organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o206-o207

Flupentixol tartrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 January 2014; accepted 21 January 2014; online 29 January 2014)

In the title salt, C23H26F3N2OS+·C4H5O6 [systematic name: 1-(2-hy­droxy­eth­yl)-4-[3-(2-(tri­fluoro­meth­yl)thioxanthen-9-yl­idene)prop­yl]piperazin-1-ium 3-carb­oxy-2,3-di­hydroxy­pro­pion­ate], the monoprotonated piperazine ring in the cation adopts a chair conformation, while the thio­pyran ring of the thioxanthene group has a boat conformation. The dihedral angle between the mean planes of the two outer aromatic rings of the thioxanthene groups is 31.6 (2)°. In the crystal, the cations and anions are linked via O—H⋯O, N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along [100]. In addition, R22(7), R22(11), R22(10) and R22(12) graph-set ring motifs involving the anions, and R22(9) graph-set ring motifs involving both the cations and anions are observed. The three F atoms of the tri­fluoro­methyl group are disordered over two sets of sites and the individual atoms were refined with occupancy ratios of 0.54 (6):0.46 (6), 0.72 (2):0.28 (2) and 0.67 (3):0.33 (3).

Related literature

For general background and the pharmacological properties of flupentixol, see: Robertson & Trimble (1981[Robertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761-763.]); Valle-Jones & Swarbrick (1981[Valle-Jones, J. C. & Swarbrick, D. J. (1981). Curr. Med. Res. Opin. 1, 543-549.]). For related structures, see: Jones et al. (1977[Jones, P. G., Kennard, O. & Horn, A. S. (1977). Acta Cryst. B33, 3744-3747.]); Post et al. (1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]); Siddegowda et al. (2011a[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079-o2080.],b[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017-o2018.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26F3N2OS+·C4H5O6

  • Mr = 584.60

  • Monoclinic, P 21 /n

  • a = 9.9239 (3) Å

  • b = 9.1968 (3) Å

  • c = 30.0099 (8) Å

  • β = 96.617 (3)°

  • V = 2720.68 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.67 mm−1

  • T = 173 K

  • 0.26 × 0.14 × 0.08 mm

Data collection
  • Agilent Gemini EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]). Tmin = 0.871, Tmax = 1.000

  • 16827 measured reflections

  • 5325 independent reflections

  • 4331 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.206

  • S = 1.09

  • 5325 reflections

  • 399 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O1Bi 0.82 1.83 2.652 (4) 178
N2A—H2A⋯O2Bi 0.96 (4) 1.73 (4) 2.675 (3) 165 (3)
O3B—H3B⋯O5Bii 0.82 2.18 2.903 (3) 147
O4B—H4B⋯O3Bii 0.82 2.14 2.954 (4) 175
O6B—H6B⋯N1A 0.82 1.83 2.629 (4) 165
C3A—H3AB⋯O5B 0.97 2.59 3.314 (4) 132
C5A—H5AA⋯O2Biii 0.97 2.53 3.466 (4) 163
C15A—H15A⋯O1Aiv 0.93 2.58 3.397 (5) 148
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Flupentixol [systematic name: 2-[4-[3-[(EZ)-2-(trifluoromethyl)-9H- thioxanthen-9-ylidene] propyl]piperazin-1-yl]ethanol is a well documented antipsychotic drug of the thioxanthene class. In addition to pure drug preparations, it is also available as deanxit, a combination product containing both melitracen and flupentixol. Low-dose neuroleptics have been applied increasingly in recent years to treat anxiety and depression (Robertson & Trimble, 1981; Valle-Jones & Swarbrick, 1981). The crystal structures of α-flupentixol (Post et al., 1975b), β-flupentixol (Post et al., 1975a), piflutixol (Jones et al., 1977) have been reported. The crystal structures of he dihydrochloride and difumarate salt of flupentixol has been reported by our group (Siddegowda et al., 2011a,b). In view of the importance of flupentixol, we prepared the tartrate salt of flupentixol and report herein on its crystal structure.

The title salt, Fig. 1, crystallizes with one independent monocation (A) and monoanion (B) in the asymmetric unit. Bond lengths are in normal ranges (Allen et al., 1987). The monoprotonated piperazine ring in A adopts a slightly disordered chair conformation while the thiopyran ring of the thioxanthene group has a boat conformation. The puckering parameters (Cremer & Pople, 1975) for the various rings are: (N1A//N2A/C1A-C4A) Q, θ, and φ = 0.578 (3) Å, 174.4 (3)° and 192 (3)°, respectively; (S1A/C16A/C11A/C10A/C22A/C17A) Q, θ, and φ = 0.486 (4) Å, 90.7 (5)° and 2.0 (5)°, respectively. The dihedral angle between the mean planes of the two outer aromatic rings of the thioxanthene groups is 31.6 (2)°.

In the crystal, the cations and anions are linked via O-H···O, N-H···O, O-H···N and C-H···O hydrogen bonds (Fig. 1), forming one-dimensional chains propagating along [1 0 0] (see Table 1 and Fig. 2). In addition, R22(7), R22(11), R22(10) and R22(12) graph set ring motifs involving the anions (Fig. 3) and R22(9) graph set ring motifs involving both the cations and anions (Fig. 2) are observed.

Related literature top

For general background and the pharmacological properties of flupentixol, see: Robertson & Trimble (1981); Valle-Jones & Swarbrick (1981). For related structures, see: Jones et al. (1977); Post et al. (1975a,b); Siddegowda et al. (2011a,b). For standard bond lengths, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A gift sample of flupentixol was donated by R. L. Fine Chemicals. The title salt was prepared by mixing flupentixol (0.2 g, 4.602 mmol) and tartaric acid (0.07 g, 4.602 mmol) dissolved in 5 mL of dimethyl formamide. The mixture was stirred at 320 K for 30 minutes. X-ray quality colourless block-like crystals were obtained on slow evaporation of the reaction mixture (M.p: 468-474 K).

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. All of the other H atoms were placed in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.97 and 0.98 Å for CH, methylene and methine H atoms, respectively, with Uiso(H) = 1.5Ueq(O), and = 1.2Ueq(C) for other H atoms. Disorder of the three F atoms of the trifluoromethyl group was modeled over two sets of sites: atoms F1A/F1AB, F2A/F2AB and F3A/F3AB with occupancy ratios of 0.54 (6):0.46 (6), 0.72 (2):0.28 (2) and 0.67 (3):0.33 (3), respectively. 6 reflections with were omitted in the final cycles of refinement.

Structure description top

Flupentixol [systematic name: 2-[4-[3-[(EZ)-2-(trifluoromethyl)-9H- thioxanthen-9-ylidene] propyl]piperazin-1-yl]ethanol is a well documented antipsychotic drug of the thioxanthene class. In addition to pure drug preparations, it is also available as deanxit, a combination product containing both melitracen and flupentixol. Low-dose neuroleptics have been applied increasingly in recent years to treat anxiety and depression (Robertson & Trimble, 1981; Valle-Jones & Swarbrick, 1981). The crystal structures of α-flupentixol (Post et al., 1975b), β-flupentixol (Post et al., 1975a), piflutixol (Jones et al., 1977) have been reported. The crystal structures of he dihydrochloride and difumarate salt of flupentixol has been reported by our group (Siddegowda et al., 2011a,b). In view of the importance of flupentixol, we prepared the tartrate salt of flupentixol and report herein on its crystal structure.

The title salt, Fig. 1, crystallizes with one independent monocation (A) and monoanion (B) in the asymmetric unit. Bond lengths are in normal ranges (Allen et al., 1987). The monoprotonated piperazine ring in A adopts a slightly disordered chair conformation while the thiopyran ring of the thioxanthene group has a boat conformation. The puckering parameters (Cremer & Pople, 1975) for the various rings are: (N1A//N2A/C1A-C4A) Q, θ, and φ = 0.578 (3) Å, 174.4 (3)° and 192 (3)°, respectively; (S1A/C16A/C11A/C10A/C22A/C17A) Q, θ, and φ = 0.486 (4) Å, 90.7 (5)° and 2.0 (5)°, respectively. The dihedral angle between the mean planes of the two outer aromatic rings of the thioxanthene groups is 31.6 (2)°.

In the crystal, the cations and anions are linked via O-H···O, N-H···O, O-H···N and C-H···O hydrogen bonds (Fig. 1), forming one-dimensional chains propagating along [1 0 0] (see Table 1 and Fig. 2). In addition, R22(7), R22(11), R22(10) and R22(12) graph set ring motifs involving the anions (Fig. 3) and R22(9) graph set ring motifs involving both the cations and anions (Fig. 2) are observed.

For general background and the pharmacological properties of flupentixol, see: Robertson & Trimble (1981); Valle-Jones & Swarbrick (1981). For related structures, see: Jones et al. (1977); Post et al. (1975a,b); Siddegowda et al. (2011a,b). For standard bond lengths, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title salt, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound showing the R22(9) graph set ring motifs involving cations and anions. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound showing the R22(7), R22(11), R22(10) and R22(12) graph set ring motifs involving the anions. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
1-(2-Hydroxyethyl)-4-{3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl}piperazin-1-ium 3-carboxy-2,3-dihydroxypropionate top
Crystal data top
C23H26F3N2OS+·C4H5O6F(000) = 1224
Mr = 584.60Dx = 1.427 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.9239 (3) ÅCell parameters from 5128 reflections
b = 9.1968 (3) Åθ = 3.0–72.5°
c = 30.0099 (8) ŵ = 1.67 mm1
β = 96.617 (3)°T = 173 K
V = 2720.68 (13) Å3Block, colourless
Z = 40.26 × 0.14 × 0.08 mm
Data collection top
Agilent Gemini EOS
diffractometer
5325 independent reflections
Radiation source: Enhance (Cu) X-ray Source4331 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.036
ω scansθmax = 72.6°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
h = 1112
Tmin = 0.871, Tmax = 1.000k = 1111
16827 measured reflectionsl = 3725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.078H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.0775P)2 + 5.4936P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5325 reflectionsΔρmax = 0.66 e Å3
399 parametersΔρmin = 0.71 e Å3
0 restraints
Crystal data top
C23H26F3N2OS+·C4H5O6V = 2720.68 (13) Å3
Mr = 584.60Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.9239 (3) ŵ = 1.67 mm1
b = 9.1968 (3) ÅT = 173 K
c = 30.0099 (8) Å0.26 × 0.14 × 0.08 mm
β = 96.617 (3)°
Data collection top
Agilent Gemini EOS
diffractometer
5325 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
4331 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 1.000Rint = 0.036
16827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.206H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.66 e Å3
5325 reflectionsΔρmin = 0.71 e Å3
399 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.22263 (14)0.19267 (13)0.15278 (4)0.0582 (3)
F1A0.7407 (15)0.0331 (16)0.3035 (8)0.097 (7)0.54 (6)
F1AB0.758 (2)0.042 (12)0.2900 (16)0.21 (2)0.46 (6)
F2A0.5941 (6)0.0768 (15)0.3334 (2)0.095 (4)0.72 (2)
F2AB0.676 (7)0.033 (5)0.3316 (9)0.23 (3)0.28 (2)
F3A0.6844 (14)0.1770 (13)0.2809 (4)0.128 (6)0.67 (3)
F3AB0.624 (4)0.182 (4)0.3087 (18)0.23 (3)0.33 (3)
O1A0.0148 (2)0.2962 (3)0.58260 (9)0.0404 (6)
H1A0.05330.26840.56680.061*
N1A0.1313 (3)0.2330 (3)0.39016 (9)0.0307 (6)
N2A0.1121 (3)0.2869 (3)0.48473 (9)0.0265 (6)
H2A0.015 (4)0.289 (4)0.4845 (12)0.036 (10)*
C1A0.0891 (3)0.3761 (4)0.40584 (11)0.0306 (7)
H1AA0.00900.37960.40450.037*
H1AB0.11770.45190.38650.037*
C2A0.1518 (3)0.4018 (4)0.45352 (11)0.0309 (7)
H2AA0.24980.40330.45440.037*
H2AB0.12320.49600.46350.037*
C3A0.1422 (3)0.1394 (4)0.46724 (11)0.0298 (7)
H3AA0.10580.06580.48570.036*
H3AB0.23960.12600.46930.036*
C4A0.0820 (3)0.1199 (4)0.41933 (12)0.0321 (7)
H4AA0.10630.02470.40880.039*
H4AB0.01610.12480.41750.039*
C5A0.1858 (3)0.3134 (4)0.53071 (11)0.0319 (7)
H5AA0.18160.41640.53730.038*
H5AB0.28050.28820.53030.038*
C6A0.1307 (3)0.2288 (4)0.56834 (12)0.0339 (8)
H6AA0.10730.13110.55800.041*
H6AB0.20080.22130.59360.041*
C7A0.0795 (4)0.2111 (4)0.34276 (12)0.0389 (8)
H7AA0.08320.30220.32670.047*
H7AB0.01450.18010.34050.047*
C8A0.1644 (4)0.0949 (5)0.32109 (14)0.0486 (10)
H8AA0.25420.13300.31830.058*
H8AB0.17440.00920.34000.058*
C9A0.0966 (4)0.0553 (5)0.27644 (14)0.0471 (10)
H9A0.00350.04050.27490.057*
C10A0.1497 (4)0.0376 (4)0.23774 (14)0.0458 (9)
C11A0.2971 (4)0.0496 (4)0.23310 (13)0.0431 (9)
C12A0.3973 (4)0.0074 (4)0.26503 (14)0.0434 (9)
H12A0.37190.05720.28970.052*
C13A0.5340 (5)0.0093 (5)0.26043 (15)0.0508 (10)
C14A0.5736 (5)0.0809 (5)0.22360 (16)0.0565 (12)
H14A0.66520.08980.22010.068*
C15A0.4755 (5)0.1393 (5)0.19180 (14)0.0547 (11)
H15A0.50200.19160.16770.066*
C16A0.3389 (5)0.1206 (4)0.19556 (14)0.0482 (10)
C17A0.0773 (5)0.0805 (5)0.15652 (15)0.0533 (11)
C18A0.0161 (6)0.0691 (6)0.11939 (16)0.0668 (14)
H18A0.00220.11890.09340.080*
C19A0.1312 (5)0.0157 (6)0.12010 (18)0.0630 (13)
H19A0.19580.02110.09510.076*
C20A0.1479 (5)0.0926 (6)0.15899 (17)0.0633 (13)
H20A0.22290.15290.15960.076*
C21A0.0565 (5)0.0809 (5)0.19603 (16)0.0550 (11)
H21A0.06980.13370.22160.066*
C22A0.0591 (4)0.0105 (5)0.19664 (14)0.0472 (10)
C23A0.6367 (5)0.0546 (6)0.2954 (2)0.0642 (13)
O1B0.7933 (3)0.2013 (3)0.53327 (9)0.0420 (6)
O2B0.8419 (2)0.3109 (3)0.47059 (8)0.0353 (6)
O3B0.5331 (2)0.1935 (3)0.50950 (8)0.0350 (6)
H3B0.58290.15940.53060.052*
O4B0.6567 (2)0.0008 (3)0.44961 (9)0.0382 (6)
H4B0.59990.05000.46050.057*
O5B0.3929 (2)0.0037 (3)0.41614 (9)0.0374 (6)
O6B0.3977 (2)0.2427 (3)0.40286 (9)0.0384 (6)
H6B0.31650.23100.39500.058*
C1B0.7628 (3)0.2518 (4)0.49518 (12)0.0301 (7)
C2B0.6127 (3)0.2418 (4)0.47601 (11)0.0301 (7)
H2B0.58090.33790.46530.036*
C3B0.6004 (3)0.1351 (4)0.43639 (12)0.0321 (7)
H3BA0.65110.17490.41300.038*
C4B0.4522 (3)0.1186 (4)0.41685 (11)0.0298 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0820 (8)0.0475 (6)0.0469 (6)0.0068 (6)0.0150 (6)0.0075 (5)
F1A0.042 (6)0.115 (11)0.126 (12)0.029 (5)0.030 (7)0.029 (7)
F1AB0.073 (8)0.39 (6)0.153 (19)0.00 (2)0.024 (11)0.11 (3)
F2A0.044 (3)0.173 (10)0.069 (4)0.013 (4)0.004 (2)0.046 (5)
F2AB0.40 (7)0.18 (3)0.077 (15)0.12 (4)0.04 (3)0.069 (18)
F3A0.129 (10)0.099 (8)0.146 (8)0.077 (7)0.023 (6)0.013 (5)
F3AB0.15 (2)0.19 (3)0.32 (5)0.12 (2)0.10 (3)0.19 (3)
O1A0.0287 (12)0.0545 (16)0.0379 (14)0.0055 (12)0.0034 (10)0.0116 (12)
N1A0.0282 (14)0.0325 (15)0.0319 (15)0.0036 (11)0.0057 (11)0.0002 (12)
N2A0.0212 (13)0.0293 (14)0.0296 (14)0.0016 (11)0.0049 (11)0.0001 (11)
C1A0.0266 (16)0.0294 (17)0.0361 (18)0.0044 (13)0.0049 (14)0.0042 (14)
C2A0.0289 (16)0.0277 (16)0.0360 (18)0.0007 (13)0.0031 (14)0.0017 (13)
C3A0.0275 (16)0.0265 (16)0.0360 (18)0.0035 (13)0.0068 (14)0.0004 (13)
C4A0.0299 (17)0.0294 (17)0.0379 (19)0.0004 (14)0.0076 (14)0.0028 (14)
C5A0.0258 (16)0.0356 (18)0.0328 (18)0.0039 (14)0.0026 (13)0.0028 (14)
C6A0.0267 (16)0.0407 (19)0.0336 (18)0.0070 (14)0.0002 (14)0.0012 (15)
C7A0.0389 (19)0.046 (2)0.0319 (19)0.0005 (16)0.0038 (15)0.0006 (16)
C8A0.036 (2)0.062 (3)0.046 (2)0.0048 (19)0.0005 (17)0.001 (2)
C9A0.037 (2)0.060 (3)0.045 (2)0.0037 (19)0.0045 (17)0.0053 (19)
C10A0.049 (2)0.042 (2)0.047 (2)0.0075 (18)0.0093 (19)0.0000 (17)
C11A0.055 (2)0.038 (2)0.038 (2)0.0011 (18)0.0142 (18)0.0053 (16)
C12A0.048 (2)0.044 (2)0.041 (2)0.0052 (18)0.0178 (18)0.0004 (17)
C13A0.050 (2)0.050 (2)0.054 (3)0.0012 (19)0.013 (2)0.010 (2)
C14A0.058 (3)0.052 (3)0.065 (3)0.016 (2)0.028 (2)0.013 (2)
C15A0.066 (3)0.062 (3)0.038 (2)0.020 (2)0.016 (2)0.008 (2)
C16A0.070 (3)0.036 (2)0.041 (2)0.0008 (19)0.017 (2)0.0062 (17)
C17A0.068 (3)0.043 (2)0.050 (2)0.022 (2)0.010 (2)0.0046 (19)
C18A0.092 (4)0.058 (3)0.048 (3)0.030 (3)0.000 (3)0.003 (2)
C19A0.055 (3)0.057 (3)0.072 (3)0.016 (2)0.012 (2)0.010 (2)
C20A0.050 (3)0.073 (3)0.063 (3)0.010 (2)0.013 (2)0.018 (3)
C21A0.052 (3)0.052 (3)0.060 (3)0.005 (2)0.007 (2)0.004 (2)
C22A0.050 (2)0.046 (2)0.046 (2)0.0109 (19)0.0073 (19)0.0062 (18)
C23A0.041 (2)0.073 (3)0.081 (4)0.002 (2)0.013 (2)0.002 (3)
O1B0.0320 (13)0.0488 (15)0.0436 (15)0.0057 (11)0.0028 (11)0.0103 (12)
O2B0.0216 (11)0.0418 (14)0.0427 (14)0.0011 (10)0.0039 (10)0.0017 (11)
O3B0.0229 (11)0.0455 (14)0.0373 (14)0.0031 (10)0.0068 (10)0.0041 (11)
O4B0.0249 (11)0.0362 (13)0.0528 (16)0.0069 (10)0.0020 (11)0.0016 (11)
O5B0.0263 (12)0.0380 (14)0.0467 (15)0.0008 (10)0.0003 (10)0.0023 (11)
O6B0.0220 (11)0.0409 (14)0.0513 (16)0.0007 (10)0.0004 (11)0.0106 (12)
C1B0.0237 (15)0.0280 (16)0.0383 (19)0.0008 (13)0.0019 (14)0.0033 (14)
C2B0.0209 (15)0.0321 (17)0.0378 (19)0.0022 (13)0.0051 (13)0.0035 (14)
C3B0.0200 (15)0.0375 (18)0.0388 (19)0.0031 (13)0.0039 (13)0.0013 (15)
C4B0.0224 (15)0.0373 (18)0.0304 (17)0.0037 (14)0.0058 (13)0.0037 (14)
Geometric parameters (Å, º) top
S1A—C16A1.754 (5)C9A—H9A0.9300
S1A—C17A1.788 (5)C9A—C10A1.340 (6)
F1A—C23A1.311 (12)C10A—C11A1.489 (6)
F1AB—F2AB1.71 (8)C10A—C22A1.461 (6)
F1AB—C23A1.24 (2)C11A—C12A1.401 (6)
F2A—C23A1.278 (8)C11A—C16A1.406 (6)
F2AB—C23A1.37 (3)C12A—H12A0.9300
F3A—C23A1.314 (8)C12A—C13A1.387 (6)
F3AB—C23A1.25 (2)C13A—C14A1.382 (6)
O1A—H1A0.8200C13A—C23A1.497 (7)
O1A—C6A1.415 (4)C14A—H14A0.9300
N1A—C1A1.474 (4)C14A—C15A1.391 (7)
N1A—C4A1.479 (4)C15A—H15A0.9300
N1A—C7A1.470 (4)C15A—C16A1.384 (6)
N2A—H2A0.96 (4)C17A—C18A1.369 (7)
N2A—C2A1.495 (4)C17A—C22A1.395 (6)
N2A—C3A1.497 (4)C18A—H18A0.9300
N2A—C5A1.505 (4)C18A—C19A1.385 (8)
C1A—H1AA0.9700C19A—H19A0.9300
C1A—H1AB0.9700C19A—C20A1.391 (8)
C1A—C2A1.512 (5)C20A—H20A0.9300
C2A—H2AA0.9700C20A—C21A1.356 (6)
C2A—H2AB0.9700C21A—H21A0.9300
C3A—H3AA0.9700C21A—C22A1.421 (6)
C3A—H3AB0.9700O1B—C1B1.239 (4)
C3A—C4A1.503 (5)O2B—C1B1.261 (4)
C4A—H4AA0.9700O3B—H3B0.8200
C4A—H4AB0.9700O3B—C2B1.419 (4)
C5A—H5AA0.9700O4B—H4B0.8200
C5A—H5AB0.9700O4B—C3B1.407 (4)
C5A—C6A1.524 (5)O5B—C4B1.208 (4)
C6A—H6AA0.9700O6B—H6B0.8200
C6A—H6AB0.9700O6B—C4B1.312 (4)
C7A—H7AA0.9700C1B—C2B1.537 (4)
C7A—H7AB0.9700C2B—H2B0.9800
C7A—C8A1.549 (6)C2B—C3B1.535 (5)
C8A—H8AA0.9700C3B—H3BA0.9800
C8A—H8AB0.9700C3B—C4B1.526 (4)
C8A—C9A1.474 (6)
C16A—S1A—C17A101.7 (2)C12A—C11A—C16A118.0 (4)
C23A—F1AB—F2AB52 (3)C16A—C11A—C10A119.6 (4)
C23A—F2AB—F1AB46 (2)C11A—C12A—H12A119.5
C6A—O1A—H1A109.5C13A—C12A—C11A121.1 (4)
C1A—N1A—C4A108.3 (2)C13A—C12A—H12A119.5
C7A—N1A—C1A110.6 (3)C12A—C13A—C23A118.8 (4)
C7A—N1A—C4A111.9 (3)C14A—C13A—C12A120.3 (4)
C2A—N2A—H2A108 (2)C14A—C13A—C23A120.9 (4)
C2A—N2A—C3A110.1 (2)C13A—C14A—H14A120.3
C2A—N2A—C5A108.9 (3)C13A—C14A—C15A119.4 (4)
C3A—N2A—H2A105 (2)C15A—C14A—H14A120.3
C3A—N2A—C5A111.9 (3)C14A—C15A—H15A119.6
C5A—N2A—H2A112 (2)C16A—C15A—C14A120.7 (4)
N1A—C1A—H1AA109.7C16A—C15A—H15A119.6
N1A—C1A—H1AB109.7C11A—C16A—S1A122.1 (4)
N1A—C1A—C2A109.9 (3)C15A—C16A—S1A117.5 (3)
H1AA—C1A—H1AB108.2C15A—C16A—C11A120.4 (4)
C2A—C1A—H1AA109.7C18A—C17A—S1A118.0 (4)
C2A—C1A—H1AB109.7C18A—C17A—C22A121.6 (5)
N2A—C2A—C1A111.9 (3)C22A—C17A—S1A120.4 (4)
N2A—C2A—H2AA109.2C17A—C18A—H18A119.6
N2A—C2A—H2AB109.2C17A—C18A—C19A120.8 (5)
C1A—C2A—H2AA109.2C19A—C18A—H18A119.6
C1A—C2A—H2AB109.2C18A—C19A—H19A120.7
H2AA—C2A—H2AB107.9C18A—C19A—C20A118.5 (5)
N2A—C3A—H3AA109.3C20A—C19A—H19A120.7
N2A—C3A—H3AB109.3C19A—C20A—H20A119.5
N2A—C3A—C4A111.8 (3)C21A—C20A—C19A120.9 (5)
H3AA—C3A—H3AB107.9C21A—C20A—H20A119.5
C4A—C3A—H3AA109.3C20A—C21A—H21A119.3
C4A—C3A—H3AB109.3C20A—C21A—C22A121.4 (5)
N1A—C4A—C3A111.1 (3)C22A—C21A—H21A119.3
N1A—C4A—H4AA109.4C17A—C22A—C10A121.5 (4)
N1A—C4A—H4AB109.4C17A—C22A—C21A116.5 (4)
C3A—C4A—H4AA109.4C21A—C22A—C10A121.9 (4)
C3A—C4A—H4AB109.4F1A—C23A—F3A106.4 (11)
H4AA—C4A—H4AB108.0F1A—C23A—C13A110.3 (8)
N2A—C5A—H5AA108.6F1AB—C23A—F2AB82 (5)
N2A—C5A—H5AB108.6F1AB—C23A—F3AB105 (4)
N2A—C5A—C6A114.7 (3)F1AB—C23A—C13A117.8 (14)
H5AA—C5A—H5AB107.6F2A—C23A—F1A105.5 (12)
C6A—C5A—H5AA108.6F2A—C23A—F3A109.1 (9)
C6A—C5A—H5AB108.6F2A—C23A—C13A114.9 (4)
O1A—C6A—C5A112.0 (3)F2AB—C23A—C13A115.7 (12)
O1A—C6A—H6AA109.2F3A—C23A—C13A110.3 (6)
O1A—C6A—H6AB109.2F3AB—C23A—F2AB109 (3)
C5A—C6A—H6AA109.2F3AB—C23A—C13A120.3 (11)
C5A—C6A—H6AB109.2C2B—O3B—H3B109.5
H6AA—C6A—H6AB107.9C3B—O4B—H4B109.5
N1A—C7A—H7AA109.5C4B—O6B—H6B109.5
N1A—C7A—H7AB109.5O1B—C1B—O2B126.8 (3)
N1A—C7A—C8A110.8 (3)O1B—C1B—C2B116.5 (3)
H7AA—C7A—H7AB108.1O2B—C1B—C2B116.7 (3)
C8A—C7A—H7AA109.5O3B—C2B—C1B110.4 (3)
C8A—C7A—H7AB109.5O3B—C2B—H2B109.3
C7A—C8A—H8AA109.7O3B—C2B—C3B110.3 (3)
C7A—C8A—H8AB109.7C1B—C2B—H2B109.3
H8AA—C8A—H8AB108.2C3B—C2B—C1B108.4 (3)
C9A—C8A—C7A109.8 (3)C3B—C2B—H2B109.3
C9A—C8A—H8AA109.7O4B—C3B—C2B110.8 (3)
C9A—C8A—H8AB109.7O4B—C3B—H3BA108.3
C8A—C9A—H9A115.3O4B—C3B—C4B110.7 (3)
C10A—C9A—C8A129.4 (4)C2B—C3B—H3BA108.3
C10A—C9A—H9A115.3C4B—C3B—C2B110.4 (3)
C9A—C10A—C11A124.1 (4)C4B—C3B—H3BA108.3
C9A—C10A—C22A119.2 (4)O5B—C4B—O6B125.0 (3)
C22A—C10A—C11A116.7 (4)O5B—C4B—C3B122.7 (3)
C12A—C11A—C10A122.4 (4)O6B—C4B—C3B112.3 (3)
S1A—C17A—C18A—C19A179.8 (4)C12A—C13A—C14A—C15A1.7 (7)
S1A—C17A—C22A—C10A6.3 (5)C12A—C13A—C23A—F1A141.2 (14)
S1A—C17A—C22A—C21A177.6 (3)C12A—C13A—C23A—F1AB178 (6)
F1AB—F2AB—C23A—F1A22 (3)C12A—C13A—C23A—F2A22.2 (10)
F1AB—F2AB—C23A—F2A138 (3)C12A—C13A—C23A—F2AB88 (4)
F1AB—F2AB—C23A—F3A51 (4)C12A—C13A—C23A—F3A101.6 (10)
F1AB—F2AB—C23A—F3AB104 (4)C12A—C13A—C23A—F3AB47 (4)
F1AB—F2AB—C23A—C13A117 (3)C13A—C14A—C15A—C16A3.1 (7)
F2AB—F1AB—C23A—F1A27 (3)C14A—C13A—C23A—F1A40.3 (14)
F2AB—F1AB—C23A—F2A43 (4)C14A—C13A—C23A—F1AB1 (6)
F2AB—F1AB—C23A—F3A142.6 (18)C14A—C13A—C23A—F2A159.3 (8)
F2AB—F1AB—C23A—F3AB108 (3)C14A—C13A—C23A—F2AB94 (4)
F2AB—F1AB—C23A—C13A115 (3)C14A—C13A—C23A—F3A77.0 (10)
N1A—C1A—C2A—N2A58.7 (3)C14A—C13A—C23A—F3AB132 (4)
N1A—C7A—C8A—C9A169.7 (3)C14A—C15A—C16A—S1A177.8 (4)
N2A—C3A—C4A—N1A57.1 (3)C14A—C15A—C16A—C11A3.8 (7)
N2A—C5A—C6A—O1A80.8 (4)C16A—S1A—C17A—C18A157.3 (3)
C1A—N1A—C4A—C3A61.0 (3)C16A—S1A—C17A—C22A24.3 (4)
C1A—N1A—C7A—C8A158.2 (3)C16A—C11A—C12A—C13A1.8 (6)
C2A—N2A—C3A—C4A51.9 (3)C17A—S1A—C16A—C11A26.5 (4)
C2A—N2A—C5A—C6A165.7 (3)C17A—S1A—C16A—C15A155.1 (4)
C3A—N2A—C2A—C1A53.0 (3)C17A—C18A—C19A—C20A1.9 (7)
C3A—N2A—C5A—C6A72.3 (3)C18A—C17A—C22A—C10A172.0 (4)
C4A—N1A—C1A—C2A61.3 (3)C18A—C17A—C22A—C21A4.1 (6)
C4A—N1A—C7A—C8A80.9 (4)C18A—C19A—C20A—C21A2.5 (7)
C5A—N2A—C2A—C1A176.0 (3)C19A—C20A—C21A—C22A0.3 (7)
C5A—N2A—C3A—C4A173.2 (3)C20A—C21A—C22A—C10A172.6 (4)
C7A—N1A—C1A—C2A175.7 (3)C20A—C21A—C22A—C17A3.5 (6)
C7A—N1A—C4A—C3A176.8 (3)C22A—C10A—C11A—C12A141.7 (4)
C7A—C8A—C9A—C10A135.7 (5)C22A—C10A—C11A—C16A38.5 (5)
C8A—C9A—C10A—C11A2.8 (8)C22A—C17A—C18A—C19A1.5 (7)
C8A—C9A—C10A—C22A174.6 (4)C23A—C13A—C14A—C15A179.8 (4)
C9A—C10A—C11A—C12A40.8 (6)O1B—C1B—C2B—O3B8.5 (4)
C9A—C10A—C11A—C16A139.0 (4)O1B—C1B—C2B—C3B112.4 (3)
C9A—C10A—C22A—C17A136.5 (4)O2B—C1B—C2B—O3B171.3 (3)
C9A—C10A—C22A—C21A39.4 (6)O2B—C1B—C2B—C3B67.8 (4)
C10A—C11A—C12A—C13A178.1 (4)O3B—C2B—C3B—O4B65.3 (3)
C10A—C11A—C16A—S1A1.6 (5)O3B—C2B—C3B—C4B57.7 (4)
C10A—C11A—C16A—C15A176.7 (4)O4B—C3B—C4B—O5B4.4 (5)
C11A—C10A—C22A—C17A41.1 (6)O4B—C3B—C4B—O6B178.0 (3)
C11A—C10A—C22A—C21A143.0 (4)C1B—C2B—C3B—O4B55.6 (3)
C11A—C12A—C13A—C14A1.1 (6)C1B—C2B—C3B—C4B178.6 (3)
C11A—C12A—C13A—C23A179.6 (4)C2B—C3B—C4B—O5B118.7 (4)
C12A—C11A—C16A—S1A178.5 (3)C2B—C3B—C4B—O6B58.9 (4)
C12A—C11A—C16A—C15A3.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1Bi0.821.832.652 (4)178
N2A—H2A···O2Bi0.96 (4)1.73 (4)2.675 (3)165 (3)
O3B—H3B···O5Bii0.822.182.903 (3)147
O4B—H4B···O3Bii0.822.142.954 (4)175
O6B—H6B···N1A0.821.832.629 (4)165
C3A—H3AB···O5B0.972.593.314 (4)132
C5A—H5AA···O2Biii0.972.533.466 (4)163
C15A—H15A···O1Aiv0.932.583.397 (5)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O1Bi0.821.832.652 (4)178
N2A—H2A···O2Bi0.96 (4)1.73 (4)2.675 (3)165 (3)
O3B—H3B···O5Bii0.822.182.903 (3)147
O4B—H4B···O3Bii0.822.142.954 (4)175
O6B—H6B···N1A0.821.832.629 (4)165
C3A—H3AB···O5B0.972.593.314 (4)132
C5A—H5AA···O2Biii0.972.533.466 (4)163
C15A—H15A···O1Aiv0.932.583.397 (5)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G., Kennard, O. & Horn, A. S. (1977). Acta Cryst. B33, 3744–3747.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761–763.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079–o2080.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017–o2018.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValle-Jones, J. C. & Swarbrick, D. J. (1981). Curr. Med. Res. Opin. 1, 543–549.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o206-o207
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds