organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o122-o123

1,3,5-Tri-p-tolyl­pentane-1,5-diol

aPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bPostgraduate Research Department of Chemistry, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 3 January 2014; accepted 4 January 2014; online 11 January 2014)

In the title compound, C26H30O2, the central benzene ring forms dihedral angles of 14.85 (15) and 28.17 (14)° with the terminal benzene rings. The dihedral angle between the terminal benzene rings is 32.14 (13)°. The crystal packing exhibits two strong inter­molecular O—H⋯O hydrogen bonds, forming directed four-membered co-operative rings. A region of disordered electron density, most probably disordered ethyl acetate solvent mol­ecules, occupying voids of ca 519 Å3 for an electron count of 59, was treated using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. Their formula mass and unit-cell characteristics were not taken into account during refinement. The structure was refined as an inversion twin [absolute structure parameter = −0.3 (4)].

Related literature

For the procedure adopted to reduce 1,3,5-tris­(p-tol­yl)pentane-1,5-dione, see: Paul et al. (2012[Paul, N., Kaladevi, S., Beneto, A. J., Muthusubramanian, S. & Bhuvanesh, N. (2012). Tetrahedron, 68, 6892-6901.]). For a less green reported synthesis of the starting diketone, 1,3,5-tris­(p-tol­yl)pentane-1,5-dione, see: Yang et al. (2005[Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278-3279.]). For applications of related compounds, see: Sundberg & Faergemann (2008[Sundberg, J. J. & Faergemann, J. (2008). Expert Opin. Investig. Drugs, 17, 601-610.]). For the crystal structures of related compounds, see: Ha & Young (2009[Ha, J.-M. & Young, V. (2009). Acta Cryst. C65, o388-o395.]); Barrett et al. (2000[Barrett, A. G. M., Braddock, D. C., de Koning, P. D., White, A. J. P. & Williams, D. J. (2000). J. Org. Chem. 65, 375-380.]). For details of the use of the SQUEEZE and CAVITY routines in PLATON, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30O2

  • Mr = 374.50

  • Trigonal, P 31 21

  • a = 14.6205 (5) Å

  • c = 20.2672 (6) Å

  • V = 3751.9 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 123 K

  • 0.98 × 0.66 × 0.17 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), using a multifaceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.957, Tmax = 0.990

  • 35176 measured reflections

  • 7200 independent reflections

  • 5765 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.193

  • S = 1.08

  • 7200 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack parameter determined using 2073 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.3 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.84 1.95 2.786 (3) 174
O5—H5A⋯O1ii 0.84 1.89 2.716 (3) 170
Symmetry codes: (i) [-x+1, -x+y, -z+{\script{1\over 3}}]; (ii) [-x+y+1, -x+1, z-{\script{1\over 3}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON.

Supporting information


Comment top

The synthesis of the title compound has been achieved by the sodium borohydride reduction of the corresponding 1,5-diketone by a method reported recently (Paul et al. 2012). The starting diketone, 1,3,5-tris-(p-tolyl)pentane-1,5-dione, was prepared by a greener route slightly deviating from the reported one (Yang et al. 2005). Though, the separation of the diastereomeric mixture posed problems, it was possible to get one diastereomer in pure form. This acyclic pentane-1,5-diol can be employed for the generation of heterocyclic compounds like tetrahydropyran. Generally, pentane-1,5-diol derivatives are found to be more valuable than several other diols in connection with drug delivery-enhancing potency, pharmaceutical and cosmetic properties, antimicrobial spectrum and toxicity (Sundberg & Faergemann, 2008). The related compounds whose structures have been solved by X-ray diffraction analysis are 2,2,3,3,4,4-hexafluoropentane-1,5-diol (Ha et al. 2009) and 3-methylenepentane-1,5-diols (Barrett et al. 2000).

In the title molecule, Fig. 1, the pentane-1,5-diol unit (C1—C5/O1/O5) forms a regular zigzag pattern with torsion angles C1—C2—C3—C4 = 178.8 (2)° and C2—C3—C4—C5 = -177.4 (2)°, with the two diol groups pointing in opposite directions. The central benzene ring (C31-C36) forms dihedral angles of 14.85 (15) and 28.17 (14)° with the two terminal benzene rings (C11-C16 and C51-C56, respectively). The dihedral angle between the two terminal benzene rings is 32.14 (13)°. The C—C, Car—Car and C—O bond lengths are within their normal ranges (Allen et al., 1987).

In the crystal, there are two strong O-H···O hydrogen bonds (Table 1), forming directed 4-membered cooperative O—H···O—H···O—H···O—H rings (Fig. 2). There are large void channels in the crystal structure (Fig. 3) containing residual electron density with high disorder.

Related literature top

For the procedure adopted to reduce 1,3,5-tris(p-tolyl)pentane-1,5-dione, see: Paul et al. (2012). For a less green reported synthesis of the starting diketone, 1,3,5-tris(p-tolyl)pentane-1,5-dione, see: Yang et al. (2005). For applications of related compounds, see: Sundberg & Faergemann (2008). For the crystal structures of related compounds, see: Ha & Young (2009); Barrett et al. (2000). For details of the use of the SQUEEZE and CAVITY routines in PLATON, see: Spek (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

To a stirred solution of 1,3,5-tris(p-tolyl)pentane-1,5-dione (0.4 g, 1.0 mmol) in methanol, sodium borohydride (0.08 g, 2.2 mmol) was added in portions in ambient conditions. After the completion of the reaction, the mixture was poured onto crushed ice and filtered off. The organic layer was dried over anhydrous sodium sulfate. The diastereomeric mixtures were separated by column chromatography using a mixture of petroleum ether and ethyl acetate (80:20) as eluent. The isolated compound was recrystallized in ethyl acetate to obtain colourless plate-like crystal of the title compound in good yield [0.344 g; 86%].

Refinement top

All H-atoms were positioned geometrically and allowed to ride on their parent atoms: O-H = 0.84 Å, C—H = 0.95, 0.99, 1.00 and 0.98 Å for CH(aromatic), CH2, CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl and O) and = 1.2Ueq(C) for other H atoms. The disordered solvent molecules occupy ca. 14.3% of the unit-cell volume. This region of disordered electron density, probably disordered ethyl acetate solvent molecules, was treated with the SQUEEZE routine in PLATON (Spek, 2009), and the solvent-free model was employed for the final refinement.

Structure description top

The synthesis of the title compound has been achieved by the sodium borohydride reduction of the corresponding 1,5-diketone by a method reported recently (Paul et al. 2012). The starting diketone, 1,3,5-tris-(p-tolyl)pentane-1,5-dione, was prepared by a greener route slightly deviating from the reported one (Yang et al. 2005). Though, the separation of the diastereomeric mixture posed problems, it was possible to get one diastereomer in pure form. This acyclic pentane-1,5-diol can be employed for the generation of heterocyclic compounds like tetrahydropyran. Generally, pentane-1,5-diol derivatives are found to be more valuable than several other diols in connection with drug delivery-enhancing potency, pharmaceutical and cosmetic properties, antimicrobial spectrum and toxicity (Sundberg & Faergemann, 2008). The related compounds whose structures have been solved by X-ray diffraction analysis are 2,2,3,3,4,4-hexafluoropentane-1,5-diol (Ha et al. 2009) and 3-methylenepentane-1,5-diols (Barrett et al. 2000).

In the title molecule, Fig. 1, the pentane-1,5-diol unit (C1—C5/O1/O5) forms a regular zigzag pattern with torsion angles C1—C2—C3—C4 = 178.8 (2)° and C2—C3—C4—C5 = -177.4 (2)°, with the two diol groups pointing in opposite directions. The central benzene ring (C31-C36) forms dihedral angles of 14.85 (15) and 28.17 (14)° with the two terminal benzene rings (C11-C16 and C51-C56, respectively). The dihedral angle between the two terminal benzene rings is 32.14 (13)°. The C—C, Car—Car and C—O bond lengths are within their normal ranges (Allen et al., 1987).

In the crystal, there are two strong O-H···O hydrogen bonds (Table 1), forming directed 4-membered cooperative O—H···O—H···O—H···O—H rings (Fig. 2). There are large void channels in the crystal structure (Fig. 3) containing residual electron density with high disorder.

For the procedure adopted to reduce 1,3,5-tris(p-tolyl)pentane-1,5-dione, see: Paul et al. (2012). For a less green reported synthesis of the starting diketone, 1,3,5-tris(p-tolyl)pentane-1,5-dione, see: Yang et al. (2005). For applications of related compounds, see: Sundberg & Faergemann (2008). For the crystal structures of related compounds, see: Ha & Young (2009); Barrett et al. (2000). For details of the use of the SQUEEZE and CAVITY routines in PLATON, see: Spek (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. A CavityPlot of the title compound, drawn using the CAVITY routine in PLATON (Spek, 2009), viewed along the b axis. VOIDS in the structure are located and represented by green spheres with radii equal to the contact radius to the nearest van der Waals surface.
1,3,5-Tri-p-tolylpentane-1,5-diol top
Crystal data top
C26H30O2Dx = 0.994 Mg m3
Mr = 374.50Melting point: 373(2) K
Trigonal, P3121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 31 2"Cell parameters from 10976 reflections
a = 14.6205 (5) Åθ = 3.2–30.9°
c = 20.2672 (6) ŵ = 0.06 mm1
V = 3751.9 (3) Å3T = 123 K
Z = 6Plate, colourless
F(000) = 12120.98 × 0.66 × 0.17 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7200 independent reflections
Radiation source: Enhance (Mo) X-ray Source5765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.5081 pixels mm-1θmax = 30.9°, θmin = 3.2°
ω scansh = 2018
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multifaceted crystal model (Clark & Reid, 1995)]
k = 1319
Tmin = 0.957, Tmax = 0.990l = 2826
35176 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1162P)2 + 0.2294P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
7200 reflectionsΔρmax = 0.32 e Å3
258 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack parameter determined using 2073 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (4)
Crystal data top
C26H30O2Z = 6
Mr = 374.50Mo Kα radiation
Trigonal, P3121µ = 0.06 mm1
a = 14.6205 (5) ÅT = 123 K
c = 20.2672 (6) Å0.98 × 0.66 × 0.17 mm
V = 3751.9 (3) Å3
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
7200 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), using a multifaceted crystal model (Clark & Reid, 1995)]
5765 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.990Rint = 0.034
35176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.193Δρmax = 0.32 e Å3
S = 1.08Δρmin = 0.24 e Å3
7200 reflectionsAbsolute structure: Flack parameter determined using 2073 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
258 parametersAbsolute structure parameter: 0.3 (4)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55511 (15)0.01657 (13)0.24921 (8)0.0403 (5)
O50.53998 (13)0.37108 (12)0.01023 (8)0.0342 (4)
C10.5100 (2)0.00501 (17)0.18436 (10)0.0318 (6)
C20.54021 (19)0.11650 (16)0.16162 (10)0.0317 (6)
C30.49968 (18)0.12147 (16)0.09253 (11)0.0300 (5)
C40.53487 (19)0.23812 (17)0.07835 (11)0.0319 (6)
C50.49703 (18)0.25811 (17)0.01230 (10)0.0302 (5)
C110.5478 (2)0.04987 (17)0.13833 (11)0.0339 (6)
C120.6544 (2)0.0129 (2)0.12939 (15)0.0483 (8)
C130.6873 (3)0.0652 (3)0.08777 (17)0.0600 (10)
C140.6155 (3)0.1550 (2)0.05386 (15)0.0557 (8)
C150.5101 (3)0.1911 (2)0.06246 (14)0.0498 (8)
C160.4758 (2)0.13936 (19)0.10424 (12)0.0404 (7)
C170.6518 (4)0.2152 (3)0.0109 (2)0.0859 (15)
C310.38070 (19)0.04976 (17)0.08632 (11)0.0322 (6)
C320.3383 (2)0.02456 (19)0.03540 (12)0.0397 (7)
C330.2302 (3)0.0923 (2)0.03095 (16)0.0539 (9)
C340.1600 (2)0.0889 (3)0.07530 (16)0.0571 (9)
C350.2037 (3)0.0131 (3)0.12548 (17)0.0622 (10)
C360.3115 (2)0.0543 (2)0.13062 (14)0.0481 (8)
C370.0412 (3)0.1620 (4)0.0702 (2)0.0889 (16)
C510.53006 (17)0.22032 (16)0.04816 (10)0.0292 (5)
C520.6275 (2)0.2274 (2)0.05428 (13)0.0433 (7)
C530.6561 (2)0.1949 (2)0.11143 (15)0.0492 (8)
C540.5862 (3)0.1539 (2)0.16445 (13)0.0468 (8)
C550.4884 (3)0.1454 (2)0.15807 (12)0.0451 (8)
C560.46012 (19)0.17721 (18)0.10069 (12)0.0354 (6)
C570.6178 (3)0.1197 (3)0.22690 (16)0.0670 (11)
H10.431330.038130.187940.0382*
H1A0.523640.041490.269180.0605*
H2A0.618150.160840.161950.0380*
H2B0.512020.147170.193750.0380*
H30.534680.097830.059740.0360*
H4A0.508460.264750.114240.0382*
H4B0.612990.279570.079380.0382*
H50.418210.222840.013130.0363*
H5A0.512380.386320.021100.0513*
H120.704970.048790.151980.0580*
H130.760730.039200.082200.0720*
H150.459770.252380.039490.0598*
H160.402270.165460.109550.0485*
H17A0.592740.266140.016240.1289*
H17B0.676920.252820.038890.1289*
H17C0.709360.165690.017750.1289*
H320.383860.028670.003640.0476*
H330.203350.142660.003760.0647*
H350.158100.007870.156750.0745*
H360.338330.104730.165310.0577*
H37A0.011620.132000.039370.1333*
H37B0.009060.169740.113810.1333*
H37C0.026350.231370.054240.1333*
H520.676160.255040.018680.0519*
H530.723680.200620.114310.0590*
H550.439480.117340.193500.0542*
H560.391730.169330.097320.0425*
H57A0.692710.140530.224480.1001*
H57B0.606090.153630.265110.1001*
H57C0.575110.042810.231480.1001*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0659 (10)0.0270 (7)0.0187 (7)0.0162 (7)0.0097 (7)0.0014 (6)
O50.0541 (8)0.0381 (7)0.0228 (7)0.0324 (5)0.0016 (6)0.0036 (6)
C10.0456 (11)0.0261 (9)0.0183 (9)0.0138 (8)0.0049 (8)0.0008 (8)
C20.0488 (11)0.0275 (9)0.0201 (9)0.0200 (7)0.0071 (8)0.0015 (8)
C30.0446 (10)0.0301 (9)0.0172 (9)0.0201 (7)0.0031 (8)0.0016 (7)
C40.0493 (11)0.0324 (9)0.0173 (9)0.0229 (8)0.0018 (8)0.0010 (8)
C50.0408 (10)0.0349 (9)0.0200 (9)0.0227 (7)0.0022 (8)0.0040 (8)
C110.0524 (12)0.0316 (9)0.0208 (10)0.0233 (8)0.0057 (9)0.0030 (8)
C120.0599 (14)0.0438 (12)0.0459 (15)0.0294 (10)0.0116 (12)0.0005 (11)
C130.0758 (17)0.0673 (15)0.0563 (19)0.0503 (12)0.0013 (15)0.0070 (14)
C140.1000 (17)0.0589 (12)0.0368 (14)0.0612 (10)0.0034 (13)0.0063 (11)
C150.0887 (17)0.0421 (11)0.0316 (12)0.0424 (10)0.0113 (12)0.0054 (10)
C160.0628 (13)0.0343 (10)0.0281 (11)0.0272 (9)0.0091 (10)0.0010 (9)
C170.135 (3)0.0825 (18)0.079 (3)0.0834 (15)0.012 (2)0.0041 (19)
C310.0447 (10)0.0322 (9)0.0206 (10)0.0198 (8)0.0021 (8)0.0023 (8)
C320.0535 (13)0.0381 (10)0.0250 (11)0.0210 (9)0.0023 (10)0.0008 (9)
C330.0650 (17)0.0467 (14)0.0375 (15)0.0186 (12)0.0141 (13)0.0031 (11)
C340.0486 (15)0.0633 (18)0.0431 (15)0.0157 (13)0.0014 (12)0.0070 (14)
C350.0505 (15)0.081 (2)0.0465 (17)0.0265 (14)0.0079 (13)0.0019 (16)
C360.0528 (14)0.0574 (14)0.0322 (13)0.0262 (11)0.0015 (11)0.0078 (12)
C370.057 (2)0.095 (3)0.076 (3)0.009 (2)0.0101 (19)0.001 (2)
C510.0420 (10)0.0292 (8)0.0196 (9)0.0201 (7)0.0035 (8)0.0036 (7)
C520.0462 (12)0.0551 (13)0.0317 (12)0.0277 (10)0.0022 (10)0.0068 (11)
C530.0489 (12)0.0564 (14)0.0455 (15)0.0287 (10)0.0068 (11)0.0089 (12)
C540.0685 (15)0.0443 (12)0.0270 (12)0.0278 (11)0.0097 (11)0.0023 (10)
C550.0658 (16)0.0429 (12)0.0218 (11)0.0235 (11)0.0053 (11)0.0040 (9)
C560.0425 (11)0.0367 (10)0.0281 (11)0.0206 (8)0.0003 (9)0.0012 (9)
C570.090 (2)0.0742 (19)0.0391 (16)0.0428 (15)0.0168 (15)0.0107 (14)
Geometric parameters (Å, º) top
O1—C11.442 (3)C54—C571.515 (5)
O5—C51.445 (3)C55—C561.390 (4)
O1—H1A0.8400C1—H11.0000
O5—H5A0.8400C2—H2A0.9900
C1—C111.504 (4)C2—H2B0.9900
C1—C21.531 (3)C3—H31.0000
C2—C31.536 (3)C4—H4A0.9900
C3—C41.542 (3)C4—H4B0.9900
C3—C311.522 (4)C5—H51.0000
C4—C51.531 (3)C12—H120.9500
C5—C511.519 (3)C13—H130.9500
C11—C161.386 (3)C15—H150.9500
C11—C121.383 (4)C16—H160.9500
C12—C131.377 (5)C17—H17A0.9800
C13—C141.386 (5)C17—H17B0.9800
C14—C171.511 (6)C17—H17C0.9800
C14—C151.368 (6)C32—H320.9500
C15—C161.386 (5)C33—H330.9500
C31—C321.399 (3)C35—H350.9500
C31—C361.379 (4)C36—H360.9500
C32—C331.386 (5)C37—H37A0.9800
C33—C341.384 (5)C37—H37B0.9800
C34—C351.401 (5)C37—H37C0.9800
C34—C371.521 (6)C52—H520.9500
C35—C361.383 (5)C53—H530.9500
C51—C561.390 (3)C55—H550.9500
C51—C521.381 (4)C56—H560.9500
C52—C531.393 (4)C57—H57A0.9800
C53—C541.395 (4)C57—H57B0.9800
C54—C551.378 (7)C57—H57C0.9800
C1—O1—H1A109.00C4—C3—H3108.00
C5—O5—H5A109.00C31—C3—H3108.00
C2—C1—C11113.19 (19)C3—C4—H4A109.00
O1—C1—C2106.14 (17)C3—C4—H4B109.00
O1—C1—C11111.1 (2)C5—C4—H4A109.00
C1—C2—C3114.33 (17)C5—C4—H4B109.00
C2—C3—C31112.19 (19)H4A—C4—H4B108.00
C4—C3—C31112.4 (2)O5—C5—H5109.00
C2—C3—C4107.39 (17)C4—C5—H5109.00
C3—C4—C5114.92 (18)C51—C5—H5109.00
O5—C5—C51110.92 (17)C11—C12—H12120.00
O5—C5—C4104.57 (17)C13—C12—H12120.00
C4—C5—C51115.1 (2)C12—C13—H13119.00
C12—C11—C16118.7 (3)C14—C13—H13119.00
C1—C11—C12121.0 (2)C14—C15—H15120.00
C1—C11—C16120.3 (3)C16—C15—H15120.00
C11—C12—C13120.1 (3)C11—C16—H16120.00
C12—C13—C14121.4 (4)C15—C16—H16120.00
C15—C14—C17120.3 (3)C14—C17—H17A109.00
C13—C14—C15118.4 (3)C14—C17—H17B109.00
C13—C14—C17121.2 (4)C14—C17—H17C109.00
C14—C15—C16120.9 (3)H17A—C17—H17B109.00
C11—C16—C15120.6 (3)H17A—C17—H17C110.00
C3—C31—C36121.8 (2)H17B—C17—H17C109.00
C3—C31—C32120.4 (2)C31—C32—H32120.00
C32—C31—C36117.8 (3)C33—C32—H32120.00
C31—C32—C33120.5 (3)C32—C33—H33119.00
C32—C33—C34122.2 (3)C34—C33—H33119.00
C35—C34—C37120.9 (3)C34—C35—H35119.00
C33—C34—C37122.5 (3)C36—C35—H35119.00
C33—C34—C35116.5 (3)C31—C36—H36119.00
C34—C35—C36121.7 (4)C35—C36—H36119.00
C31—C36—C35121.3 (3)C34—C37—H37A109.00
C52—C51—C56117.6 (2)C34—C37—H37B109.00
C5—C51—C52123.3 (2)C34—C37—H37C110.00
C5—C51—C56119.2 (2)H37A—C37—H37B109.00
C51—C52—C53121.6 (3)H37A—C37—H37C110.00
C52—C53—C54120.4 (3)H37B—C37—H37C109.00
C53—C54—C57120.4 (4)C51—C52—H52119.00
C53—C54—C55118.1 (3)C53—C52—H52119.00
C55—C54—C57121.5 (3)C52—C53—H53120.00
C54—C55—C56121.1 (3)C54—C53—H53120.00
C51—C56—C55121.2 (3)C54—C55—H55119.00
O1—C1—H1109.00C56—C55—H55119.00
C2—C1—H1109.00C51—C56—H56119.00
C11—C1—H1109.00C55—C56—H56119.00
C1—C2—H2A109.00C54—C57—H57A109.00
C1—C2—H2B109.00C54—C57—H57B109.00
C3—C2—H2A109.00C54—C57—H57C109.00
C3—C2—H2B109.00H57A—C57—H57B109.00
H2A—C2—H2B108.00H57A—C57—H57C109.00
C2—C3—H3108.00H57B—C57—H57C109.00
O1—C1—C2—C3179.7 (2)C12—C13—C14—C150.1 (5)
C11—C1—C2—C357.6 (3)C12—C13—C14—C17176.9 (3)
O1—C1—C11—C1253.8 (3)C13—C14—C15—C160.2 (5)
O1—C1—C11—C16125.8 (2)C17—C14—C15—C16176.9 (3)
C2—C1—C11—C1265.4 (3)C14—C15—C16—C110.1 (4)
C2—C1—C11—C16115.0 (3)C3—C31—C32—C33177.9 (2)
C1—C2—C3—C4178.8 (2)C36—C31—C32—C331.2 (4)
C1—C2—C3—C3154.8 (3)C3—C31—C36—C35178.3 (3)
C2—C3—C4—C5177.4 (2)C32—C31—C36—C350.7 (4)
C31—C3—C4—C553.5 (3)C31—C32—C33—C340.9 (5)
C2—C3—C31—C32126.6 (2)C32—C33—C34—C350.1 (5)
C2—C3—C31—C3652.4 (3)C32—C33—C34—C37179.2 (3)
C4—C3—C31—C32112.3 (3)C33—C34—C35—C360.4 (5)
C4—C3—C31—C3668.7 (3)C37—C34—C35—C36179.7 (4)
C3—C4—C5—O5179.6 (2)C34—C35—C36—C310.1 (5)
C3—C4—C5—C5157.6 (3)C5—C51—C52—C53177.9 (2)
O5—C5—C51—C5280.7 (3)C56—C51—C52—C531.4 (4)
O5—C5—C51—C5698.7 (2)C5—C51—C56—C55177.4 (2)
C4—C5—C51—C5237.8 (3)C52—C51—C56—C551.9 (3)
C4—C5—C51—C56142.9 (2)C51—C52—C53—C540.0 (4)
C1—C11—C12—C13179.0 (3)C52—C53—C54—C550.9 (4)
C16—C11—C12—C130.6 (4)C52—C53—C54—C57179.3 (3)
C1—C11—C16—C15179.1 (2)C53—C54—C55—C560.4 (4)
C12—C11—C16—C150.5 (4)C57—C54—C55—C56179.8 (3)
C11—C12—C13—C140.3 (5)C54—C55—C56—C511.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.841.952.786 (3)174
O5—H5A···O1ii0.841.892.716 (3)170
Symmetry codes: (i) x+1, x+y, z+1/3; (ii) x+y+1, x+1, z1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5i0.841.952.786 (3)174
O5—H5A···O1ii0.841.892.716 (3)170
Symmetry codes: (i) x+1, x+y, z+1/3; (ii) x+y+1, x+1, z1/3.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBarrett, A. G. M., Braddock, D. C., de Koning, P. D., White, A. J. P. & Williams, D. J. (2000). J. Org. Chem. 65, 375–380.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHa, J.-M. & Young, V. (2009). Acta Cryst. C65, o388–o395.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaul, N., Kaladevi, S., Beneto, A. J., Muthusubramanian, S. & Bhuvanesh, N. (2012). Tetrahedron, 68, 6892–6901.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, J. J. & Faergemann, J. (2008). Expert Opin. Investig. Drugs, 17, 601–610.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o122-o123
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds