metal-organic compounds
μ-1,6,7,12-Tetraazaperylene-κ4N1,N12:N6,N7-bis[chlorido(η6-p-cymene)ruthenium(II)] bis(hexafluoridophosphate) acetone disolvate
aUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de
In the title compound, [Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6O, the binuclear RuII complex dication, [{RuCl(η6-cym)}2(μ-tape)]2+, built up by a planar 1,6,7,12-tetraazaperylene (tape) bridge, two η6-bound cymene (cym) ligands and two chloride ligands, includes an inversion center. The RuII atom shows the typical piano-stool motif for arene coordination. The counter-charge is provided by a hexafluoridophosphate anion and the is completed by an acetone molecule of crystallization. The components of the structure are connected into a three-dimensional architecture by C—H⋯O/F/Cl interactions.
CCDC reference: 980291
Related literature
For related RuII–arene complexes, see: Bennett & Smith (1974); Robertson et al. (1980); Govindaswamy et al. (2007); Betanzos-Lara et al. (2012). For tetraazaperylene-bridged RuII complexes, see: Brietzke, Mickler, Kelling & Holdt (2012); Brietzke, Mickler, Kelling, Schilde et al. (2012).
Experimental
Crystal data
|
|
Data collection: X-AREA (Stoe & Cie, 2011); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 980291
10.1107/S160053681400035X/tk5277sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681400035X/tk5277Isup2.hkl
[RuCl2(η6-cym)]2 was prepared as described in literature (Bennett & Smith, 1974). [{RuCl(η6-cym)}2(µ-tape)](PF6)2 was prepared in the same way as described in literature for [RuCl(η6-cym)phen]PF6 (Robertson et al., 1980) using only one eqivalent tape instead of an excess of phenanthroline (phen). Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of diethyl ether into a saturated acetone solution of [{RuCl(η6-cym)}2(µ-tape)](PF6)2. Therefore, the solution was placed into a flask, connected with another diethylether containing flask and a slight vacuum was applied. Dark crystals began to form at ambient temperature within one night.
All hydrogen atoms were calculated in their expected positions and refined as riding atoms with Uiso(H)=1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H)=1.5Ueq(C). The maximum residual electron density peak of 1.17 eÅ-3 was located 1.45 Å from the Ru atom.
1,6,7,12-Tetraazaperylene (tape) is a D2h-symmetric bis(α,α'-diimine)-type bridging ligand containing an extended π-heteroaromatic system. As for 2,2'-bipyrimidine (bpym), tape can be used to construct a series of dinuclear metal complexes. These dinuclear RuII complexes of tape display intense low-energy dπ(Ru)→π* (tape) MLCT absorption bands. Separated metal oxidations for the bimetallic tape complexes and the intervalence-charge-transfer (IVCT) transition, measured for [{Ru(L–N4Me2)}2(µ-tape)]5+, where L–N4Me2 is N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, at 2472 nm indicate a high degree of electronic interaction between the two ruthenium centres, mediated through the tape bridging ligand (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke, Mickler, Kelling, Schilde et al., 2012). Here, we report the of µ2-1,6,7,12-tetraazaperylene-bis[chlorido-(η6-p-cymene)-ruthenium(II)] bis(hexafluorophosphate) acetone solvate, Fig. 1 & Table 1. The p-cymene (cym) ligands are coordinated to ruthenium in the typical piano-stool like mode. Comparison of the published [{RuCl(η6-cym)}2(µ-bpym)](PF6)2 structure (Govindaswamy et al., 2007) and [{RuCl(η6-cym)}2(µ-tape)](PF6)2 show slightly shorter Ru—N distances for the tape complex (Ru—N1, Ru—N2 = 2.117 (3) Å, 2.122 (3) Å and 2.105 (2) Å, 2.105 (2) Å for the bpym and tape complexes, respectively). These shorter bonds should be mainly lead back to the slightly higher π-acceptor strength of tape. Furthermore, only very small differences in the distance between ruthenium(II) and the p-cymene centroid (1.6886 (3) Å and 1.6847 (2) Å for bpym and tape complex, respectively) and excactly the same Ru—Cl bond length (2.384 (1) Å, 2.384 (7) Å) were observed. The Ru—Ru distance in [{RuCl(η6-cym)}2(µ-tape)](PF6)2 is 8.0715 (5) Å, and therefore 0.088 Å longer than in [{Ru(L—N4Me2)}2(µ-tape)](PF6)4 (Brietzke, Mickler, Kelling, Schilde et al., 2012), what is affected by longer Ru—N bonds in the arene complex. However, the Ru—N bond lengths (were N is part of a bpy type ligand) of [{RuCl(η6-cym)}2(µ-tape)](PF6)2 are closely related (Ru—N(bpy type) 2.121-2.080 Å) with earlier reported ruthenium arene complexes (Betanzos-Lara et al., 2012; Govindaswamy et al., 2007). The three-dimensional structure of the title compound is build from staggered layers, spaced by p-cymene moieties, hexafluorophosphate anions and the acetone solvent molecules. In the the tape moieties interact via C3 with chlorine and hexafluorophosphate (F6), which is also linked to the adjacent C4, forming bifurcurated non classical hydrogen bonds, Table 2. Further weak hydrogen bonds can be found between tape (C1) and acetone (O1), with the result that acetone build a bridge via C19 to hexafluorophosphate (F4), Fig. 3.
1,6,7,12-Tetraazaperylene (tape) is a D2h-symmetric bis(α,α'-diimine)-type bridging ligand containing an extended π-heteroaromatic system. As for 2,2'-bipyrimidine (bpym), tape can be used to construct a series of dinuclear metal complexes. These dinuclear RuII complexes of tape display intense low-energy dπ(Ru)→π* (tape) MLCT absorption bands. Separated metal oxidations for the bimetallic tape complexes and the intervalence-charge-transfer (IVCT) transition, measured for [{Ru(L–N4Me2)}2(µ-tape)]5+, where L–N4Me2 is N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, at 2472 nm indicate a high degree of electronic interaction between the two ruthenium centres, mediated through the tape bridging ligand (Brietzke, Mickler, Kelling & Holdt, 2012; Brietzke, Mickler, Kelling, Schilde et al., 2012). Here, we report the of µ2-1,6,7,12-tetraazaperylene-bis[chlorido-(η6-p-cymene)-ruthenium(II)] bis(hexafluorophosphate) acetone solvate, Fig. 1 & Table 1. The p-cymene (cym) ligands are coordinated to ruthenium in the typical piano-stool like mode. Comparison of the published [{RuCl(η6-cym)}2(µ-bpym)](PF6)2 structure (Govindaswamy et al., 2007) and [{RuCl(η6-cym)}2(µ-tape)](PF6)2 show slightly shorter Ru—N distances for the tape complex (Ru—N1, Ru—N2 = 2.117 (3) Å, 2.122 (3) Å and 2.105 (2) Å, 2.105 (2) Å for the bpym and tape complexes, respectively). These shorter bonds should be mainly lead back to the slightly higher π-acceptor strength of tape. Furthermore, only very small differences in the distance between ruthenium(II) and the p-cymene centroid (1.6886 (3) Å and 1.6847 (2) Å for bpym and tape complex, respectively) and excactly the same Ru—Cl bond length (2.384 (1) Å, 2.384 (7) Å) were observed. The Ru—Ru distance in [{RuCl(η6-cym)}2(µ-tape)](PF6)2 is 8.0715 (5) Å, and therefore 0.088 Å longer than in [{Ru(L—N4Me2)}2(µ-tape)](PF6)4 (Brietzke, Mickler, Kelling, Schilde et al., 2012), what is affected by longer Ru—N bonds in the arene complex. However, the Ru—N bond lengths (were N is part of a bpy type ligand) of [{RuCl(η6-cym)}2(µ-tape)](PF6)2 are closely related (Ru—N(bpy type) 2.121-2.080 Å) with earlier reported ruthenium arene complexes (Betanzos-Lara et al., 2012; Govindaswamy et al., 2007). The three-dimensional structure of the title compound is build from staggered layers, spaced by p-cymene moieties, hexafluorophosphate anions and the acetone solvent molecules. In the the tape moieties interact via C3 with chlorine and hexafluorophosphate (F6), which is also linked to the adjacent C4, forming bifurcurated non classical hydrogen bonds, Table 2. Further weak hydrogen bonds can be found between tape (C1) and acetone (O1), with the result that acetone build a bridge via C19 to hexafluorophosphate (F4), Fig. 3.
For related RuII–arene complexes, see: Bennett & Smith (1974); Robertson et al. (1980); Govindaswamy et al. (2007); Betanzos-Lara et al. (2012). For tetraazaperylene- bridged RuII complexes, see: Brietzke, Mickler, Kelling & Holdt (2012); Brietzke, Mickler, Kelling, Schilde et al. (2012).
[RuCl2(η6-cym)]2 was prepared as described in literature (Bennett & Smith, 1974). [{RuCl(η6-cym)}2(µ-tape)](PF6)2 was prepared in the same way as described in literature for [RuCl(η6-cym)phen]PF6 (Robertson et al., 1980) using only one eqivalent tape instead of an excess of phenanthroline (phen). Crystals suitable for X-ray structure analysis were obtained by vapor diffusion of diethyl ether into a saturated acetone solution of [{RuCl(η6-cym)}2(µ-tape)](PF6)2. Therefore, the solution was placed into a flask, connected with another diethylether containing flask and a slight vacuum was applied. Dark crystals began to form at ambient temperature within one night.
detailsAll hydrogen atoms were calculated in their expected positions and refined as riding atoms with Uiso(H)=1.2Ueq(C) with the exception of methyl hydrogen atoms, which were refined with Uiso(H)=1.5Ueq(C). The maximum residual electron density peak of 1.17 eÅ-3 was located 1.45 Å from the Ru atom.
Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).Fig. 1. ORTEP drawing of asymmetric unit with the atomic numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms. | |
Fig. 2. The molecular structure of the title compound. | |
Fig. 3. A packing diagram of the title compound is displayed approximately along the b axis. Hydrogen bonds are shown as orange dashed lines. One C—H···F hydrogen bond running along b was omitted for clarity. |
[Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6O | Z = 1 |
Mr = 1203.82 | F(000) = 604 |
Triclinic, P1 | Dx = 1.702 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6289 (5) Å | Cell parameters from 20121 reflections |
b = 11.9346 (7) Å | θ = 1.7–29.8° |
c = 12.7785 (7) Å | µ = 0.91 mm−1 |
α = 66.099 (4)° | T = 293 K |
β = 83.536 (4)° | Needle, black |
γ = 77.572 (4)° | 1.50 × 0.62 × 0.17 mm |
V = 1174.45 (12) Å3 |
Stoe IPDS-2 diffractometer | 4133 independent reflections |
Radiation source: sealed X-ray tube | 3971 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.047 |
ω scan | θmax = 25.0°, θmin = 1.7° |
Absorption correction: integration (X-RED; Stoe & Cie, 2011) | h = −9→10 |
Tmin = 0.614, Tmax = 0.860 | k = −14→14 |
15353 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.045P)2 + 1.286P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.003 |
4133 reflections | Δρmax = 1.17 e Å−3 |
302 parameters | Δρmin = −0.67 e Å−3 |
0 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0088 (8) |
[Ru2(C10H14)2Cl2(C16H8N4)](PF6)2·2C3H6O | γ = 77.572 (4)° |
Mr = 1203.82 | V = 1174.45 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.6289 (5) Å | Mo Kα radiation |
b = 11.9346 (7) Å | µ = 0.91 mm−1 |
c = 12.7785 (7) Å | T = 293 K |
α = 66.099 (4)° | 1.50 × 0.62 × 0.17 mm |
β = 83.536 (4)° |
Stoe IPDS-2 diffractometer | 4133 independent reflections |
Absorption correction: integration (X-RED; Stoe & Cie, 2011) | 3971 reflections with I > 2σ(I) |
Tmin = 0.614, Tmax = 0.860 | Rint = 0.047 |
15353 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.17 e Å−3 |
4133 reflections | Δρmin = −0.67 e Å−3 |
302 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5372 (3) | 0.7198 (2) | 0.1198 (2) | 0.0278 (5) | |
H1 | 0.5127 | 0.7695 | 0.1619 | 0.033* | |
C2 | 0.6772 (3) | 0.7223 (2) | 0.0576 (2) | 0.0282 (5) | |
H2 | 0.7457 | 0.7720 | 0.0592 | 0.034* | |
C3 | 0.1439 (3) | 0.3571 (2) | 0.0791 (2) | 0.0288 (5) | |
H3 | 0.0679 | 0.3099 | 0.0853 | 0.035* | |
C4 | 0.1221 (3) | 0.4332 (2) | 0.1380 (2) | 0.0293 (5) | |
H4 | 0.0302 | 0.4364 | 0.1831 | 0.035* | |
C5 | 0.3591 (3) | 0.5000 (2) | 0.0674 (2) | 0.0237 (5) | |
C6 | 0.4691 (3) | 0.5778 (2) | 0.0619 (2) | 0.0231 (5) | |
C7 | 0.3911 (3) | 0.4242 (2) | 0.0050 (2) | 0.0231 (5) | |
C8 | 0.7183 (3) | 0.6500 (2) | −0.0090 (2) | 0.0250 (5) | |
C9 | 0.1106 (3) | 0.7601 (3) | 0.2988 (2) | 0.0302 (6) | |
C10 | −0.0022 (3) | 0.6859 (3) | 0.3042 (2) | 0.0313 (6) | |
H10 | −0.1038 | 0.7252 | 0.2778 | 0.038* | |
C11 | 0.0364 (3) | 0.5555 (3) | 0.3479 (2) | 0.0312 (6) | |
H11 | −0.0400 | 0.5097 | 0.3515 | 0.037* | |
C12 | 0.1928 (3) | 0.4922 (2) | 0.3873 (2) | 0.0314 (6) | |
C13 | 0.3041 (3) | 0.5644 (3) | 0.3818 (2) | 0.0307 (6) | |
H13 | 0.4067 | 0.5251 | 0.4062 | 0.037* | |
C14 | 0.2629 (3) | 0.6972 (2) | 0.3395 (2) | 0.0292 (5) | |
H14 | 0.3380 | 0.7428 | 0.3389 | 0.035* | |
C15 | 0.0633 (4) | 0.9007 (3) | 0.2507 (3) | 0.0383 (7) | |
H15 | −0.0254 | 0.9237 | 0.1999 | 0.046* | |
C16 | 0.0016 (5) | 0.9403 (3) | 0.3501 (3) | 0.0629 (11) | |
H16A | 0.0839 | 0.9136 | 0.4044 | 0.094* | |
H16B | −0.0883 | 0.9027 | 0.3868 | 0.094* | |
H16C | −0.0294 | 1.0295 | 0.3213 | 0.094* | |
C17 | 0.1938 (4) | 0.9683 (3) | 0.1810 (3) | 0.0527 (8) | |
H17A | 0.2254 | 0.9444 | 0.1174 | 0.079* | |
H17B | 0.2834 | 0.9467 | 0.2283 | 0.079* | |
H17C | 0.1555 | 1.0567 | 0.1532 | 0.079* | |
C18 | 0.2359 (4) | 0.3522 (3) | 0.4299 (3) | 0.0396 (7) | |
H18A | 0.1643 | 0.3221 | 0.3997 | 0.059* | |
H18B | 0.2284 | 0.3167 | 0.5120 | 0.059* | |
H18C | 0.3426 | 0.3287 | 0.4051 | 0.059* | |
C19 | 0.5166 (6) | 0.9785 (4) | 0.3738 (4) | 0.0748 (12) | |
H19A | 0.4216 | 1.0407 | 0.3534 | 0.112* | |
H19B | 0.5910 | 1.0067 | 0.4036 | 0.112* | |
H19C | 0.4914 | 0.9021 | 0.4310 | 0.112* | |
C20 | 0.5881 (4) | 0.9566 (3) | 0.2701 (3) | 0.0446 (7) | |
C21 | 0.6172 (6) | 1.0667 (5) | 0.1694 (4) | 0.0792 (13) | |
H21A | 0.6894 | 1.1064 | 0.1881 | 0.119* | |
H21B | 0.5188 | 1.1241 | 0.1458 | 0.119* | |
H21C | 0.6625 | 1.0419 | 0.1082 | 0.119* | |
Cl1 | 0.09547 (8) | 0.78153 (6) | 0.03483 (5) | 0.03517 (17) | |
F1 | 0.5627 (2) | 0.3410 (2) | 0.26787 (17) | 0.0589 (5) | |
F2 | 0.8898 (2) | 0.3000 (2) | 0.3836 (2) | 0.0675 (6) | |
F3 | 0.7334 (4) | 0.4617 (2) | 0.2626 (3) | 0.0938 (10) | |
F4 | 0.7241 (3) | 0.1753 (2) | 0.3893 (3) | 0.0811 (8) | |
F5 | 0.6323 (3) | 0.3400 (3) | 0.4315 (2) | 0.0837 (8) | |
F6 | 0.8209 (3) | 0.2954 (4) | 0.2213 (3) | 0.1058 (11) | |
N1 | 0.4310 (2) | 0.64737 (19) | 0.12313 (17) | 0.0247 (4) | |
N2 | 0.2288 (2) | 0.50461 (19) | 0.13364 (17) | 0.0253 (4) | |
O1 | 0.6209 (3) | 0.8519 (2) | 0.2737 (2) | 0.0611 (7) | |
P1 | 0.72700 (9) | 0.31873 (7) | 0.32587 (7) | 0.03586 (18) | |
Ru1 | 0.20978 (2) | 0.63314 (2) | 0.21078 (2) | 0.02344 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0287 (13) | 0.0305 (12) | 0.0306 (12) | −0.0114 (11) | 0.0015 (11) | −0.0163 (10) |
C2 | 0.0275 (13) | 0.0300 (12) | 0.0326 (13) | −0.0140 (11) | 0.0003 (11) | −0.0139 (11) |
C3 | 0.0250 (12) | 0.0325 (13) | 0.0336 (13) | −0.0145 (11) | 0.0032 (11) | −0.0141 (11) |
C4 | 0.0233 (12) | 0.0356 (13) | 0.0336 (13) | −0.0125 (11) | 0.0061 (11) | −0.0166 (11) |
C5 | 0.0224 (11) | 0.0265 (11) | 0.0231 (11) | −0.0090 (10) | 0.0017 (9) | −0.0092 (9) |
C6 | 0.0232 (12) | 0.0268 (11) | 0.0217 (11) | −0.0091 (10) | 0.0007 (9) | −0.0103 (9) |
C7 | 0.0225 (12) | 0.0254 (11) | 0.0231 (11) | −0.0091 (10) | −0.0010 (10) | −0.0088 (9) |
C8 | 0.0241 (12) | 0.0267 (12) | 0.0258 (12) | −0.0098 (10) | −0.0007 (10) | −0.0094 (10) |
C9 | 0.0299 (13) | 0.0352 (14) | 0.0296 (13) | −0.0034 (11) | 0.0049 (11) | −0.0197 (11) |
C10 | 0.0230 (12) | 0.0410 (14) | 0.0325 (13) | −0.0035 (11) | 0.0058 (11) | −0.0199 (12) |
C11 | 0.0277 (13) | 0.0392 (14) | 0.0308 (13) | −0.0126 (11) | 0.0100 (11) | −0.0176 (11) |
C12 | 0.0349 (14) | 0.0333 (13) | 0.0241 (12) | −0.0078 (12) | 0.0068 (11) | −0.0107 (10) |
C13 | 0.0303 (13) | 0.0366 (14) | 0.0239 (12) | −0.0040 (11) | 0.0004 (10) | −0.0120 (11) |
C14 | 0.0306 (13) | 0.0370 (14) | 0.0268 (12) | −0.0086 (11) | 0.0011 (10) | −0.0186 (11) |
C15 | 0.0356 (15) | 0.0341 (14) | 0.0459 (16) | −0.0002 (12) | −0.0046 (13) | −0.0186 (13) |
C16 | 0.079 (3) | 0.0439 (18) | 0.068 (2) | 0.0035 (18) | 0.009 (2) | −0.0350 (18) |
C17 | 0.0503 (19) | 0.0348 (16) | 0.067 (2) | −0.0084 (14) | −0.0035 (17) | −0.0128 (15) |
C18 | 0.0425 (16) | 0.0319 (14) | 0.0383 (15) | −0.0088 (13) | 0.0075 (13) | −0.0090 (12) |
C19 | 0.088 (3) | 0.084 (3) | 0.073 (3) | −0.039 (3) | 0.021 (2) | −0.046 (2) |
C20 | 0.0364 (16) | 0.0520 (19) | 0.0522 (18) | −0.0107 (14) | −0.0066 (14) | −0.0248 (15) |
C21 | 0.076 (3) | 0.085 (3) | 0.057 (2) | −0.024 (3) | −0.001 (2) | −0.005 (2) |
Cl1 | 0.0354 (3) | 0.0383 (3) | 0.0310 (3) | −0.0088 (3) | −0.0050 (3) | −0.0108 (3) |
F1 | 0.0433 (11) | 0.0809 (14) | 0.0505 (11) | −0.0207 (10) | −0.0098 (9) | −0.0170 (10) |
F2 | 0.0412 (11) | 0.0592 (12) | 0.0888 (16) | −0.0176 (10) | −0.0221 (11) | −0.0062 (11) |
F3 | 0.104 (2) | 0.0417 (12) | 0.116 (2) | −0.0260 (13) | −0.0552 (18) | 0.0085 (13) |
F4 | 0.0662 (15) | 0.0428 (11) | 0.124 (2) | −0.0188 (11) | −0.0134 (15) | −0.0148 (13) |
F5 | 0.0653 (15) | 0.138 (2) | 0.0661 (14) | −0.0051 (15) | −0.0010 (12) | −0.0656 (16) |
F6 | 0.0733 (17) | 0.181 (3) | 0.103 (2) | −0.053 (2) | 0.0486 (16) | −0.094 (2) |
N1 | 0.0239 (10) | 0.0284 (10) | 0.0254 (10) | −0.0091 (9) | 0.0016 (8) | −0.0128 (8) |
N2 | 0.0240 (10) | 0.0289 (10) | 0.0265 (10) | −0.0100 (9) | 0.0037 (9) | −0.0128 (9) |
O1 | 0.0586 (15) | 0.0611 (16) | 0.0792 (18) | −0.0093 (13) | −0.0124 (14) | −0.0416 (14) |
P1 | 0.0298 (4) | 0.0372 (4) | 0.0405 (4) | −0.0110 (3) | 0.0007 (3) | −0.0131 (3) |
Ru1 | 0.02053 (13) | 0.02803 (14) | 0.02507 (14) | −0.00703 (9) | 0.00287 (9) | −0.01342 (9) |
C1—C2 | 1.368 (4) | C13—H13 | 0.9300 |
C1—N1 | 1.376 (3) | C14—Ru1 | 2.200 (3) |
C1—H1 | 0.9300 | C14—H14 | 0.9300 |
C2—C8 | 1.411 (4) | C15—C17 | 1.515 (5) |
C2—H2 | 0.9300 | C15—C16 | 1.531 (4) |
C3—C4 | 1.369 (4) | C15—H15 | 0.9800 |
C3—C8i | 1.415 (4) | C16—H16A | 0.9600 |
C3—H3 | 0.9300 | C16—H16B | 0.9600 |
C4—N2 | 1.366 (3) | C16—H16C | 0.9600 |
C4—H4 | 0.9300 | C17—H17A | 0.9600 |
C5—N2 | 1.335 (3) | C17—H17B | 0.9600 |
C5—C7 | 1.399 (3) | C17—H17C | 0.9600 |
C5—C6 | 1.442 (3) | C18—H18A | 0.9600 |
C6—N1 | 1.327 (3) | C18—H18B | 0.9600 |
C6—C7i | 1.400 (3) | C18—H18C | 0.9600 |
C7—C6i | 1.400 (3) | C19—C20 | 1.493 (5) |
C7—C8i | 1.410 (3) | C19—H19A | 0.9600 |
C8—C7i | 1.410 (3) | C19—H19B | 0.9600 |
C8—C3i | 1.415 (4) | C19—H19C | 0.9600 |
C9—C14 | 1.405 (4) | C20—O1 | 1.203 (4) |
C9—C10 | 1.430 (4) | C20—C21 | 1.465 (5) |
C9—C15 | 1.512 (4) | C21—H21A | 0.9600 |
C9—Ru1 | 2.214 (2) | C21—H21B | 0.9600 |
C10—C11 | 1.399 (4) | C21—H21C | 0.9600 |
C10—Ru1 | 2.188 (2) | Cl1—Ru1 | 2.3844 (7) |
C10—H10 | 0.9300 | F1—P1 | 1.595 (2) |
C11—C12 | 1.432 (4) | F2—P1 | 1.592 (2) |
C11—Ru1 | 2.204 (3) | F3—P1 | 1.575 (2) |
C11—H11 | 0.9300 | F4—P1 | 1.574 (2) |
C12—C13 | 1.401 (4) | F5—P1 | 1.579 (2) |
C12—C18 | 1.506 (4) | F6—P1 | 1.574 (3) |
C12—Ru1 | 2.212 (3) | N1—Ru1 | 2.105 (2) |
C13—C14 | 1.427 (4) | N2—Ru1 | 2.105 (2) |
C13—Ru1 | 2.185 (3) | ||
C2—C1—N1 | 123.2 (2) | C12—C18—H18A | 109.5 |
C2—C1—H1 | 118.4 | C12—C18—H18B | 109.5 |
N1—C1—H1 | 118.4 | H18A—C18—H18B | 109.5 |
C1—C2—C8 | 120.4 (2) | C12—C18—H18C | 109.5 |
C1—C2—H2 | 119.8 | H18A—C18—H18C | 109.5 |
C8—C2—H2 | 119.8 | H18B—C18—H18C | 109.5 |
C4—C3—C8i | 120.2 (2) | C20—C19—H19A | 109.5 |
C4—C3—H3 | 119.9 | C20—C19—H19B | 109.5 |
C8i—C3—H3 | 119.9 | H19A—C19—H19B | 109.5 |
N2—C4—C3 | 123.2 (2) | C20—C19—H19C | 109.5 |
N2—C4—H4 | 118.4 | H19A—C19—H19C | 109.5 |
C3—C4—H4 | 118.4 | H19B—C19—H19C | 109.5 |
N2—C5—C7 | 122.9 (2) | O1—C20—C21 | 123.9 (4) |
N2—C5—C6 | 117.0 (2) | O1—C20—C19 | 119.5 (4) |
C7—C5—C6 | 120.2 (2) | C21—C20—C19 | 116.6 (4) |
N1—C6—C7i | 123.5 (2) | C20—C21—H21A | 109.5 |
N1—C6—C5 | 116.9 (2) | C20—C21—H21B | 109.5 |
C7i—C6—C5 | 119.7 (2) | H21A—C21—H21B | 109.5 |
C6i—C7—C5 | 120.2 (2) | C20—C21—H21C | 109.5 |
C6i—C7—C8i | 119.9 (2) | H21A—C21—H21C | 109.5 |
C5—C7—C8i | 119.9 (2) | H21B—C21—H21C | 109.5 |
C2—C8—C7i | 116.0 (2) | C6—N1—C1 | 117.0 (2) |
C2—C8—C3i | 127.8 (2) | C6—N1—Ru1 | 114.24 (17) |
C7i—C8—C3i | 116.2 (2) | C1—N1—Ru1 | 128.77 (17) |
C14—C9—C10 | 117.4 (2) | C5—N2—C4 | 117.6 (2) |
C14—C9—C15 | 122.8 (3) | C5—N2—Ru1 | 113.90 (17) |
C10—C9—C15 | 119.8 (2) | C4—N2—Ru1 | 128.38 (16) |
C14—C9—Ru1 | 70.90 (14) | F6—P1—F4 | 90.27 (19) |
C10—C9—Ru1 | 70.05 (14) | F6—P1—F3 | 89.3 (2) |
C15—C9—Ru1 | 130.05 (19) | F4—P1—F3 | 178.93 (15) |
C11—C10—C9 | 121.8 (3) | F6—P1—F5 | 179.13 (19) |
C11—C10—Ru1 | 72.07 (14) | F4—P1—F5 | 88.87 (16) |
C9—C10—Ru1 | 72.03 (14) | F3—P1—F5 | 91.57 (18) |
C11—C10—H10 | 119.1 | F6—P1—F2 | 90.33 (16) |
C9—C10—H10 | 119.1 | F4—P1—F2 | 90.70 (13) |
Ru1—C10—H10 | 129.3 | F3—P1—F2 | 88.33 (13) |
C10—C11—C12 | 120.4 (3) | F5—P1—F2 | 89.85 (14) |
C10—C11—Ru1 | 70.78 (15) | F6—P1—F1 | 90.38 (15) |
C12—C11—Ru1 | 71.39 (15) | F4—P1—F1 | 90.59 (13) |
C10—C11—H11 | 119.8 | F3—P1—F1 | 90.39 (13) |
C12—C11—H11 | 119.8 | F5—P1—F1 | 89.46 (13) |
Ru1—C11—H11 | 130.7 | F2—P1—F1 | 178.53 (13) |
C13—C12—C11 | 118.1 (2) | N1—Ru1—N2 | 77.91 (8) |
C13—C12—C18 | 121.5 (3) | N1—Ru1—C13 | 95.62 (9) |
C11—C12—C18 | 120.3 (3) | N2—Ru1—C13 | 117.75 (9) |
C13—C12—Ru1 | 70.36 (15) | N1—Ru1—C10 | 157.21 (10) |
C11—C12—Ru1 | 70.77 (15) | N2—Ru1—C10 | 124.11 (10) |
C18—C12—Ru1 | 128.85 (18) | C13—Ru1—C10 | 79.68 (10) |
C12—C13—C14 | 121.1 (3) | N1—Ru1—C14 | 95.53 (9) |
C12—C13—Ru1 | 72.49 (15) | N2—Ru1—C14 | 154.82 (9) |
C14—C13—Ru1 | 71.58 (14) | C13—Ru1—C14 | 37.97 (10) |
C12—C13—H13 | 119.4 | C10—Ru1—C14 | 67.02 (10) |
C14—C13—H13 | 119.4 | N1—Ru1—C11 | 158.10 (9) |
Ru1—C13—H13 | 128.9 | N2—Ru1—C11 | 97.57 (9) |
C9—C14—C13 | 121.2 (3) | C13—Ru1—C11 | 67.23 (10) |
C9—C14—Ru1 | 71.98 (15) | C10—Ru1—C11 | 37.15 (10) |
C13—C14—Ru1 | 70.45 (15) | C14—Ru1—C11 | 79.41 (10) |
C9—C14—H14 | 119.4 | N1—Ru1—C12 | 120.53 (9) |
C13—C14—H14 | 119.4 | N2—Ru1—C12 | 94.32 (9) |
Ru1—C14—H14 | 130.9 | C13—Ru1—C12 | 37.15 (11) |
C9—C15—C17 | 114.1 (2) | C10—Ru1—C12 | 67.90 (10) |
C9—C15—C16 | 108.1 (2) | C14—Ru1—C12 | 67.84 (10) |
C17—C15—C16 | 112.0 (3) | C11—Ru1—C12 | 37.84 (10) |
C9—C15—H15 | 107.5 | N1—Ru1—C9 | 119.65 (9) |
C17—C15—H15 | 107.5 | N2—Ru1—C9 | 161.77 (10) |
C16—C15—H15 | 107.5 | C13—Ru1—C9 | 68.20 (10) |
C15—C16—H16A | 109.5 | C10—Ru1—C9 | 37.92 (11) |
C15—C16—H16B | 109.5 | C14—Ru1—C9 | 37.11 (10) |
H16A—C16—H16B | 109.5 | C11—Ru1—C9 | 68.03 (10) |
C15—C16—H16C | 109.5 | C12—Ru1—C9 | 81.09 (10) |
H16A—C16—H16C | 109.5 | N1—Ru1—Cl1 | 86.45 (6) |
H16B—C16—H16C | 109.5 | N2—Ru1—Cl1 | 84.46 (6) |
C15—C17—H17A | 109.5 | C13—Ru1—Cl1 | 157.67 (7) |
C15—C17—H17B | 109.5 | C10—Ru1—Cl1 | 89.80 (7) |
H17A—C17—H17B | 109.5 | C14—Ru1—Cl1 | 119.71 (7) |
C15—C17—H17C | 109.5 | C11—Ru1—Cl1 | 114.67 (8) |
H17A—C17—H17C | 109.5 | C12—Ru1—Cl1 | 152.21 (8) |
H17B—C17—H17C | 109.5 | C9—Ru1—Cl1 | 91.43 (7) |
N1—C1—C2—C8 | 1.0 (4) | C11—C12—C13—Ru1 | −54.0 (2) |
C8i—C3—C4—N2 | −0.3 (4) | C18—C12—C13—Ru1 | 124.2 (2) |
N2—C5—C6—N1 | −0.1 (3) | C10—C9—C14—C13 | 1.5 (4) |
C7—C5—C6—N1 | 179.9 (2) | C15—C9—C14—C13 | −178.5 (2) |
N2—C5—C6—C7i | 179.2 (2) | Ru1—C9—C14—C13 | −52.6 (2) |
C7—C5—C6—C7i | −0.8 (4) | C10—C9—C14—Ru1 | 54.1 (2) |
N2—C5—C7—C6i | −179.2 (2) | C15—C9—C14—Ru1 | −125.9 (2) |
C6—C5—C7—C6i | 0.8 (4) | C12—C13—C14—C9 | −1.9 (4) |
N2—C5—C7—C8i | 1.2 (4) | Ru1—C13—C14—C9 | 53.3 (2) |
C6—C5—C7—C8i | −178.8 (2) | C12—C13—C14—Ru1 | −55.2 (2) |
C1—C2—C8—C7i | −1.0 (4) | C14—C9—C15—C17 | 37.2 (4) |
C1—C2—C8—C3i | 179.1 (2) | C10—C9—C15—C17 | −142.9 (3) |
C14—C9—C10—C11 | −0.1 (4) | Ru1—C9—C15—C17 | −54.7 (4) |
C15—C9—C10—C11 | 180.0 (2) | C14—C9—C15—C16 | −88.1 (3) |
Ru1—C9—C10—C11 | 54.5 (2) | C10—C9—C15—C16 | 91.9 (3) |
C14—C9—C10—Ru1 | −54.5 (2) | Ru1—C9—C15—C16 | −180.0 (3) |
C15—C9—C10—Ru1 | 125.5 (2) | C7i—C6—N1—C1 | −0.5 (4) |
C9—C10—C11—C12 | −1.1 (4) | C5—C6—N1—C1 | 178.8 (2) |
Ru1—C10—C11—C12 | 53.4 (2) | C7i—C6—N1—Ru1 | 178.40 (18) |
C9—C10—C11—Ru1 | −54.4 (2) | C5—C6—N1—Ru1 | −2.4 (3) |
C10—C11—C12—C13 | 0.8 (4) | C2—C1—N1—C6 | −0.2 (4) |
Ru1—C11—C12—C13 | 53.8 (2) | C2—C1—N1—Ru1 | −178.90 (19) |
C10—C11—C12—C18 | −177.5 (2) | C7—C5—N2—C4 | −1.2 (4) |
Ru1—C11—C12—C18 | −124.4 (2) | C6—C5—N2—C4 | 178.8 (2) |
C10—C11—C12—Ru1 | −53.1 (2) | C7—C5—N2—Ru1 | −177.53 (18) |
C11—C12—C13—C14 | 0.7 (4) | C6—C5—N2—Ru1 | 2.5 (3) |
C18—C12—C13—C14 | 179.0 (2) | C3—C4—N2—C5 | 0.8 (4) |
Ru1—C12—C13—C14 | 54.7 (2) | C3—C4—N2—Ru1 | 176.49 (19) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1 | 0.93 | 2.39 | 3.194 (4) | 145 |
C3—H3···Cl1ii | 0.93 | 2.84 | 3.637 (3) | 145 |
C3—H3···F6iii | 0.93 | 2.58 | 3.205 (4) | 125 |
C4—H4···F6iii | 0.93 | 2.60 | 3.223 (4) | 125 |
C19—H19B···F4iv | 0.96 | 2.46 | 3.321 (5) | 149 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x−1, y, z; (iv) x, y+1, z. |
C9—Ru1 | 2.214 (2) | C14—Ru1 | 2.200 (3) |
C10—Ru1 | 2.188 (2) | Cl1—Ru1 | 2.3844 (7) |
C11—Ru1 | 2.204 (3) | N1—Ru1 | 2.105 (2) |
C12—Ru1 | 2.212 (3) | N2—Ru1 | 2.105 (2) |
C13—Ru1 | 2.185 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1 | 0.93 | 2.39 | 3.194 (4) | 145 |
C3—H3···Cl1i | 0.93 | 2.84 | 3.637 (3) | 145 |
C3—H3···F6ii | 0.93 | 2.58 | 3.205 (4) | 125 |
C4—H4···F6ii | 0.93 | 2.60 | 3.223 (4) | 125 |
C19—H19B···F4iii | 0.96 | 2.46 | 3.321 (5) | 149 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x−1, y, z; (iii) x, y+1, z. |
References
Bennett, M. A. & Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233–241. CrossRef Web of Science Google Scholar
Betanzos-Lara, S., Salassa, L., Habtemariam, A., Novakova, O., Pizarro, A. M., Clarkson, G. J., Liskova, B., Brabec, V. & Sadler, P. J. (2012). Organometallics, 31, 3466–3479. CAS Google Scholar
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brietzke, T., Mickler, W., Kelling, A. & Holdt, H.-J. (2012). Dalton Trans. 41, 2788–2797. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brietzke, T., Mickler, W., Kelling, A., Schilde, U., Krüger, H.-J. & Holdt, H.-J. (2012). Eur. J. Inorg. Chem. pp. 4632–4643. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Govindaswamy, P., Canivet, J., Therrien, B., Süss-Fink, G., Štěpnička, P. & Ludvík, J. (2007). J. Organomet. Chem. 692, 3664–3675. Web of Science CSD CrossRef CAS Google Scholar
Robertson, D., Robertson, I. & Stephenson, T. (1980). J. Organomet. Chem. 202, 309–318. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.