metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m39-m40

μ-1,6,7,12-Tetra­aza­perylene-κ4N1,N12:N6,N7-bis­­[chlorido­(η6-p-cymene)ruthenium(II)] bis­­(hexa­fluorido­phosphate) acetone disolvate

aUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de

(Received 29 November 2013; accepted 7 January 2014; online 15 January 2014)

In the title compound, [Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6O, the binuclear RuII complex dication, [{RuCl(η6-cym)}2(μ-tape)]2+, built up by a planar 1,6,7,12-tetra­aza­perylene (tape) bridge, two η6-bound cymene (cym) ligands and two chloride ligands, includes an inversion center. The RuII atom shows the typical piano-stool motif for arene coordination. The counter-charge is provided by a hexa­fluorido­phosphate anion and the asymmetric unit is completed by an acetone mol­ecule of crystallization. The components of the structure are connected into a three-dimensional architecture by C—H⋯O/F/Cl inter­actions.

Related literature

For related RuII–arene complexes, see: Bennett & Smith (1974[Bennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233-241.]); Robertson et al. (1980[Robertson, D., Robertson, I. & Stephenson, T. (1980). J. Organomet. Chem. 202, 309-318.]); Govindaswamy et al. (2007[Govindaswamy, P., Canivet, J., Therrien, B., Süss-Fink, G., Štěpnička, P. & Ludvík, J. (2007). J. Organomet. Chem. 692, 3664-3675.]); Betanzos-Lara et al. (2012[Betanzos-Lara, S., Salassa, L., Habtemariam, A., Novakova, O., Pizarro, A. M., Clarkson, G. J., Liskova, B., Brabec, V. & Sadler, P. J. (2012). Organometallics, 31, 3466-3479.]). For tetra­aza­perylene-bridged RuII complexes, see: Brietzke, Mickler, Kelling & Holdt (2012[Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788-2797.]); Brietzke, Mickler, Kelling, Schilde et al. (2012[Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632-4643.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6O

  • Mr = 1203.82

  • Triclinic, [P \overline 1]

  • a = 8.6289 (5) Å

  • b = 11.9346 (7) Å

  • c = 12.7785 (7) Å

  • α = 66.099 (4)°

  • β = 83.536 (4)°

  • γ = 77.572 (4)°

  • V = 1174.45 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 293 K

  • 1.50 × 0.62 × 0.17 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.614, Tmax = 0.860

  • 15353 measured reflections

  • 4133 independent reflections

  • 3971 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.01

  • 4133 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

C9—Ru1 2.214 (2)
C10—Ru1 2.188 (2)
C11—Ru1 2.204 (3)
C12—Ru1 2.212 (3)
C13—Ru1 2.185 (3)
C14—Ru1 2.200 (3)
Cl1—Ru1 2.3844 (7)
N1—Ru1 2.105 (2)
N2—Ru1 2.105 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.39 3.194 (4) 145
C3—H3⋯Cl1i 0.93 2.84 3.637 (3) 145
C3—H3⋯F6ii 0.93 2.58 3.205 (4) 125
C4—H4⋯F6ii 0.93 2.60 3.223 (4) 125
C19—H19B⋯F4iii 0.96 2.46 3.321 (5) 149
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) x, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Experimental top

Synthesis and crystallization top

[RuCl2(η6-cym)]2 was prepared as described in literature (Bennett & Smith, 1974). [{RuCl(η6-cym)}2(µ-tape)](PF6)2 was prepared in the same way as described in literature for [RuCl(η6-cym)phen]PF6 (Robertson et al., 1980) using only one eqivalent tape instead of an excess of phenanthroline (phen). Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of di­ethyl ether into a saturated acetone solution of [{RuCl(η6-cym)}2(µ-tape)](PF6)2. Therefore, the solution was placed into a flask, connected with another di­ethyl­ether containing flask and a slight vacuum was applied. Dark crystals began to form at ambient temperature within one night.

Refinement top

All hydrogen atoms were calculated in their expected positions and refined as riding atoms with Uiso(H)=1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H)=1.5Ueq(C). The maximum residual electron density peak of 1.17 eÅ-3 was located 1.45 Å from the Ru atom.

Results and discussion top

1,6,7,12-Tetra­aza­perylene (tape) is a D2h-symmetric bis­(α,α'-di­imine)-type bridging ligand containing an extended π-heteroaromatic system. As for 2,2'-bi­pyrimidine (bpym), tape can be used to construct a series of dinuclear metal complexes. These dinuclear RuII complexes of tape display intense low-energy dπ(Ru)π* (tape) MLCT absorption bands. Separated metal oxidations for the bimetallic tape complexes and the inter­valence-charge-transfer (IVCT) transition, measured for [{Ru(L–N4Me2)}2(µ-tape)]5+, where L–N4Me2 is N,N'-di­methyl-2,11-di­aza­[3.3](2,6)-pyridino­phane, at 2472 nm indicate a high degree of electronic inter­action between the two ruthenium centres, mediated through the tape bridging ligand (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke, Mickler, Kelling, Schilde et al., 2012). Here, we report the crystal structure of µ2-1,6,7,12-tetra­aza­perylene-bis­[chlorido-(η6-p-cymene)-ruthenium(II)] bis­(hexa­fluoro­phosphate) acetone solvate, Fig. 1 & Table 1. The p-cymene (cym) ligands are coordinated to ruthenium in the typical piano-stool like mode. Comparison of the published [{RuCl(η6-cym)}2(µ-bpym)](PF6)2 structure (Govindaswamy et al., 2007) and [{RuCl(η6-cym)}2(µ-tape)](PF6)2 show slightly shorter Ru—N distances for the tape complex (Ru—N1, Ru—N2 = 2.117 (3) Å, 2.122 (3) Å and 2.105 (2) Å, 2.105 (2) Å for the bpym and tape complexes, respectively). These shorter bonds should be mainly lead back to the slightly higher π-acceptor strength of tape. Furthermore, only very small differences in the distance between ruthenium(II) and the p-cymene centroid (1.6886 (3) Å and 1.6847 (2) Å for bpym and tape complex, respectively) and excactly the same Ru—Cl bond length (2.384 (1) Å, 2.384 (7) Å) were observed. The Ru—Ru distance in [{RuCl(η6-cym)}2(µ-tape)](PF6)2 is 8.0715 (5) Å, and therefore 0.088 Å longer than in [{Ru(L—N4Me2)}2(µ-tape)](PF6)4 (Brietzke, Mickler, Kelling, Schilde et al., 2012), what is affected by longer Ru—N bonds in the arene complex. However, the Ru—N bond lengths (were N is part of a bpy type ligand) of [{RuCl(η6-cym)}2(µ-tape)](PF6)2 are closely related (Ru—N(bpy type) 2.121-2.080 Å) with earlier reported ruthenium arene complexes (Betanzos-Lara et al., 2012; Govindaswamy et al., 2007). The three-dimensional structure of the title compound is build from staggered layers, spaced by p-cymene moieties, hexa­fluoro­phosphate anions and the acetone solvent molecules. In the crystal structure the tape moieties inter­act via C3 with chlorine and hexa­fluoro­phosphate (F6), which is also linked to the adjacent C4, forming bifurcurated non classical hydrogen bonds, Table 2. Further weak hydrogen bonds can be found between tape (C1) and acetone (O1), with the result that acetone build a bridge via C19 to hexa­fluoro­phosphate (F4), Fig. 3.

Related literature top

For related RuII–arene complexes, see: Bennett & Smith (1974); Robertson et al. (1980); Govindaswamy et al. (2007); Betanzos-Lara et al. (2012). For tetraazaperylene- bridged RuII complexes, see: Brietzke, Mickler, Kelling & Holdt (2012); Brietzke, Mickler, Kelling, Schilde et al. (2012).

Structure description top

1,6,7,12-Tetra­aza­perylene (tape) is a D2h-symmetric bis­(α,α'-di­imine)-type bridging ligand containing an extended π-heteroaromatic system. As for 2,2'-bi­pyrimidine (bpym), tape can be used to construct a series of dinuclear metal complexes. These dinuclear RuII complexes of tape display intense low-energy dπ(Ru)π* (tape) MLCT absorption bands. Separated metal oxidations for the bimetallic tape complexes and the inter­valence-charge-transfer (IVCT) transition, measured for [{Ru(L–N4Me2)}2(µ-tape)]5+, where L–N4Me2 is N,N'-di­methyl-2,11-di­aza­[3.3](2,6)-pyridino­phane, at 2472 nm indicate a high degree of electronic inter­action between the two ruthenium centres, mediated through the tape bridging ligand (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke, Mickler, Kelling, Schilde et al., 2012). Here, we report the crystal structure of µ2-1,6,7,12-tetra­aza­perylene-bis­[chlorido-(η6-p-cymene)-ruthenium(II)] bis­(hexa­fluoro­phosphate) acetone solvate, Fig. 1 & Table 1. The p-cymene (cym) ligands are coordinated to ruthenium in the typical piano-stool like mode. Comparison of the published [{RuCl(η6-cym)}2(µ-bpym)](PF6)2 structure (Govindaswamy et al., 2007) and [{RuCl(η6-cym)}2(µ-tape)](PF6)2 show slightly shorter Ru—N distances for the tape complex (Ru—N1, Ru—N2 = 2.117 (3) Å, 2.122 (3) Å and 2.105 (2) Å, 2.105 (2) Å for the bpym and tape complexes, respectively). These shorter bonds should be mainly lead back to the slightly higher π-acceptor strength of tape. Furthermore, only very small differences in the distance between ruthenium(II) and the p-cymene centroid (1.6886 (3) Å and 1.6847 (2) Å for bpym and tape complex, respectively) and excactly the same Ru—Cl bond length (2.384 (1) Å, 2.384 (7) Å) were observed. The Ru—Ru distance in [{RuCl(η6-cym)}2(µ-tape)](PF6)2 is 8.0715 (5) Å, and therefore 0.088 Å longer than in [{Ru(L—N4Me2)}2(µ-tape)](PF6)4 (Brietzke, Mickler, Kelling, Schilde et al., 2012), what is affected by longer Ru—N bonds in the arene complex. However, the Ru—N bond lengths (were N is part of a bpy type ligand) of [{RuCl(η6-cym)}2(µ-tape)](PF6)2 are closely related (Ru—N(bpy type) 2.121-2.080 Å) with earlier reported ruthenium arene complexes (Betanzos-Lara et al., 2012; Govindaswamy et al., 2007). The three-dimensional structure of the title compound is build from staggered layers, spaced by p-cymene moieties, hexa­fluoro­phosphate anions and the acetone solvent molecules. In the crystal structure the tape moieties inter­act via C3 with chlorine and hexa­fluoro­phosphate (F6), which is also linked to the adjacent C4, forming bifurcurated non classical hydrogen bonds, Table 2. Further weak hydrogen bonds can be found between tape (C1) and acetone (O1), with the result that acetone build a bridge via C19 to hexa­fluoro­phosphate (F4), Fig. 3.

For related RuII–arene complexes, see: Bennett & Smith (1974); Robertson et al. (1980); Govindaswamy et al. (2007); Betanzos-Lara et al. (2012). For tetraazaperylene- bridged RuII complexes, see: Brietzke, Mickler, Kelling & Holdt (2012); Brietzke, Mickler, Kelling, Schilde et al. (2012).

Synthesis and crystallization top

[RuCl2(η6-cym)]2 was prepared as described in literature (Bennett & Smith, 1974). [{RuCl(η6-cym)}2(µ-tape)](PF6)2 was prepared in the same way as described in literature for [RuCl(η6-cym)phen]PF6 (Robertson et al., 1980) using only one eqivalent tape instead of an excess of phenanthroline (phen). Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of di­ethyl ether into a saturated acetone solution of [{RuCl(η6-cym)}2(µ-tape)](PF6)2. Therefore, the solution was placed into a flask, connected with another di­ethyl­ether containing flask and a slight vacuum was applied. Dark crystals began to form at ambient temperature within one night.

Refinement details top

All hydrogen atoms were calculated in their expected positions and refined as riding atoms with Uiso(H)=1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H)=1.5Ueq(C). The maximum residual electron density peak of 1.17 eÅ-3 was located 1.45 Å from the Ru atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of asymmetric unit with the atomic numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. The molecular structure of the title compound.
[Figure 3] Fig. 3. A packing diagram of the title compound is displayed approximately along the b axis. Hydrogen bonds are shown as orange dashed lines. One C—H···F hydrogen bond running along b was omitted for clarity.
µ-1,6,7,12-Tetraazaperylene-κ4N1,N12:N6,N7-bis[chlorido(η6-p-cymene)ruthenium(II)] bis(hexafluoridophosphate) acetone disolvate top
Crystal data top
[Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6OZ = 1
Mr = 1203.82F(000) = 604
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6289 (5) ÅCell parameters from 20121 reflections
b = 11.9346 (7) Åθ = 1.7–29.8°
c = 12.7785 (7) ŵ = 0.91 mm1
α = 66.099 (4)°T = 293 K
β = 83.536 (4)°Needle, black
γ = 77.572 (4)°1.50 × 0.62 × 0.17 mm
V = 1174.45 (12) Å3
Data collection top
Stoe IPDS-2
diffractometer
4133 independent reflections
Radiation source: sealed X-ray tube3971 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.047
ω scanθmax = 25.0°, θmin = 1.7°
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
h = 910
Tmin = 0.614, Tmax = 0.860k = 1414
15353 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.045P)2 + 1.286P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.003
4133 reflectionsΔρmax = 1.17 e Å3
302 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (8)
Crystal data top
[Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6Oγ = 77.572 (4)°
Mr = 1203.82V = 1174.45 (12) Å3
Triclinic, P1Z = 1
a = 8.6289 (5) ÅMo Kα radiation
b = 11.9346 (7) ŵ = 0.91 mm1
c = 12.7785 (7) ÅT = 293 K
α = 66.099 (4)°1.50 × 0.62 × 0.17 mm
β = 83.536 (4)°
Data collection top
Stoe IPDS-2
diffractometer
4133 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
3971 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.860Rint = 0.047
15353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 1.17 e Å3
4133 reflectionsΔρmin = 0.67 e Å3
302 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5372 (3)0.7198 (2)0.1198 (2)0.0278 (5)
H10.51270.76950.16190.033*
C20.6772 (3)0.7223 (2)0.0576 (2)0.0282 (5)
H20.74570.77200.05920.034*
C30.1439 (3)0.3571 (2)0.0791 (2)0.0288 (5)
H30.06790.30990.08530.035*
C40.1221 (3)0.4332 (2)0.1380 (2)0.0293 (5)
H40.03020.43640.18310.035*
C50.3591 (3)0.5000 (2)0.0674 (2)0.0237 (5)
C60.4691 (3)0.5778 (2)0.0619 (2)0.0231 (5)
C70.3911 (3)0.4242 (2)0.0050 (2)0.0231 (5)
C80.7183 (3)0.6500 (2)0.0090 (2)0.0250 (5)
C90.1106 (3)0.7601 (3)0.2988 (2)0.0302 (6)
C100.0022 (3)0.6859 (3)0.3042 (2)0.0313 (6)
H100.10380.72520.27780.038*
C110.0364 (3)0.5555 (3)0.3479 (2)0.0312 (6)
H110.04000.50970.35150.037*
C120.1928 (3)0.4922 (2)0.3873 (2)0.0314 (6)
C130.3041 (3)0.5644 (3)0.3818 (2)0.0307 (6)
H130.40670.52510.40620.037*
C140.2629 (3)0.6972 (2)0.3395 (2)0.0292 (5)
H140.33800.74280.33890.035*
C150.0633 (4)0.9007 (3)0.2507 (3)0.0383 (7)
H150.02540.92370.19990.046*
C160.0016 (5)0.9403 (3)0.3501 (3)0.0629 (11)
H16A0.08390.91360.40440.094*
H16B0.08830.90270.38680.094*
H16C0.02941.02950.32130.094*
C170.1938 (4)0.9683 (3)0.1810 (3)0.0527 (8)
H17A0.22540.94440.11740.079*
H17B0.28340.94670.22830.079*
H17C0.15551.05670.15320.079*
C180.2359 (4)0.3522 (3)0.4299 (3)0.0396 (7)
H18A0.16430.32210.39970.059*
H18B0.22840.31670.51200.059*
H18C0.34260.32870.40510.059*
C190.5166 (6)0.9785 (4)0.3738 (4)0.0748 (12)
H19A0.42161.04070.35340.112*
H19B0.59101.00670.40360.112*
H19C0.49140.90210.43100.112*
C200.5881 (4)0.9566 (3)0.2701 (3)0.0446 (7)
C210.6172 (6)1.0667 (5)0.1694 (4)0.0792 (13)
H21A0.68941.10640.18810.119*
H21B0.51881.12410.14580.119*
H21C0.66251.04190.10820.119*
Cl10.09547 (8)0.78153 (6)0.03483 (5)0.03517 (17)
F10.5627 (2)0.3410 (2)0.26787 (17)0.0589 (5)
F20.8898 (2)0.3000 (2)0.3836 (2)0.0675 (6)
F30.7334 (4)0.4617 (2)0.2626 (3)0.0938 (10)
F40.7241 (3)0.1753 (2)0.3893 (3)0.0811 (8)
F50.6323 (3)0.3400 (3)0.4315 (2)0.0837 (8)
F60.8209 (3)0.2954 (4)0.2213 (3)0.1058 (11)
N10.4310 (2)0.64737 (19)0.12313 (17)0.0247 (4)
N20.2288 (2)0.50461 (19)0.13364 (17)0.0253 (4)
O10.6209 (3)0.8519 (2)0.2737 (2)0.0611 (7)
P10.72700 (9)0.31873 (7)0.32587 (7)0.03586 (18)
Ru10.20978 (2)0.63314 (2)0.21078 (2)0.02344 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (13)0.0305 (12)0.0306 (12)0.0114 (11)0.0015 (11)0.0163 (10)
C20.0275 (13)0.0300 (12)0.0326 (13)0.0140 (11)0.0003 (11)0.0139 (11)
C30.0250 (12)0.0325 (13)0.0336 (13)0.0145 (11)0.0032 (11)0.0141 (11)
C40.0233 (12)0.0356 (13)0.0336 (13)0.0125 (11)0.0061 (11)0.0166 (11)
C50.0224 (11)0.0265 (11)0.0231 (11)0.0090 (10)0.0017 (9)0.0092 (9)
C60.0232 (12)0.0268 (11)0.0217 (11)0.0091 (10)0.0007 (9)0.0103 (9)
C70.0225 (12)0.0254 (11)0.0231 (11)0.0091 (10)0.0010 (10)0.0088 (9)
C80.0241 (12)0.0267 (12)0.0258 (12)0.0098 (10)0.0007 (10)0.0094 (10)
C90.0299 (13)0.0352 (14)0.0296 (13)0.0034 (11)0.0049 (11)0.0197 (11)
C100.0230 (12)0.0410 (14)0.0325 (13)0.0035 (11)0.0058 (11)0.0199 (12)
C110.0277 (13)0.0392 (14)0.0308 (13)0.0126 (11)0.0100 (11)0.0176 (11)
C120.0349 (14)0.0333 (13)0.0241 (12)0.0078 (12)0.0068 (11)0.0107 (10)
C130.0303 (13)0.0366 (14)0.0239 (12)0.0040 (11)0.0004 (10)0.0120 (11)
C140.0306 (13)0.0370 (14)0.0268 (12)0.0086 (11)0.0011 (10)0.0186 (11)
C150.0356 (15)0.0341 (14)0.0459 (16)0.0002 (12)0.0046 (13)0.0186 (13)
C160.079 (3)0.0439 (18)0.068 (2)0.0035 (18)0.009 (2)0.0350 (18)
C170.0503 (19)0.0348 (16)0.067 (2)0.0084 (14)0.0035 (17)0.0128 (15)
C180.0425 (16)0.0319 (14)0.0383 (15)0.0088 (13)0.0075 (13)0.0090 (12)
C190.088 (3)0.084 (3)0.073 (3)0.039 (3)0.021 (2)0.046 (2)
C200.0364 (16)0.0520 (19)0.0522 (18)0.0107 (14)0.0066 (14)0.0248 (15)
C210.076 (3)0.085 (3)0.057 (2)0.024 (3)0.001 (2)0.005 (2)
Cl10.0354 (3)0.0383 (3)0.0310 (3)0.0088 (3)0.0050 (3)0.0108 (3)
F10.0433 (11)0.0809 (14)0.0505 (11)0.0207 (10)0.0098 (9)0.0170 (10)
F20.0412 (11)0.0592 (12)0.0888 (16)0.0176 (10)0.0221 (11)0.0062 (11)
F30.104 (2)0.0417 (12)0.116 (2)0.0260 (13)0.0552 (18)0.0085 (13)
F40.0662 (15)0.0428 (11)0.124 (2)0.0188 (11)0.0134 (15)0.0148 (13)
F50.0653 (15)0.138 (2)0.0661 (14)0.0051 (15)0.0010 (12)0.0656 (16)
F60.0733 (17)0.181 (3)0.103 (2)0.053 (2)0.0486 (16)0.094 (2)
N10.0239 (10)0.0284 (10)0.0254 (10)0.0091 (9)0.0016 (8)0.0128 (8)
N20.0240 (10)0.0289 (10)0.0265 (10)0.0100 (9)0.0037 (9)0.0128 (9)
O10.0586 (15)0.0611 (16)0.0792 (18)0.0093 (13)0.0124 (14)0.0416 (14)
P10.0298 (4)0.0372 (4)0.0405 (4)0.0110 (3)0.0007 (3)0.0131 (3)
Ru10.02053 (13)0.02803 (14)0.02507 (14)0.00703 (9)0.00287 (9)0.01342 (9)
Geometric parameters (Å, º) top
C1—C21.368 (4)C13—H130.9300
C1—N11.376 (3)C14—Ru12.200 (3)
C1—H10.9300C14—H140.9300
C2—C81.411 (4)C15—C171.515 (5)
C2—H20.9300C15—C161.531 (4)
C3—C41.369 (4)C15—H150.9800
C3—C8i1.415 (4)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—N21.366 (3)C16—H16C0.9600
C4—H40.9300C17—H17A0.9600
C5—N21.335 (3)C17—H17B0.9600
C5—C71.399 (3)C17—H17C0.9600
C5—C61.442 (3)C18—H18A0.9600
C6—N11.327 (3)C18—H18B0.9600
C6—C7i1.400 (3)C18—H18C0.9600
C7—C6i1.400 (3)C19—C201.493 (5)
C7—C8i1.410 (3)C19—H19A0.9600
C8—C7i1.410 (3)C19—H19B0.9600
C8—C3i1.415 (4)C19—H19C0.9600
C9—C141.405 (4)C20—O11.203 (4)
C9—C101.430 (4)C20—C211.465 (5)
C9—C151.512 (4)C21—H21A0.9600
C9—Ru12.214 (2)C21—H21B0.9600
C10—C111.399 (4)C21—H21C0.9600
C10—Ru12.188 (2)Cl1—Ru12.3844 (7)
C10—H100.9300F1—P11.595 (2)
C11—C121.432 (4)F2—P11.592 (2)
C11—Ru12.204 (3)F3—P11.575 (2)
C11—H110.9300F4—P11.574 (2)
C12—C131.401 (4)F5—P11.579 (2)
C12—C181.506 (4)F6—P11.574 (3)
C12—Ru12.212 (3)N1—Ru12.105 (2)
C13—C141.427 (4)N2—Ru12.105 (2)
C13—Ru12.185 (3)
C2—C1—N1123.2 (2)C12—C18—H18A109.5
C2—C1—H1118.4C12—C18—H18B109.5
N1—C1—H1118.4H18A—C18—H18B109.5
C1—C2—C8120.4 (2)C12—C18—H18C109.5
C1—C2—H2119.8H18A—C18—H18C109.5
C8—C2—H2119.8H18B—C18—H18C109.5
C4—C3—C8i120.2 (2)C20—C19—H19A109.5
C4—C3—H3119.9C20—C19—H19B109.5
C8i—C3—H3119.9H19A—C19—H19B109.5
N2—C4—C3123.2 (2)C20—C19—H19C109.5
N2—C4—H4118.4H19A—C19—H19C109.5
C3—C4—H4118.4H19B—C19—H19C109.5
N2—C5—C7122.9 (2)O1—C20—C21123.9 (4)
N2—C5—C6117.0 (2)O1—C20—C19119.5 (4)
C7—C5—C6120.2 (2)C21—C20—C19116.6 (4)
N1—C6—C7i123.5 (2)C20—C21—H21A109.5
N1—C6—C5116.9 (2)C20—C21—H21B109.5
C7i—C6—C5119.7 (2)H21A—C21—H21B109.5
C6i—C7—C5120.2 (2)C20—C21—H21C109.5
C6i—C7—C8i119.9 (2)H21A—C21—H21C109.5
C5—C7—C8i119.9 (2)H21B—C21—H21C109.5
C2—C8—C7i116.0 (2)C6—N1—C1117.0 (2)
C2—C8—C3i127.8 (2)C6—N1—Ru1114.24 (17)
C7i—C8—C3i116.2 (2)C1—N1—Ru1128.77 (17)
C14—C9—C10117.4 (2)C5—N2—C4117.6 (2)
C14—C9—C15122.8 (3)C5—N2—Ru1113.90 (17)
C10—C9—C15119.8 (2)C4—N2—Ru1128.38 (16)
C14—C9—Ru170.90 (14)F6—P1—F490.27 (19)
C10—C9—Ru170.05 (14)F6—P1—F389.3 (2)
C15—C9—Ru1130.05 (19)F4—P1—F3178.93 (15)
C11—C10—C9121.8 (3)F6—P1—F5179.13 (19)
C11—C10—Ru172.07 (14)F4—P1—F588.87 (16)
C9—C10—Ru172.03 (14)F3—P1—F591.57 (18)
C11—C10—H10119.1F6—P1—F290.33 (16)
C9—C10—H10119.1F4—P1—F290.70 (13)
Ru1—C10—H10129.3F3—P1—F288.33 (13)
C10—C11—C12120.4 (3)F5—P1—F289.85 (14)
C10—C11—Ru170.78 (15)F6—P1—F190.38 (15)
C12—C11—Ru171.39 (15)F4—P1—F190.59 (13)
C10—C11—H11119.8F3—P1—F190.39 (13)
C12—C11—H11119.8F5—P1—F189.46 (13)
Ru1—C11—H11130.7F2—P1—F1178.53 (13)
C13—C12—C11118.1 (2)N1—Ru1—N277.91 (8)
C13—C12—C18121.5 (3)N1—Ru1—C1395.62 (9)
C11—C12—C18120.3 (3)N2—Ru1—C13117.75 (9)
C13—C12—Ru170.36 (15)N1—Ru1—C10157.21 (10)
C11—C12—Ru170.77 (15)N2—Ru1—C10124.11 (10)
C18—C12—Ru1128.85 (18)C13—Ru1—C1079.68 (10)
C12—C13—C14121.1 (3)N1—Ru1—C1495.53 (9)
C12—C13—Ru172.49 (15)N2—Ru1—C14154.82 (9)
C14—C13—Ru171.58 (14)C13—Ru1—C1437.97 (10)
C12—C13—H13119.4C10—Ru1—C1467.02 (10)
C14—C13—H13119.4N1—Ru1—C11158.10 (9)
Ru1—C13—H13128.9N2—Ru1—C1197.57 (9)
C9—C14—C13121.2 (3)C13—Ru1—C1167.23 (10)
C9—C14—Ru171.98 (15)C10—Ru1—C1137.15 (10)
C13—C14—Ru170.45 (15)C14—Ru1—C1179.41 (10)
C9—C14—H14119.4N1—Ru1—C12120.53 (9)
C13—C14—H14119.4N2—Ru1—C1294.32 (9)
Ru1—C14—H14130.9C13—Ru1—C1237.15 (11)
C9—C15—C17114.1 (2)C10—Ru1—C1267.90 (10)
C9—C15—C16108.1 (2)C14—Ru1—C1267.84 (10)
C17—C15—C16112.0 (3)C11—Ru1—C1237.84 (10)
C9—C15—H15107.5N1—Ru1—C9119.65 (9)
C17—C15—H15107.5N2—Ru1—C9161.77 (10)
C16—C15—H15107.5C13—Ru1—C968.20 (10)
C15—C16—H16A109.5C10—Ru1—C937.92 (11)
C15—C16—H16B109.5C14—Ru1—C937.11 (10)
H16A—C16—H16B109.5C11—Ru1—C968.03 (10)
C15—C16—H16C109.5C12—Ru1—C981.09 (10)
H16A—C16—H16C109.5N1—Ru1—Cl186.45 (6)
H16B—C16—H16C109.5N2—Ru1—Cl184.46 (6)
C15—C17—H17A109.5C13—Ru1—Cl1157.67 (7)
C15—C17—H17B109.5C10—Ru1—Cl189.80 (7)
H17A—C17—H17B109.5C14—Ru1—Cl1119.71 (7)
C15—C17—H17C109.5C11—Ru1—Cl1114.67 (8)
H17A—C17—H17C109.5C12—Ru1—Cl1152.21 (8)
H17B—C17—H17C109.5C9—Ru1—Cl191.43 (7)
N1—C1—C2—C81.0 (4)C11—C12—C13—Ru154.0 (2)
C8i—C3—C4—N20.3 (4)C18—C12—C13—Ru1124.2 (2)
N2—C5—C6—N10.1 (3)C10—C9—C14—C131.5 (4)
C7—C5—C6—N1179.9 (2)C15—C9—C14—C13178.5 (2)
N2—C5—C6—C7i179.2 (2)Ru1—C9—C14—C1352.6 (2)
C7—C5—C6—C7i0.8 (4)C10—C9—C14—Ru154.1 (2)
N2—C5—C7—C6i179.2 (2)C15—C9—C14—Ru1125.9 (2)
C6—C5—C7—C6i0.8 (4)C12—C13—C14—C91.9 (4)
N2—C5—C7—C8i1.2 (4)Ru1—C13—C14—C953.3 (2)
C6—C5—C7—C8i178.8 (2)C12—C13—C14—Ru155.2 (2)
C1—C2—C8—C7i1.0 (4)C14—C9—C15—C1737.2 (4)
C1—C2—C8—C3i179.1 (2)C10—C9—C15—C17142.9 (3)
C14—C9—C10—C110.1 (4)Ru1—C9—C15—C1754.7 (4)
C15—C9—C10—C11180.0 (2)C14—C9—C15—C1688.1 (3)
Ru1—C9—C10—C1154.5 (2)C10—C9—C15—C1691.9 (3)
C14—C9—C10—Ru154.5 (2)Ru1—C9—C15—C16180.0 (3)
C15—C9—C10—Ru1125.5 (2)C7i—C6—N1—C10.5 (4)
C9—C10—C11—C121.1 (4)C5—C6—N1—C1178.8 (2)
Ru1—C10—C11—C1253.4 (2)C7i—C6—N1—Ru1178.40 (18)
C9—C10—C11—Ru154.4 (2)C5—C6—N1—Ru12.4 (3)
C10—C11—C12—C130.8 (4)C2—C1—N1—C60.2 (4)
Ru1—C11—C12—C1353.8 (2)C2—C1—N1—Ru1178.90 (19)
C10—C11—C12—C18177.5 (2)C7—C5—N2—C41.2 (4)
Ru1—C11—C12—C18124.4 (2)C6—C5—N2—C4178.8 (2)
C10—C11—C12—Ru153.1 (2)C7—C5—N2—Ru1177.53 (18)
C11—C12—C13—C140.7 (4)C6—C5—N2—Ru12.5 (3)
C18—C12—C13—C14179.0 (2)C3—C4—N2—C50.8 (4)
Ru1—C12—C13—C1454.7 (2)C3—C4—N2—Ru1176.49 (19)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.393.194 (4)145
C3—H3···Cl1ii0.932.843.637 (3)145
C3—H3···F6iii0.932.583.205 (4)125
C4—H4···F6iii0.932.603.223 (4)125
C19—H19B···F4iv0.962.463.321 (5)149
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z; (iv) x, y+1, z.
Selected bond lengths (Å) top
C9—Ru12.214 (2)C14—Ru12.200 (3)
C10—Ru12.188 (2)Cl1—Ru12.3844 (7)
C11—Ru12.204 (3)N1—Ru12.105 (2)
C12—Ru12.212 (3)N2—Ru12.105 (2)
C13—Ru12.185 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.393.194 (4)145
C3—H3···Cl1i0.932.843.637 (3)145
C3—H3···F6ii0.932.583.205 (4)125
C4—H4···F6ii0.932.603.223 (4)125
C19—H19B···F4iii0.962.463.321 (5)149
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y+1, z.
 

References

First citationBennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233–241.  CrossRef Web of Science Google Scholar
First citationBetanzos-Lara, S., Salassa, L., Habtemariam, A., Novakova, O., Pizarro, A. M., Clarkson, G. J., Liskova, B., Brabec, V. & Sadler, P. J. (2012). Organometallics, 31, 3466–3479.  CAS Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788–2797.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632–4643.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGovindaswamy, P., Canivet, J., Therrien, B., Süss-Fink, G., Štěpnička, P. & Ludvík, J. (2007). J. Organomet. Chem. 692, 3664–3675.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobertson, D., Robertson, I. & Stephenson, T. (1980). J. Organomet. Chem. 202, 309–318.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m39-m40
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds