chloride (136 mg, 1 mmol) was dissolved in 10 mL of water. To this 1,10-phenanthroline (396 mg, 2 mmol) in 20 ml of an EtOH/HCl mixture (1:9 v/v) was added drop wise. The mixture was heated to 323 K for 2–3 hrs and then allowed to stand. On slow evaporation colourless crystals separated out. They were filtered off and recrystallized using acidified water.

Refinement top

The NH and water H atoms were located in a difference Fourier map and freely refined. The C bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

As part of an ongoing investigation of the structures of and non-covalent interactions present in self-assembling organic and inorganic hybrid materials prepared by the combination of an organic cation and the tetrachloridozincate anion we synthesized the title compound. There are only a small number of structures of materials containing bis(1,10-phenanthrolinium) cations and perhalometallate anions in the Cambridge Structural Database (CSD; V5.35, last update Nov. 2013; Allen, 2002), and none of them involve the tetrachloridozincate anion.

The molecule structure of the title compound is shown in Fig. 1. The asymmetric unit contains one inorganic tetrachloridozincate anion and two 1,10-phenanthrolinium organic cations. The compound crystallized as a monohydrate. The tetrachlorozincate anion has a perfect tetrahedral coordination environment. The bond lengths Zn—Cl [2.556 (7) - 2.3085 (7) Å] and C—N [1.320 (3) - 1.362 (3) Å] are comparable with the values reported for Bis(10-methoxybenzo[h]quinolinium) tetrachloridozinc [Dong & Liu, 2012]. The sum of the bond angles around atoms N1 and N15 (360°) in the 1,10-phenanthrolinium cations indicates sp2 hybridization states. The two 1,10-phenanthrolinium ring systems (N1/N12/C2-C11/C13/C14) and (N15/N26/C16-C25/C27/C28) are planar with r.m.s values of 0.029 (3) and 0.022 (2) Å, respectively. In each 1,10-phenanthrolinium cation there is a short N-H···N interaction (Table 1).

In the crystal, the two independent 1,10-phenanthrolinium cations are bridged by the water molecule and the tetrachloridozinc anion via N-H···O, O-H···Cl and N-H···Cl hydrogen bonds (Table 1 and Fig. 2) forming chains along [100]. The chains are linked via C-H···Cl hydrogen bonds (Table 1) and a number of π-π interactions forming a three-dimensional network.

The centroid-centroid distances are 3.5594 (14) Å for Cg1···Cg2i [Cg1 and Cg2 and the centroids of rings N1/C2-C5/C14 and N12/C8-C11/C13, respectively; symmetry code: (i) = -x, -y+2, -z+1 ], 3.6501 (15) Å for Cg1···Cg3i [Cg3 is the centroid of ring C5-C8/C13/C14] and 3.7057 (13) Å for Cg8···Cg9ii [Cg8 and Cg9 are the centroids of rings N26/C22-C25/C27 and C19-C22/C27/C28, respectively; symmetry code: (ii) -x, -y, -z+2].

For an example of the crystal structure of an inorganic hybrid compound combining an organic cation and the tetrachloridozincate anion, see: Dong & Liu (2012). For details of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Bis(1,10-phenanthrolin-1-ium) tetrachloridozincate monohydrate top
Crystal data top
(C12H9N2)2[ZnCl4]·H2OF(000) = 1192
Mr = 587.61Dx = 1.589 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 3414 reflections
a = 14.6046 (5) Åθ = 3.8–25.0°
b = 10.8008 (3) ŵ = 1.46 mm1
c = 16.3151 (6) ÅT = 293 K
β = 107.390 (4)°Block, colourless
V = 2455.93 (14) Å30.21 × 0.18 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Eos detector
4293 independent reflections
Radiation source: fine-focus sealed tube3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 25.0°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1717
Tmin = 0.743, Tmax = 0.803k = 1112
10373 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.2557P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4293 reflectionsΔρmax = 0.38 e Å3
324 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0165 (5)
Crystal data top
(C12H9N2)2[ZnCl4]·H2OV = 2455.93 (14) Å3
Mr = 587.61Z = 4
Monoclinic, P21/aMo Kα radiation
a = 14.6046 (5) ŵ = 1.46 mm1
b = 10.8008 (3) ÅT = 293 K
c = 16.3151 (6) Å0.21 × 0.18 × 0.15 mm
β = 107.390 (4)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Eos detector
4293 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3414 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.803Rint = 0.028
10373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
4293 reflectionsΔρmin = 0.29 e Å3
324 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05391 (18)1.17583 (19)0.56437 (14)0.0382 (8)
N120.13002 (14)0.97933 (17)0.66837 (13)0.0364 (7)
C20.0227 (2)1.2729 (2)0.51338 (17)0.0498 (10)
C30.0746 (2)1.2890 (3)0.47489 (18)0.0574 (10)
C40.1379 (2)1.2056 (3)0.49016 (18)0.0533 (11)
C50.10528 (18)1.1038 (2)0.54406 (16)0.0401 (9)
C60.16693 (19)1.0148 (3)0.56456 (18)0.0497 (10)
C70.13202 (18)0.9219 (3)0.61895 (18)0.0475 (10)
C80.03095 (17)0.9048 (2)0.65657 (15)0.0354 (8)
C90.0097 (2)0.8067 (2)0.71173 (17)0.0437 (9)
C100.1068 (2)0.7959 (2)0.74208 (18)0.0469 (10)
C110.16361 (19)0.8837 (2)0.71874 (16)0.0427 (9)
C130.03328 (16)0.9889 (2)0.63748 (14)0.0293 (7)
C140.00593 (17)1.0909 (2)0.58142 (14)0.0306 (8)
N150.07856 (15)0.34171 (18)0.92218 (13)0.0339 (7)
N260.08664 (14)0.25794 (18)1.03725 (13)0.0378 (7)
C160.15449 (18)0.3854 (2)0.86201 (17)0.0424 (9)
C170.24346 (18)0.3314 (3)0.84870 (17)0.0460 (9)
C180.25201 (17)0.2333 (2)0.89907 (17)0.0428 (9)
C190.17174 (16)0.1862 (2)0.96188 (15)0.0339 (8)
C200.17495 (18)0.0817 (2)1.01531 (17)0.0411 (9)
C210.09527 (18)0.0398 (2)1.07310 (16)0.0407 (9)
C220.00318 (17)0.0967 (2)1.08369 (15)0.0327 (8)
C230.08261 (19)0.0549 (2)1.14257 (16)0.0417 (9)
C240.16602 (19)0.1130 (2)1.14723 (17)0.0473 (9)
C250.16456 (18)0.2136 (3)1.09347 (18)0.0470 (9)
C270.00304 (16)0.1986 (2)1.03291 (15)0.0291 (7)
C280.08273 (16)0.2437 (2)0.97183 (15)0.0287 (7)
Zn10.02573 (2)0.43561 (2)0.73719 (2)0.0324 (1)
Cl10.11018 (5)0.52315 (6)0.64898 (5)0.0584 (3)
Cl20.15128 (4)0.45542 (6)0.68453 (4)0.0445 (2)
Cl30.06504 (5)0.53130 (5)0.86969 (4)0.0429 (2)
Cl40.00552 (5)0.23479 (5)0.76075 (4)0.0433 (2)
O10.25358 (17)0.2883 (3)0.61679 (19)0.0609 (9)
H10.1064 (18)1.169 (2)0.5852 (17)0.033 (8)*
H20.066201.329700.503700.0600*
H30.096901.356200.438800.0690*
H40.203401.216600.464500.0640*
H60.232901.021400.539500.0600*
H70.174300.867100.632700.0570*
H90.029500.749300.727400.0530*
H100.134700.730600.778000.0560*
H110.229800.874600.740000.0510*
H150.0270 (18)0.379 (2)0.9296 (16)0.040 (8)*
H160.147700.452700.828700.0510*
H170.296700.361200.806300.0550*
H180.311900.197500.891500.0510*
H200.233200.042501.009700.0490*
H210.099400.027701.107200.0490*
H230.082000.012201.178100.0500*
H240.223400.086201.185700.0570*
H250.222600.252301.097500.0560*
H1A0.217 (3)0.344 (3)0.620 (2)0.083 (15)*
H1B0.239 (3)0.241 (3)0.650 (2)0.079 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0427 (15)0.0374 (13)0.0337 (13)0.0058 (11)0.0103 (11)0.0005 (10)
N120.0342 (11)0.0336 (11)0.0368 (12)0.0014 (9)0.0034 (9)0.0013 (9)
C20.081 (2)0.0349 (15)0.0369 (17)0.0056 (14)0.0228 (15)0.0018 (12)
C30.087 (2)0.0461 (17)0.0368 (17)0.0339 (17)0.0149 (16)0.0047 (13)
C40.0546 (18)0.066 (2)0.0358 (17)0.0293 (16)0.0081 (14)0.0022 (14)
C50.0395 (15)0.0489 (15)0.0312 (15)0.0145 (12)0.0096 (12)0.0083 (12)
C60.0301 (14)0.0680 (19)0.0472 (18)0.0052 (14)0.0058 (13)0.0136 (15)
C70.0374 (15)0.0549 (17)0.0524 (18)0.0112 (13)0.0168 (13)0.0128 (14)
C80.0396 (14)0.0367 (13)0.0299 (14)0.0049 (11)0.0105 (11)0.0108 (11)
C90.0582 (18)0.0342 (14)0.0405 (16)0.0133 (13)0.0173 (14)0.0057 (12)
C100.0600 (19)0.0330 (14)0.0402 (16)0.0000 (13)0.0036 (14)0.0023 (12)
C110.0407 (15)0.0394 (14)0.0388 (16)0.0024 (12)0.0019 (12)0.0012 (12)
C130.0325 (13)0.0291 (12)0.0248 (13)0.0011 (10)0.0062 (10)0.0079 (10)
C140.0365 (13)0.0317 (13)0.0241 (13)0.0034 (11)0.0099 (11)0.0065 (10)
N150.0305 (12)0.0374 (12)0.0362 (13)0.0010 (10)0.0138 (10)0.0036 (10)
N260.0319 (11)0.0453 (12)0.0355 (13)0.0040 (9)0.0090 (9)0.0053 (10)
C160.0423 (15)0.0481 (15)0.0396 (16)0.0136 (13)0.0164 (12)0.0134 (12)
C170.0326 (15)0.0642 (18)0.0382 (16)0.0129 (13)0.0059 (12)0.0039 (14)
C180.0282 (13)0.0558 (17)0.0437 (17)0.0009 (12)0.0098 (12)0.0058 (13)
C190.0320 (13)0.0379 (13)0.0340 (15)0.0021 (11)0.0131 (11)0.0053 (11)
C200.0382 (15)0.0454 (15)0.0435 (16)0.0125 (12)0.0180 (13)0.0040 (13)
C210.0482 (16)0.0377 (14)0.0404 (16)0.0082 (12)0.0195 (13)0.0033 (12)
C220.0389 (14)0.0338 (13)0.0277 (13)0.0002 (11)0.0137 (11)0.0008 (11)
C230.0520 (17)0.0420 (15)0.0316 (15)0.0045 (13)0.0133 (12)0.0067 (12)
C240.0388 (15)0.0594 (17)0.0373 (16)0.0056 (13)0.0015 (12)0.0101 (14)
C250.0305 (14)0.0625 (18)0.0444 (17)0.0057 (13)0.0057 (12)0.0052 (14)
C270.0302 (12)0.0321 (13)0.0264 (13)0.0010 (10)0.0106 (10)0.0030 (10)
C280.0336 (13)0.0285 (12)0.0267 (13)0.0002 (10)0.0132 (10)0.0025 (10)
Zn10.0315 (2)0.0318 (2)0.0336 (2)0.0033 (1)0.0091 (1)0.0023 (1)
Cl10.0373 (4)0.0486 (4)0.0735 (5)0.0010 (3)0.0074 (3)0.0052 (4)
Cl20.0409 (4)0.0505 (4)0.0470 (4)0.0073 (3)0.0208 (3)0.0059 (3)
Cl30.0575 (4)0.0369 (3)0.0369 (4)0.0085 (3)0.0182 (3)0.0086 (3)
Cl40.0575 (4)0.0299 (3)0.0460 (4)0.0072 (3)0.0210 (3)0.0050 (3)
O10.0530 (14)0.0493 (14)0.083 (2)0.0033 (13)0.0242 (13)0.0021 (14)
Geometric parameters (Å, º) top
Zn1—Cl42.2728 (6)C2—H20.9300
Zn1—Cl12.2798 (8)C3—H30.9300
Zn1—Cl22.2556 (7)C4—H40.9300
Zn1—Cl32.3085 (7)C6—H60.9300
O1—H1A0.80 (4)C7—H70.9300
O1—H1B0.73 (3)C9—H90.9300
N1—C21.331 (3)C10—H100.9300
N1—C141.352 (3)C11—H110.9300
N12—C131.355 (3)C16—C171.381 (4)
N12—C111.320 (3)C17—C181.369 (4)
N1—H10.74 (3)C18—C191.402 (3)
N15—C281.345 (3)C19—C201.435 (3)
N15—C161.329 (3)C19—C281.406 (3)
N26—C251.320 (4)C20—C211.339 (4)
N26—C271.362 (3)C21—C221.441 (4)
N15—H150.83 (3)C22—C271.397 (3)
C2—C31.382 (4)C22—C231.406 (4)
C3—C41.366 (4)C23—C241.352 (4)
C4—C51.400 (4)C24—C251.393 (4)
C5—C61.424 (4)C27—C281.433 (3)
C5—C141.403 (4)C16—H160.9300
C6—C71.336 (4)C17—H170.9300
C7—C81.431 (4)C18—H180.9300
C8—C131.406 (3)C20—H200.9300
C8—C91.402 (3)C21—H210.9300
C9—C101.360 (4)C23—H230.9300
C10—C111.386 (4)C24—H240.9300
C13—C141.437 (3)C25—H250.9300
Cl3—Zn1—Cl4105.98 (2)C8—C7—H7119.00
Cl1—Zn1—Cl4108.76 (3)C8—C9—H9120.00
Cl1—Zn1—Cl2111.95 (3)C10—C9—H9120.00
Cl1—Zn1—Cl3109.35 (3)C9—C10—H10120.00
Cl2—Zn1—Cl3108.14 (3)C11—C10—H10120.00
Cl2—Zn1—Cl4112.47 (3)N12—C11—H11118.00
H1A—O1—H1B116 (4)C10—C11—H11118.00
C2—N1—C14122.8 (3)N15—C16—C17120.3 (2)
C11—N12—C13116.3 (2)C16—C17—C18118.9 (2)
C14—N1—H1118.7 (18)C17—C18—C19120.9 (2)
C2—N1—H1118.5 (18)C18—C19—C28117.8 (2)
C16—N15—C28123.1 (2)C18—C19—C20123.9 (2)
C25—N26—C27116.0 (2)C20—C19—C28118.3 (2)
C28—N15—H15119.8 (16)C19—C20—C21121.0 (2)
C16—N15—H15117.1 (16)C20—C21—C22121.6 (2)
N1—C2—C3119.8 (3)C21—C22—C27119.3 (2)
C2—C3—C4119.6 (3)C23—C22—C27117.1 (2)
C3—C4—C5120.7 (3)C21—C22—C23123.6 (2)
C4—C5—C14117.7 (2)C22—C23—C24119.6 (2)
C4—C5—C6123.9 (3)C23—C24—C25118.9 (2)
C6—C5—C14118.4 (2)N26—C25—C24124.7 (3)
C5—C6—C7121.4 (3)C22—C27—C28118.8 (2)
C6—C7—C8121.5 (3)N26—C27—C28117.4 (2)
C9—C8—C13116.6 (2)N26—C27—C22123.8 (2)
C7—C8—C13119.5 (2)C19—C28—C27121.1 (2)
C7—C8—C9123.9 (2)N15—C28—C19119.0 (2)
C8—C9—C10119.6 (2)N15—C28—C27119.9 (2)
C9—C10—C11119.1 (2)N15—C16—H16120.00
N12—C11—C10124.4 (3)C17—C16—H16120.00
C8—C13—C14118.1 (2)C18—C17—H17121.00
N12—C13—C14117.9 (2)C16—C17—H17121.00
N12—C13—C8124.0 (2)C17—C18—H18120.00
N1—C14—C5119.4 (2)C19—C18—H18120.00
N1—C14—C13119.5 (2)C21—C20—H20120.00
C5—C14—C13121.1 (2)C19—C20—H20120.00
N1—C2—H2120.00C20—C21—H21119.00
C3—C2—H2120.00C22—C21—H21119.00
C4—C3—H3120.00C22—C23—H23120.00
C2—C3—H3120.00C24—C23—H23120.00
C3—C4—H4120.00C23—C24—H24121.00
C5—C4—H4120.00C25—C24—H24121.00
C5—C6—H6119.00N26—C25—H25118.00
C7—C6—H6119.00C24—C25—H25118.00
C6—C7—H7119.00
C14—N1—C2—C30.6 (4)C8—C9—C10—C111.0 (4)
C2—N1—C14—C13179.7 (2)C9—C10—C11—N120.2 (4)
C2—N1—C14—C50.3 (4)C8—C13—C14—C52.4 (3)
C11—N12—C13—C14179.1 (2)N12—C13—C14—C5177.2 (2)
C11—N12—C13—C80.5 (3)C8—C13—C14—N1177.6 (2)
C13—N12—C11—C100.9 (4)N12—C13—C14—N12.7 (3)
C16—N15—C28—C27177.3 (2)N15—C16—C17—C180.7 (4)
C28—N15—C16—C171.0 (4)C16—C17—C18—C191.4 (4)
C16—N15—C28—C191.9 (3)C17—C18—C19—C280.6 (4)
C25—N26—C27—C28179.4 (2)C17—C18—C19—C20178.3 (2)
C25—N26—C27—C220.0 (3)C20—C19—C28—C270.8 (3)
C27—N26—C25—C240.3 (4)C18—C19—C20—C21178.7 (2)
N1—C2—C3—C40.6 (4)C28—C19—C20—C210.1 (4)
C2—C3—C4—C50.3 (4)C18—C19—C28—C27178.2 (2)
C3—C4—C5—C140.0 (4)C20—C19—C28—N15180.0 (2)
C3—C4—C5—C6178.5 (3)C18—C19—C28—N151.1 (3)
C4—C5—C14—N10.0 (4)C19—C20—C21—C220.5 (4)
C4—C5—C6—C7177.5 (3)C20—C21—C22—C23179.0 (2)
C14—C5—C6—C71.0 (4)C20—C21—C22—C270.5 (4)
C4—C5—C14—C13180.0 (2)C23—C22—C27—N260.3 (3)
C6—C5—C14—C131.5 (3)C21—C22—C27—N26179.2 (2)
C6—C5—C14—N1178.6 (2)C21—C22—C27—C280.2 (3)
C5—C6—C7—C82.4 (4)C23—C22—C27—C28179.7 (2)
C6—C7—C8—C9177.8 (3)C21—C22—C23—C24179.1 (2)
C6—C7—C8—C131.4 (4)C27—C22—C23—C240.5 (3)
C7—C8—C9—C10177.8 (3)C22—C23—C24—C250.3 (4)
C9—C8—C13—N120.6 (3)C23—C24—C25—N260.2 (4)
C7—C8—C13—N12178.6 (2)N26—C27—C28—N150.6 (3)
C9—C8—C13—C14179.7 (2)C22—C27—C28—C190.8 (3)
C7—C8—C13—C141.0 (3)N26—C27—C28—C19178.6 (2)
C13—C8—C9—C101.4 (4)C22—C27—C28—N15180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.74 (3)2.01 (3)2.711 (4)158 (2)
O1—H1A···Cl10.80 (4)2.44 (4)3.231 (3)172 (3)
O1—H1B···Cl2ii0.73 (3)2.82 (4)3.317 (3)128 (4)
N15—H15···Cl30.83 (3)2.50 (2)3.225 (2)146 (2)
C3—H3···Cl2iii0.932.803.728 (3)172
C24—H24···Cl2iv0.932.743.629 (3)160
N1—H1···N120.74 (3)2.42 (2)2.737 (3)107 (2)
N15—H15···N260.83 (3)2.41 (2)2.731 (3)104 (2)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+2, z+1; (iv) x+1/2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.74 (3)2.01 (3)2.711 (4)158 (2)
O1—H1A···Cl10.80 (4)2.44 (4)3.231 (3)172 (3)
O1—H1B···Cl2ii0.73 (3)2.82 (4)3.317 (3)128 (4)
N15—H15···Cl30.83 (3)2.50 (2)3.225 (2)146 (2)
C3—H3···Cl2iii0.932.803.728 (3)172
C24—H24···Cl2iv0.932.743.629 (3)160
N1—H1···N120.74 (3)2.42 (2)2.737 (3)107 (2)
N15—H15···N260.83 (3)2.41 (2)2.731 (3)104 (2)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z; (iii) x, y+2, z+1; (iv) x+1/2, y1/2, z+2.
 

Acknowledgements

EG and KA thank the CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors also thank the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDong, Z. & Liu, B. (2012). Acta Cryst. E68, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds