organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o210-o211

Methyl 4-(4-bromo­anilino)-2′,5-dioxo-5H-spiro­[furan-2,3′-indoline]-3-carboxyl­ate

aDepartment of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 10 January 2014; accepted 19 January 2014; online 29 January 2014)

In the title compound, C19H13BrN2O5, the spiro furan ring is almost planar with a maximum deviation of 0.034 (2) Å. The indole unit and the furan ring are normal to each other, making a dihedral angle of 87.82 (8) °. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R22(8) ring motifs.

Related literature

For applications of oxindoles, see: Akai et al. (2004[Akai, S., Tsujino, T., Akiyama, E., Tanimoto, K., Naka, T. & Kita, Y. (2004). J. Org. Chem. 69, 2478-2486.]); Gallagher et al. (1985[Gallagher, G. Jr, Lavanchy, P. G., Wilson, J. W., Hieble, J. P. & DeMarinis, R. M. (1985). J. Med. Chem. 28, 1533-1536.]); Tokunaga et al. (2001[Tokunaga, T., Hume, W., Umezone, T., Okazaki, U., Ueki, Y., Kumagai, K., Hourai, S., Nagamine, J., Seki, H., Taiji, M., Noguchi, H. & Nagata, R. (2001). J. Med. Chem. 44, 4641-4649.]); Zaveri et al. (2004[Zaveri, N. T., Jiang, F., Olsen, C. M., Deschamps, J. R., Parrish, D., Polgar, W. & Toll, L. (2004). J. Med. Chem. 47, 2973-2976.]). For applications of tetra­hydro­furans, see: Garzino et al. (2000[Garzino, F., Meou, A. & Brun, P. (2000). Tetrahedron Lett. 41, 9803-9807.]). For a related structure, see: Gangadharan et al. (2013[Gangadharan, R., Sethusankar, K., Kiruthika, S. E. & Perumal, P. T. (2013). Acta Cryst. E69, o1055.]). For the length of a C—Br single bond, see: Koşar et al. (2006[Koşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3868-o3869.]). For resonance structure in a carboxyl­ate group, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13BrN2O5

  • Mr = 429.21

  • Triclinic, [P \overline 1]

  • a = 7.845 (5) Å

  • b = 8.365 (5) Å

  • c = 13.703 (5) Å

  • α = 81.565 (5)°

  • β = 81.944 (5)°

  • γ = 76.183 (5)°

  • V = 858.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.487, Tmax = 0.615

  • 19580 measured reflections

  • 5243 independent reflections

  • 3611 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.02

  • 5243 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5 0.84 (2) 2.06 (3) 2.773 (3) 143 (2)
N1—H1A⋯O1i 0.92 (2) 1.96 (2) 2.869 (3) 168 (2)
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole template is generally recognized as an important structure in medicinal chemistry. In particular oxindoles are important constituents of drugs (Akai et al., 2004). The Oxindole motif is present in the anti-Parkinson's drug ropinirole (Gallagher et al., 1985), in non-opioid receptor ligands (Zaveri et al., 2004) and in growth hormone secretagogues (Tokunaga et al., 2001). Tetrahydrofuran is a common motif which can be found in numerous natural products such as polyether antibiotics, nucleosides and lignans (Garzino et al., 2000).

The five- (N1/C1–C8) and six- (C1–C6) membered rings in the indole unit are coplanar, making a dihedral angle of 1.50 (9)°. The indole moiety is orthogonal to the furan ring as indicated by the dihedral angle of 87.82 (8)°. The benzene ring is bisectionally oriented to the furan ring with a dihedral angle 37.54 (10)°. The bond lengths and angles are comparable with those in a similar structure (Gangadharan et al., 2013). In addition, the C–Br bond distance of 1.896 (2) Å, is slightly shorter than the value reported for the C–Br single bond (1.961 (3) Å; Koşar et al., 2006). The C15–C16–C17–Br1 torsion angle of 177.77 (14) ° indicates that the bromine atom is antiperiplanar to the benzene ring.

The keto O atoms O3 and O1 deviate from the furan and indoline rings by 0.130 (1) Å and 0.043 (1) Å, respectively. The sum of the bond angles around the nitrogen atoms N1 [359.9 (44) °] and N2 [360.0 (49) °] suggests sp2 hybridization. The significant difference in length of the C12–O4 = 1.338 (2) Å and C13–O4 = 1.442 (2) Å bonds is attributed to partial contribution from O-–C=O+–C resonance structure of the O3 C12–O4–C13 group (Merlino, 1971). This feature is commonly observed in carboxyl ester groups of the substituents in various compounds where the average distances are 1.340 Å and 1.447 Å, respectively (Varghese et al., 1986). The molecular structure is stabilized by an intramolecular N—H···O hydrogen bond which generates an S(6) ring motif (Table 1).

In the crystal, molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers enclosing R22(8) ring motifs (Bernstein et al., 1995; Table 1 and Fig. 2).

Related literature top

For applications of oxindoles, see: Akai et al. (2004); Gallagher et al. (1985); Tokunaga et al. (2001); Zaveri et al. (2004). For applications of tetrahydrofurans, see: Garzino et al. (2000). For a related structure, see: Gangadharan et al. (2013). For the length of a C—Br single bond, see: Koşar et al. (2006). For resonance structure in a carboxylate group, see: Merlino (1971); Varghese et al. (1986). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Isatin (1 mmol), p-bromoaniline (1 mmol), and dimethyl acetylene dicarboxylate (DMAD; 1 mmol) were stirred at room temperature in methanol in the presence of Triethylamine (20 mol %) for 4 hrs. The solid formed was filtered and recrystallized from methanol to afford the title compound as a pure yellow solid (85% yield).

Refinement top

The hydrogen atoms were located in difference electron density maps. The H-atoms of the amine groups were refined with distance restraints of N—H = 0.89 (2) Å with Uiso(H) = 1.2Ueq(N). The C bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Structure description top

The indole template is generally recognized as an important structure in medicinal chemistry. In particular oxindoles are important constituents of drugs (Akai et al., 2004). The Oxindole motif is present in the anti-Parkinson's drug ropinirole (Gallagher et al., 1985), in non-opioid receptor ligands (Zaveri et al., 2004) and in growth hormone secretagogues (Tokunaga et al., 2001). Tetrahydrofuran is a common motif which can be found in numerous natural products such as polyether antibiotics, nucleosides and lignans (Garzino et al., 2000).

The five- (N1/C1–C8) and six- (C1–C6) membered rings in the indole unit are coplanar, making a dihedral angle of 1.50 (9)°. The indole moiety is orthogonal to the furan ring as indicated by the dihedral angle of 87.82 (8)°. The benzene ring is bisectionally oriented to the furan ring with a dihedral angle 37.54 (10)°. The bond lengths and angles are comparable with those in a similar structure (Gangadharan et al., 2013). In addition, the C–Br bond distance of 1.896 (2) Å, is slightly shorter than the value reported for the C–Br single bond (1.961 (3) Å; Koşar et al., 2006). The C15–C16–C17–Br1 torsion angle of 177.77 (14) ° indicates that the bromine atom is antiperiplanar to the benzene ring.

The keto O atoms O3 and O1 deviate from the furan and indoline rings by 0.130 (1) Å and 0.043 (1) Å, respectively. The sum of the bond angles around the nitrogen atoms N1 [359.9 (44) °] and N2 [360.0 (49) °] suggests sp2 hybridization. The significant difference in length of the C12–O4 = 1.338 (2) Å and C13–O4 = 1.442 (2) Å bonds is attributed to partial contribution from O-–C=O+–C resonance structure of the O3 C12–O4–C13 group (Merlino, 1971). This feature is commonly observed in carboxyl ester groups of the substituents in various compounds where the average distances are 1.340 Å and 1.447 Å, respectively (Varghese et al., 1986). The molecular structure is stabilized by an intramolecular N—H···O hydrogen bond which generates an S(6) ring motif (Table 1).

In the crystal, molecules are linked via pairs of N-H···O hydrogen bonds forming inversion dimers enclosing R22(8) ring motifs (Bernstein et al., 1995; Table 1 and Fig. 2).

For applications of oxindoles, see: Akai et al. (2004); Gallagher et al. (1985); Tokunaga et al. (2001); Zaveri et al. (2004). For applications of tetrahydrofurans, see: Garzino et al. (2000). For a related structure, see: Gangadharan et al. (2013). For the length of a C—Br single bond, see: Koşar et al. (2006). For resonance structure in a carboxylate group, see: Merlino (1971); Varghese et al. (1986). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Part of crystal packing of the title compound, showing the formation of the intramolecular S(6) ring motif and the R22(8)inversion dimer, as viewed along the b-axis [see Table 1 for details of the hydrogen bonding (dashed lines); symmetry code: (i) -x, - y + 1, - z + 2].
Methyl 4-(4-bromoanilino)-2',5-dioxo-5H-spiro[furan-2,3'-indoline]-3-carboxylate top
Crystal data top
C19H13BrN2O5Z = 2
Mr = 429.21F(000) = 432
Triclinic, P1Dx = 1.660 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.845 (5) ÅCell parameters from 3611 reflections
b = 8.365 (5) Åθ = 2.5–30.7°
c = 13.703 (5) ŵ = 2.43 mm1
α = 81.565 (5)°T = 296 K
β = 81.944 (5)°Block, yellow
γ = 76.183 (5)°0.30 × 0.25 × 0.20 mm
V = 858.6 (8) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5243 independent reflections
Radiation source: fine-focus sealed tube3611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 30.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.487, Tmax = 0.615k = 1011
19580 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.0269P]
where P = (Fo2 + 2Fc2)/3
5243 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H13BrN2O5γ = 76.183 (5)°
Mr = 429.21V = 858.6 (8) Å3
Triclinic, P1Z = 2
a = 7.845 (5) ÅMo Kα radiation
b = 8.365 (5) ŵ = 2.43 mm1
c = 13.703 (5) ÅT = 296 K
α = 81.565 (5)°0.30 × 0.25 × 0.20 mm
β = 81.944 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5243 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3611 reflections with I > 2σ(I)
Tmin = 0.487, Tmax = 0.615Rint = 0.032
19580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
5243 reflectionsΔρmin = 0.31 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4990 (3)0.6472 (2)0.90768 (17)0.0504 (5)
H10.52150.69590.96640.060*
C20.6306 (3)0.6597 (3)0.8475 (2)0.0582 (6)
H20.74430.71790.86650.070*
C30.5985 (3)0.5890 (2)0.76091 (18)0.0558 (6)
H30.69020.59950.72250.067*
C40.4295 (3)0.5013 (2)0.72958 (16)0.0466 (5)
H40.40660.45380.67050.056*
C50.2984 (2)0.48741 (19)0.78896 (13)0.0364 (4)
C60.3335 (2)0.5594 (2)0.87638 (13)0.0380 (4)
C70.0421 (2)0.4317 (2)0.87382 (12)0.0337 (4)
C80.1067 (2)0.40203 (19)0.77657 (12)0.0332 (3)
C90.0787 (2)0.3804 (2)0.62970 (13)0.0370 (4)
C100.0397 (2)0.2139 (2)0.66609 (12)0.0340 (4)
C110.0593 (2)0.22549 (19)0.75528 (12)0.0329 (3)
C120.0965 (2)0.0843 (2)0.82184 (12)0.0334 (3)
C130.2248 (3)0.0121 (2)0.97751 (15)0.0555 (5)
H13A0.30230.06370.95110.083*
H13B0.28020.02711.03920.083*
H13C0.11650.09130.98850.083*
C140.2003 (2)0.0426 (2)0.53099 (13)0.0366 (4)
C150.3175 (3)0.1104 (2)0.52758 (14)0.0429 (4)
H150.33020.18480.58500.052*
C160.4145 (3)0.1526 (2)0.44021 (14)0.0424 (4)
H160.49230.25540.43810.051*
C170.3960 (2)0.0425 (2)0.35616 (13)0.0389 (4)
C180.2789 (3)0.1086 (2)0.35738 (13)0.0426 (4)
H180.26660.18190.29950.051*
C190.1797 (3)0.1509 (2)0.44496 (13)0.0418 (4)
H190.09900.25230.44610.050*
N10.1789 (2)0.52477 (18)0.92420 (11)0.0400 (3)
N20.1045 (2)0.07406 (19)0.62338 (12)0.0440 (4)
O10.10713 (17)0.37852 (16)0.89603 (10)0.0427 (3)
O20.01219 (16)0.48646 (14)0.69475 (9)0.0378 (3)
O30.17429 (19)0.42333 (17)0.56122 (10)0.0513 (3)
O40.18764 (17)0.12567 (14)0.90801 (9)0.0405 (3)
O50.04501 (18)0.05806 (15)0.80338 (10)0.0458 (3)
Br10.53764 (3)0.10026 (3)0.237127 (14)0.05583 (10)
H1A0.171 (3)0.566 (3)0.9820 (18)0.067*
H2A0.077 (3)0.004 (3)0.6630 (19)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (12)0.0401 (10)0.0558 (12)0.0017 (9)0.0012 (10)0.0043 (9)
C20.0434 (12)0.0434 (11)0.0796 (17)0.0040 (9)0.0056 (11)0.0091 (11)
C30.0466 (12)0.0486 (11)0.0721 (16)0.0154 (9)0.0230 (11)0.0164 (11)
C40.0535 (12)0.0409 (10)0.0489 (11)0.0160 (9)0.0179 (9)0.0048 (8)
C50.0427 (10)0.0273 (8)0.0390 (9)0.0086 (7)0.0089 (8)0.0025 (7)
C60.0418 (10)0.0294 (8)0.0403 (9)0.0062 (7)0.0032 (8)0.0003 (7)
C70.0426 (10)0.0303 (8)0.0296 (8)0.0098 (7)0.0047 (7)0.0048 (6)
C80.0411 (9)0.0319 (8)0.0280 (8)0.0107 (7)0.0057 (7)0.0025 (6)
C90.0434 (10)0.0384 (9)0.0314 (8)0.0120 (8)0.0064 (7)0.0039 (7)
C100.0407 (9)0.0334 (8)0.0296 (8)0.0093 (7)0.0061 (7)0.0054 (6)
C110.0398 (9)0.0312 (8)0.0289 (8)0.0074 (7)0.0071 (7)0.0045 (6)
C120.0368 (9)0.0335 (8)0.0307 (8)0.0076 (7)0.0073 (7)0.0029 (6)
C130.0698 (14)0.0489 (11)0.0409 (11)0.0155 (10)0.0080 (10)0.0075 (9)
C140.0447 (10)0.0385 (9)0.0296 (8)0.0141 (8)0.0013 (7)0.0081 (7)
C150.0595 (12)0.0342 (9)0.0328 (9)0.0087 (8)0.0039 (8)0.0008 (7)
C160.0509 (11)0.0354 (9)0.0377 (10)0.0039 (8)0.0019 (8)0.0062 (7)
C170.0456 (10)0.0425 (9)0.0322 (9)0.0163 (8)0.0016 (7)0.0082 (7)
C180.0604 (12)0.0399 (9)0.0303 (9)0.0163 (9)0.0104 (8)0.0000 (7)
C190.0538 (11)0.0357 (9)0.0360 (9)0.0053 (8)0.0120 (8)0.0060 (7)
N10.0453 (9)0.0400 (8)0.0351 (8)0.0048 (7)0.0057 (7)0.0123 (6)
N20.0628 (11)0.0354 (8)0.0331 (8)0.0137 (7)0.0063 (7)0.0081 (6)
O10.0403 (7)0.0487 (7)0.0402 (7)0.0053 (6)0.0085 (6)0.0126 (6)
O20.0499 (7)0.0329 (6)0.0316 (6)0.0140 (5)0.0012 (5)0.0026 (5)
O30.0622 (9)0.0502 (8)0.0425 (8)0.0225 (7)0.0098 (7)0.0068 (6)
O40.0508 (8)0.0346 (6)0.0330 (6)0.0081 (5)0.0012 (5)0.0020 (5)
O50.0613 (9)0.0318 (6)0.0423 (7)0.0088 (6)0.0003 (6)0.0056 (5)
Br10.06364 (16)0.06784 (16)0.03773 (12)0.02209 (11)0.00927 (9)0.01359 (9)
Geometric parameters (Å, º) top
C1—C61.375 (3)C11—C121.444 (2)
C1—C21.386 (3)C12—O51.214 (2)
C1—H10.9300C12—O41.338 (2)
C2—C31.368 (3)C13—O41.442 (2)
C2—H20.9300C13—H13A0.9600
C3—C41.396 (3)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.372 (3)C14—C191.381 (2)
C4—H40.9300C14—C151.389 (3)
C5—C61.383 (2)C14—N21.405 (2)
C5—C81.501 (3)C15—C161.370 (3)
C6—N11.409 (2)C15—H150.9300
C7—O11.213 (2)C16—C171.366 (3)
C7—N11.336 (2)C16—H160.9300
C7—C81.563 (2)C17—C181.375 (3)
C8—O21.446 (2)C17—Br11.8962 (19)
C8—C111.496 (2)C18—C191.379 (3)
C9—O31.185 (2)C18—H180.9300
C9—O21.357 (2)C19—H190.9300
C9—C101.497 (2)N1—H1A0.92 (2)
C10—N21.343 (2)N2—H2A0.84 (3)
C10—C111.356 (2)
C6—C1—C2116.7 (2)O5—C12—O4123.21 (16)
C6—C1—H1121.7O5—C12—C11123.72 (16)
C2—C1—H1121.7O4—C12—C11113.02 (14)
C3—C2—C1122.0 (2)O4—C13—H13A109.5
C3—C2—H2119.0O4—C13—H13B109.5
C1—C2—H2119.0H13A—C13—H13B109.5
C2—C3—C4120.7 (2)O4—C13—H13C109.5
C2—C3—H3119.6H13A—C13—H13C109.5
C4—C3—H3119.6H13B—C13—H13C109.5
C5—C4—C3117.7 (2)C19—C14—C15119.37 (17)
C5—C4—H4121.1C19—C14—N2124.10 (16)
C3—C4—H4121.1C15—C14—N2116.49 (16)
C4—C5—C6120.74 (18)C16—C15—C14120.46 (17)
C4—C5—C8130.56 (18)C16—C15—H15119.8
C6—C5—C8108.70 (14)C14—C15—H15119.8
C1—C6—C5122.12 (17)C17—C16—C15119.54 (17)
C1—C6—N1128.20 (18)C17—C16—H16120.2
C5—C6—N1109.67 (15)C15—C16—H16120.2
O1—C7—N1128.24 (15)C16—C17—C18121.04 (18)
O1—C7—C8124.32 (15)C16—C17—Br1118.82 (14)
N1—C7—C8107.43 (15)C18—C17—Br1120.13 (14)
O2—C8—C11103.78 (14)C17—C18—C19119.60 (16)
O2—C8—C5110.91 (13)C17—C18—H18120.2
C11—C8—C5118.36 (14)C19—C18—H18120.2
O2—C8—C7106.91 (13)C18—C19—C14119.96 (17)
C11—C8—C7114.63 (13)C18—C19—H19120.0
C5—C8—C7101.94 (14)C14—C19—H19120.0
O3—C9—O2121.60 (16)C7—N1—C6112.18 (15)
O3—C9—C10130.94 (17)C7—N1—H1A123.8 (14)
O2—C9—C10107.37 (15)C6—N1—H1A123.9 (14)
N2—C10—C11125.71 (16)C10—N2—C14132.62 (16)
N2—C10—C9126.41 (17)C10—N2—H2A107.5 (17)
C11—C10—C9107.60 (14)C14—N2—H2A119.9 (17)
C10—C11—C12123.83 (15)C9—O2—C8111.32 (13)
C10—C11—C8109.57 (14)C12—O4—C13114.86 (14)
C12—C11—C8126.35 (15)
C6—C1—C2—C30.2 (3)C7—C8—C11—C10120.97 (16)
C1—C2—C3—C40.3 (3)O2—C8—C11—C12169.66 (15)
C2—C3—C4—C50.6 (3)C5—C8—C11—C1267.0 (2)
C3—C4—C5—C60.4 (3)C7—C8—C11—C1253.4 (2)
C3—C4—C5—C8179.71 (16)C10—C11—C12—O51.3 (3)
C2—C1—C6—C50.4 (3)C8—C11—C12—O5174.99 (16)
C2—C1—C6—N1178.36 (18)C10—C11—C12—O4176.09 (15)
C4—C5—C6—C10.1 (3)C8—C11—C12—O42.4 (2)
C8—C5—C6—C1179.81 (16)C19—C14—C15—C161.3 (3)
C4—C5—C6—N1178.90 (16)N2—C14—C15—C16179.03 (17)
C8—C5—C6—N11.22 (19)C14—C15—C16—C170.3 (3)
C4—C5—C8—O268.7 (2)C15—C16—C17—C181.4 (3)
C6—C5—C8—O2111.21 (15)C15—C16—C17—Br1177.77 (14)
C4—C5—C8—C1151.1 (3)C16—C17—C18—C190.7 (3)
C6—C5—C8—C11129.05 (16)Br1—C17—C18—C19178.39 (13)
C4—C5—C8—C7177.83 (18)C17—C18—C19—C140.9 (3)
C6—C5—C8—C72.31 (17)C15—C14—C19—C181.9 (3)
O1—C7—C8—O265.7 (2)N2—C14—C19—C18179.48 (17)
N1—C7—C8—O2113.77 (15)O1—C7—N1—C6178.44 (17)
O1—C7—C8—C1148.8 (2)C8—C7—N1—C62.16 (19)
N1—C7—C8—C11131.82 (16)C1—C6—N1—C7178.22 (18)
O1—C7—C8—C5177.89 (16)C5—C6—N1—C70.7 (2)
N1—C7—C8—C52.69 (17)C11—C10—N2—C14176.41 (18)
O3—C9—C10—N22.8 (3)C9—C10—N2—C1410.5 (3)
O2—C9—C10—N2179.46 (16)C19—C14—N2—C1033.1 (3)
O3—C9—C10—C11171.27 (19)C15—C14—N2—C10149.3 (2)
O2—C9—C10—C115.36 (18)O3—C9—O2—C8174.71 (15)
N2—C10—C11—C125.7 (3)C10—C9—O2—C82.31 (17)
C9—C10—C11—C12168.42 (15)C11—C8—O2—C91.26 (17)
N2—C10—C11—C8179.68 (17)C5—C8—O2—C9126.86 (14)
C9—C10—C11—C86.16 (18)C7—C8—O2—C9122.79 (14)
O2—C8—C11—C104.75 (17)O5—C12—O4—C131.4 (2)
C5—C8—C11—C10118.62 (17)C11—C12—O4—C13178.89 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.84 (2)2.06 (3)2.773 (3)143 (2)
N1—H1A···O1i0.92 (2)1.96 (2)2.869 (3)168 (2)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O50.84 (2)2.06 (3)2.773 (3)143 (2)
N1—H1A···O1i0.92 (2)1.96 (2)2.869 (3)168 (2)
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAkai, S., Tsujino, T., Akiyama, E., Tanimoto, K., Naka, T. & Kita, Y. (2004). J. Org. Chem. 69, 2478–2486.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGallagher, G. Jr, Lavanchy, P. G., Wilson, J. W., Hieble, J. P. & DeMarinis, R. M. (1985). J. Med. Chem. 28, 1533–1536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGangadharan, R., Sethusankar, K., Kiruthika, S. E. & Perumal, P. T. (2013). Acta Cryst. E69, o1055.  CSD CrossRef IUCr Journals Google Scholar
First citationGarzino, F., Meou, A. & Brun, P. (2000). Tetrahedron Lett. 41, 9803–9807.  Web of Science CrossRef CAS Google Scholar
First citationKoşar, B., Göktürk, E., Demircan, A. & Büyükgüngör, O. (2006). Acta Cryst. E62, o3868–o3869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokunaga, T., Hume, W., Umezone, T., Okazaki, U., Ueki, Y., Kumagai, K., Hourai, S., Nagamine, J., Seki, H., Taiji, M., Noguchi, H. & Nagata, R. (2001). J. Med. Chem. 44, 4641–4649.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZaveri, N. T., Jiang, F., Olsen, C. M., Deschamps, J. R., Parrish, D., Polgar, W. & Toll, L. (2004). J. Med. Chem. 47, 2973–2976.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o210-o211
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds