metal-organic compounds
Poly[[diaquadeca-μ2-cyanido-κ20C:N-hexacyanido-κ6C-bis(μ2-5-methylpyrimidine-κ2N:N′)bis(5-methylpyrimidine-κN)tricopper(II)ditungstate(V)] dihydrate]
aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp
In the title complex, {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n, the of the eight-coordinated WV atom is a bicapped trigonal prism, in which five CN groups are bridged to CuII ions, and the other three CN groups are terminally bound. Two of the CuII ions lie on a centre of inversion and each of the three independent CuII cations is pseudo-octahedrally coordinated. In the cyanido-bridged-Cu—W—Cu layers are linked by pillars involving the third independent CuII ion, generating a three-dimensional network with non-coordinating water molecules and 5-methylpyrimidine molecules. O—H⋯O and O—H⋯N hydrogen bonds involve the coordinating and non-coordinating water molecules, the CN groups and the 5-methylpyrimidine molecules.
CCDC reference: 979660
Related literature
For background to functional three-dimensional networks, see: Catala et al. (2005); Garde et al. (1999); Herrera et al. (2004, 2008); Imoto et al. (2012); Leipoldt et al. (1994); Ohkoshi & Tokoro (2012); Ohkoshi et al. (2011); Sieklucka et al. (2009); Zhong et al. (2000). For related structures, see: Ohkoshi et al. (2007, 2012); Podgajny et al. (2002).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PyMOLWin (DeLano, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 979660
10.1107/S1600536814000166/tk5281sup1.cif
contains datablocks I, shelxl. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000166/tk5281Isup2.hkl
The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]·2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2·2H2O (1.8 × 10 -2 mol dm-3), 5-methylpyrimidine (2.4 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-type crystal. Elemental analyses: calcd for Cu3[W(CN)8]2(5-methylpyrimidine)4·4H2O, Calculated: Cu, 13.40; W, 25.83; C, 30.38; H, 2.27; N, 23.63%. Found: Cu, 13.12; W, 25.96; C, 30.05; H, 2.35; N, 23.64%. In the Infrared (IR) spectra, cyano stretching peaks were observed at 2204, 2194, 2169, 2161, 2148, and 2142 cm-1.
The H atoms of the 5-methylpyrimidine molecules were placed in calculated positions with C—H = 0.95 Å, and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The H atoms of water molecules were placed by using restraints of 0.96 (2) Å for O—H distances and DANG of 1.5 (4) Å for H—H distances. The maximum and minimum residual electron density peaks were located 0.74 and 1.60 Å, respectively, from the W1 and C3 atoms.
Synthesis of various kinds of three-dimensional network complexes exhibiting long-range magnetic ordering is an important issue. From this perspective, octacyanometalate [M(CN)8] (M = Mo, W, Nb)-based magnets have been studied because they show high TC (Garde et al., 1999; Zhong et al., 2000; Herrera et al., 2008; Sieklucka et al., 2009; Imoto et al., 2012) and functionalities such as photomagnetism (Herrera et al., 2004; Catala et al., 2005; Ohkoshi et al., 2011, 2012) and chemically sensitive magnetism (Ohkoshi et al., 2007). In addition, octacyanometalates have an advantage to construct various crystal structures due to the versatility that they can adopt different spatial configurations depending on their chemical environment, e.g., square antiprism (D4d), dodecahedron (D2d), and bicapped trigonal prism (C2v) (Leipoldt et al., 1994). Several octacyanometalate-based magnets of Cu—W systems such as {[Cu3[W(CN)8]2]·3.4H2O}n (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]·8H2O}n (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(pyrimidine)4]·4H2O}n (Ohkoshi et al., 2012), {[(tetrenH5)0.8Cu4[W(CN)8]4]·7.2H2O}n (Podgajny et al., 2002), have been reported. Here, we present a new candidate for copper-octacyanotungstate-based magnets, {[Cu3[W(CN)8]2(5-methylpyrimidine)4(H2O)2]·2H2O}n.
The
of the present compound consists of a [W(CN)8]3- anion, a one-half of [Cu1(5-methylpyrimidine)2]2+ cation, a one-half of [Cu2(5-methylpyrimidine)2]2+ cation, a one-half of [Cu3(H2O)2]2+ cation, and a water molecule (Fig. 1). The coordination geometry of W is an eight-coordinated bicapped trigonal prism, where five CN groups of [W(CN)8] are bridged to Cu2+ ions (two Cu1, two Cu2 and one Cu3), and the other three CN groups are free. The coordination geometries of the three types of Cu2+ ions (Cu1, Cu2 and Cu3) are six-coordinated pseudo-octahedron. Cu1 is coordinated to four nitrogen atoms of CN ligands, two nitrogen atoms of 5-methylpyrimidine molecules. Cu2 is coordinated to four nitrogen atoms of CN ligands, two nitrogen atoms of 5-methylpyrimidine molecules. Cu3 is coordinated to two nitrogen atoms of CN ligands, two nitrogen atoms of 5-methylpyrimidine molecules, and two oxygen atoms of H2O molecules. The cyano-bridged-Cu1—W—Cu2 layers are linked by Cu3 pillar unit (Figs. 2 and 3) and then, involving non-coordinated water molecules, the 3-D structure is constructed. In the the coordinated water make hydrogen bonds with the non-coordinated water (O1—H2···O2, 2.700 (4)) and the CN groups (O1—H1···N6, 2.771 (5)). Besides, hydrogen bonds between the non-coordinated water and the CN groups (O2—H4···N2, 2.944 (5)) or the 5-methylpyrimidine molecules (O2—H3···N12, 2.914 (5)).The magnetization versus. temperature curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (TC) of 10 K, the coercive field (Hc) of 150 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value agrees with the expected value of 3.0 µB, indicating that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu1 and Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu3) are antiferromagnetically coupled.
Synthesis of various kinds of three-dimensional network complexes exhibiting long-range magnetic ordering is an important issue. From this perspective, octacyanometalate [M(CN)8] (M = Mo, W, Nb)-based magnets have been studied because they show high TC (Garde et al., 1999; Zhong et al., 2000; Herrera et al., 2008; Sieklucka et al., 2009; Imoto et al., 2012) and functionalities such as photomagnetism (Herrera et al., 2004; Catala et al., 2005; Ohkoshi et al., 2011, 2012) and chemically sensitive magnetism (Ohkoshi et al., 2007). In addition, octacyanometalates have an advantage to construct various crystal structures due to the versatility that they can adopt different spatial configurations depending on their chemical environment, e.g., square antiprism (D4d), dodecahedron (D2d), and bicapped trigonal prism (C2v) (Leipoldt et al., 1994). Several octacyanometalate-based magnets of Cu—W systems such as {[Cu3[W(CN)8]2]·3.4H2O}n (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]·8H2O}n (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(pyrimidine)4]·4H2O}n (Ohkoshi et al., 2012), {[(tetrenH5)0.8Cu4[W(CN)8]4]·7.2H2O}n (Podgajny et al., 2002), have been reported. Here, we present a new candidate for copper-octacyanotungstate-based magnets, {[Cu3[W(CN)8]2(5-methylpyrimidine)4(H2O)2]·2H2O}n.
The
of the present compound consists of a [W(CN)8]3- anion, a one-half of [Cu1(5-methylpyrimidine)2]2+ cation, a one-half of [Cu2(5-methylpyrimidine)2]2+ cation, a one-half of [Cu3(H2O)2]2+ cation, and a water molecule (Fig. 1). The coordination geometry of W is an eight-coordinated bicapped trigonal prism, where five CN groups of [W(CN)8] are bridged to Cu2+ ions (two Cu1, two Cu2 and one Cu3), and the other three CN groups are free. The coordination geometries of the three types of Cu2+ ions (Cu1, Cu2 and Cu3) are six-coordinated pseudo-octahedron. Cu1 is coordinated to four nitrogen atoms of CN ligands, two nitrogen atoms of 5-methylpyrimidine molecules. Cu2 is coordinated to four nitrogen atoms of CN ligands, two nitrogen atoms of 5-methylpyrimidine molecules. Cu3 is coordinated to two nitrogen atoms of CN ligands, two nitrogen atoms of 5-methylpyrimidine molecules, and two oxygen atoms of H2O molecules. The cyano-bridged-Cu1—W—Cu2 layers are linked by Cu3 pillar unit (Figs. 2 and 3) and then, involving non-coordinated water molecules, the 3-D structure is constructed. In the the coordinated water make hydrogen bonds with the non-coordinated water (O1—H2···O2, 2.700 (4)) and the CN groups (O1—H1···N6, 2.771 (5)). Besides, hydrogen bonds between the non-coordinated water and the CN groups (O2—H4···N2, 2.944 (5)) or the 5-methylpyrimidine molecules (O2—H3···N12, 2.914 (5)).The magnetization versus. temperature curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (TC) of 10 K, the coercive field (Hc) of 150 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value agrees with the expected value of 3.0 µB, indicating that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu1 and Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu3) are antiferromagnetically coupled.
For background to functional three-dimensional networks, see: Catala et al. (2005); Garde et al. (1999); Herrera et al. (2004, 2008); Leipoldt et al. (1994); Ohkoshi & Tokoro (2012); Ohkoshi et al. (2012); Sieklucka et al. (2009); Zhong et al. (2000). For related structures, see: Ohkoshi et al. (2007, 2012); Podgajny et al. (2002).
The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]·2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2·2H2O (1.8 × 10 -2 mol dm-3), 5-methylpyrimidine (2.4 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-type crystal. Elemental analyses: calcd for Cu3[W(CN)8]2(5-methylpyrimidine)4·4H2O, Calculated: Cu, 13.40; W, 25.83; C, 30.38; H, 2.27; N, 23.63%. Found: Cu, 13.12; W, 25.96; C, 30.05; H, 2.35; N, 23.64%. In the Infrared (IR) spectra, cyano stretching peaks were observed at 2204, 2194, 2169, 2161, 2148, and 2142 cm-1.
detailsThe H atoms of the 5-methylpyrimidine molecules were placed in calculated positions with C—H = 0.95 Å, and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The H atoms of water molecules were placed by using restraints of 0.96 (2) Å for O—H distances and DANG of 1.5 (4) Å for H—H distances. The maximum and minimum residual electron density peaks were located 0.74 and 1.60 Å, respectively, from the W1 and C3 atoms.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PyMOLWin (DeLano, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Displacement ellipsoid plot (30% probability level) of the atoms comprising the asymmetric unit of {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n. Symmetry codes: (i) +x,+y,+z and (ii) -x,-y,-z. | |
Fig. 2. Crystal structure of {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n along the a axis. Blue, orange, gray, light blue, and red represent W, Cu, C, N, and O atoms, respectively. Hydrogen atoms are omitted for clarity. | |
Fig. 3. Crystal structure of {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n along the b axis. Blue, orange, gray, light blue, and red represent W, Cu, C, N, and O atoms, respectively. Hydrogen atoms are omitted for clarity. |
[Cu3W2(CN)16(C5H6N2)4(H2O)2]·2H2O | Z = 1 |
Mr = 1423.19 | F(000) = 683 |
Triclinic, P1 | Dx = 1.904 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71075 Å |
a = 7.5953 (4) Å | Cell parameters from 10947 reflections |
b = 11.8232 (7) Å | θ = 3.0–27.5° |
c = 14.7017 (8) Å | µ = 5.94 mm−1 |
α = 79.614 (1)° | T = 296 K |
β = 84.824 (2)° | Platelet, green |
γ = 73.090 (1)° | 0.16 × 0.10 × 0.05 mm |
V = 1241.45 (12) Å3 |
Rigaku R-AXIS RAPID diffractometer | 5666 independent reflections |
Radiation source: fine-focus sealed tube | 5465 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −15→14 |
Tmin = 0.452, Tmax = 0.772 | l = −19→19 |
12240 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.24 | w = 1/[σ2(Fo2) + (0.0422P)2 + 0.3667P] where P = (Fo2 + 2Fc2)/3 |
5666 reflections | (Δ/σ)max = 0.003 |
333 parameters | Δρmax = 3.02 e Å−3 |
6 restraints | Δρmin = −0.86 e Å−3 |
[Cu3W2(CN)16(C5H6N2)4(H2O)2]·2H2O | γ = 73.090 (1)° |
Mr = 1423.19 | V = 1241.45 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.5953 (4) Å | Mo Kα radiation |
b = 11.8232 (7) Å | µ = 5.94 mm−1 |
c = 14.7017 (8) Å | T = 296 K |
α = 79.614 (1)° | 0.16 × 0.10 × 0.05 mm |
β = 84.824 (2)° |
Rigaku R-AXIS RAPID diffractometer | 5666 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 5465 reflections with I > 2σ(I) |
Tmin = 0.452, Tmax = 0.772 | Rint = 0.033 |
12240 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 6 restraints |
wR(F2) = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.24 | Δρmax = 3.02 e Å−3 |
5666 reflections | Δρmin = −0.86 e Å−3 |
333 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
W1 | 0.548569 (15) | 0.875339 (10) | 0.768726 (8) | 0.01497 (6) | |
Cu1 | 1.0000 | 1.0000 | 1.0000 | 0.01979 (14) | |
Cu2 | 0.0000 | 1.0000 | 0.5000 | 0.02293 (14) | |
Cu3 | 1.0000 | 0.5000 | 1.0000 | 0.02754 (15) | |
O1 | 0.9257 (4) | 0.4659 (3) | 1.12961 (19) | 0.0325 (6) | |
O2 | 0.8939 (5) | 0.6502 (3) | 1.2207 (3) | 0.0446 (8) | |
N1 | 0.2221 (4) | 0.9864 (3) | 0.9186 (2) | 0.0253 (6) | |
N2 | 0.4282 (6) | 1.1699 (3) | 0.7155 (3) | 0.0439 (10) | |
N3 | 0.2648 (5) | 0.9438 (3) | 0.5964 (3) | 0.0352 (8) | |
N4 | 0.8430 (4) | 0.9479 (3) | 0.6057 (2) | 0.0274 (7) | |
N5 | 0.7737 (7) | 0.6301 (4) | 0.6849 (4) | 0.0615 (13) | |
N6 | 0.2689 (5) | 0.7008 (4) | 0.8104 (3) | 0.0437 (9) | |
N7 | 0.6975 (5) | 0.6771 (3) | 0.9555 (3) | 0.0376 (9) | |
N8 | 0.8384 (5) | 0.9585 (3) | 0.8789 (2) | 0.0309 (7) | |
N9 | 1.1037 (4) | 0.8172 (3) | 1.0463 (2) | 0.0222 (6) | |
N10 | 1.1143 (4) | 0.6182 (3) | 1.0366 (2) | 0.0240 (6) | |
N11 | 0.0743 (4) | 0.8306 (3) | 0.4682 (2) | 0.0271 (7) | |
N12 | 0.0945 (6) | 0.6994 (4) | 0.3619 (3) | 0.0550 (12) | |
C1 | 0.3400 (5) | 0.9497 (3) | 0.8680 (2) | 0.0219 (7) | |
C2 | 0.4714 (5) | 1.0702 (4) | 0.7326 (3) | 0.0262 (8) | |
C3 | 0.3692 (5) | 0.9207 (4) | 0.6532 (3) | 0.0272 (8) | |
C4 | 0.7413 (5) | 0.9202 (3) | 0.6609 (2) | 0.0219 (7) | |
C5 | 0.6973 (6) | 0.7146 (3) | 0.7133 (3) | 0.0323 (9) | |
C6 | 0.3645 (5) | 0.7610 (3) | 0.7957 (3) | 0.0269 (8) | |
C7 | 0.6405 (5) | 0.7462 (3) | 0.8920 (3) | 0.0260 (8) | |
C8 | 0.7391 (5) | 0.9303 (3) | 0.8395 (3) | 0.0231 (7) | |
C9 | 1.0448 (5) | 0.7368 (3) | 1.0154 (3) | 0.0227 (7) | |
H9 | 0.9472 | 0.7651 | 0.9758 | 0.027* | |
C10 | 1.2529 (5) | 0.5779 (3) | 1.0949 (3) | 0.0281 (8) | |
H10 | 1.3036 | 0.4958 | 1.1111 | 0.034* | |
C11 | 1.3227 (5) | 0.6550 (3) | 1.1315 (3) | 0.0286 (8) | |
C12 | 1.2427 (5) | 0.7751 (4) | 1.1046 (3) | 0.0292 (8) | |
H12 | 1.2865 | 0.8296 | 1.1276 | 0.035* | |
C13 | 1.4754 (7) | 0.6078 (4) | 1.1980 (4) | 0.0532 (14) | |
H13A | 1.5110 | 0.5219 | 1.2077 | 0.064* | |
H13B | 1.4340 | 0.6354 | 1.2558 | 0.064* | |
H13C | 1.5790 | 0.6360 | 1.1730 | 0.064* | |
C14 | 0.0516 (6) | 0.8084 (4) | 0.3854 (3) | 0.0413 (10) | |
H14 | 0.0022 | 0.8735 | 0.3403 | 0.050* | |
C15 | 0.1642 (7) | 0.6077 (4) | 0.4271 (4) | 0.0501 (12) | |
H15 | 0.1950 | 0.5309 | 0.4125 | 0.060* | |
C16 | 0.1936 (7) | 0.6203 (4) | 0.5156 (4) | 0.0423 (11) | |
C17 | 0.1426 (6) | 0.7371 (4) | 0.5327 (3) | 0.0332 (9) | |
H17 | 0.1568 | 0.7507 | 0.5916 | 0.040* | |
C18 | 0.2772 (12) | 0.5161 (6) | 0.5890 (5) | 0.083 (2) | |
H18A | 0.2844 | 0.5452 | 0.6451 | 0.099* | |
H18B | 0.3987 | 0.4749 | 0.5684 | 0.099* | |
H18C | 0.2019 | 0.4620 | 0.6003 | 0.099* | |
H1 | 0.868 (7) | 0.410 (3) | 1.159 (3) | 0.052 (15)* | |
H2 | 0.913 (6) | 0.520 (3) | 1.170 (3) | 0.047 (14)* | |
H3 | 0.981 (5) | 0.653 (5) | 1.262 (3) | 0.044 (14)* | |
H4 | 0.785 (4) | 0.699 (5) | 1.244 (4) | 0.08 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.01514 (9) | 0.01469 (9) | 0.01571 (9) | −0.00529 (6) | 0.00316 (6) | −0.00411 (6) |
Cu1 | 0.0179 (3) | 0.0139 (3) | 0.0246 (3) | −0.0026 (2) | 0.0084 (2) | −0.0033 (2) |
Cu2 | 0.0273 (3) | 0.0226 (3) | 0.0205 (3) | −0.0112 (3) | 0.0107 (3) | −0.0063 (3) |
Cu3 | 0.0403 (4) | 0.0269 (3) | 0.0249 (3) | −0.0228 (3) | 0.0015 (3) | −0.0074 (3) |
O1 | 0.0436 (16) | 0.0348 (16) | 0.0273 (14) | −0.0244 (14) | 0.0064 (12) | −0.0076 (12) |
O2 | 0.0377 (17) | 0.056 (2) | 0.0461 (19) | −0.0118 (16) | 0.0010 (15) | −0.0275 (17) |
N1 | 0.0222 (14) | 0.0207 (15) | 0.0297 (16) | −0.0032 (12) | 0.0065 (13) | −0.0039 (13) |
N2 | 0.052 (2) | 0.0182 (18) | 0.057 (3) | −0.0024 (17) | −0.003 (2) | −0.0084 (17) |
N3 | 0.0321 (18) | 0.042 (2) | 0.0337 (19) | −0.0125 (16) | −0.0125 (15) | −0.0027 (16) |
N4 | 0.0259 (15) | 0.0313 (17) | 0.0242 (15) | −0.0099 (14) | 0.0073 (13) | −0.0038 (13) |
N5 | 0.076 (3) | 0.035 (2) | 0.068 (3) | −0.006 (2) | 0.019 (3) | −0.024 (2) |
N6 | 0.048 (2) | 0.043 (2) | 0.052 (2) | −0.0315 (19) | 0.0051 (18) | −0.0095 (18) |
N7 | 0.050 (2) | 0.0295 (19) | 0.0361 (19) | −0.0172 (17) | −0.0145 (17) | 0.0056 (16) |
N8 | 0.0343 (17) | 0.0225 (16) | 0.0375 (18) | −0.0093 (14) | −0.0094 (15) | −0.0026 (14) |
N9 | 0.0204 (14) | 0.0214 (15) | 0.0237 (15) | −0.0041 (12) | 0.0020 (12) | −0.0058 (13) |
N10 | 0.0310 (16) | 0.0206 (15) | 0.0244 (15) | −0.0138 (13) | 0.0000 (13) | −0.0033 (12) |
N11 | 0.0303 (16) | 0.0279 (16) | 0.0260 (16) | −0.0092 (14) | 0.0038 (13) | −0.0122 (14) |
N12 | 0.064 (3) | 0.051 (3) | 0.053 (3) | −0.003 (2) | −0.012 (2) | −0.031 (2) |
C1 | 0.0194 (16) | 0.0170 (16) | 0.0269 (17) | −0.0041 (13) | 0.0024 (14) | −0.0012 (14) |
C2 | 0.0224 (18) | 0.026 (2) | 0.0273 (19) | −0.0029 (15) | 0.0001 (15) | −0.0046 (16) |
C3 | 0.0276 (18) | 0.0292 (19) | 0.0279 (18) | −0.0138 (16) | 0.0020 (16) | −0.0045 (16) |
C4 | 0.0210 (16) | 0.0225 (17) | 0.0212 (17) | −0.0045 (14) | 0.0014 (14) | −0.0051 (14) |
C5 | 0.040 (2) | 0.0203 (18) | 0.034 (2) | −0.0060 (17) | 0.0104 (18) | −0.0099 (16) |
C6 | 0.0270 (18) | 0.0239 (18) | 0.0299 (19) | −0.0087 (15) | 0.0015 (15) | −0.0032 (15) |
C7 | 0.0311 (19) | 0.0220 (18) | 0.0274 (19) | −0.0125 (16) | −0.0013 (16) | −0.0020 (16) |
C8 | 0.0279 (17) | 0.0190 (16) | 0.0233 (17) | −0.0085 (14) | 0.0001 (15) | −0.0030 (14) |
C9 | 0.0266 (18) | 0.0149 (16) | 0.0270 (18) | −0.0075 (14) | −0.0051 (15) | 0.0008 (14) |
C10 | 0.0301 (18) | 0.0183 (17) | 0.037 (2) | −0.0066 (15) | −0.0039 (16) | −0.0065 (15) |
C11 | 0.0229 (17) | 0.0195 (17) | 0.042 (2) | −0.0009 (15) | −0.0094 (16) | −0.0066 (16) |
C12 | 0.0270 (18) | 0.0244 (19) | 0.041 (2) | −0.0109 (15) | −0.0042 (17) | −0.0110 (17) |
C13 | 0.047 (3) | 0.030 (2) | 0.085 (4) | −0.001 (2) | −0.038 (3) | −0.014 (3) |
C14 | 0.049 (3) | 0.040 (2) | 0.032 (2) | 0.000 (2) | −0.008 (2) | −0.0137 (19) |
C15 | 0.054 (3) | 0.030 (2) | 0.065 (3) | 0.002 (2) | −0.006 (3) | −0.023 (2) |
C16 | 0.047 (3) | 0.027 (2) | 0.050 (3) | −0.004 (2) | −0.001 (2) | −0.009 (2) |
C17 | 0.042 (2) | 0.033 (2) | 0.028 (2) | −0.0157 (19) | 0.0000 (18) | −0.0070 (18) |
C18 | 0.120 (6) | 0.043 (3) | 0.070 (4) | −0.007 (4) | −0.010 (4) | 0.006 (3) |
W1—C1 | 2.156 (3) | N4—C4 | 1.141 (5) |
W1—C8 | 2.160 (4) | N4—Cu2ii | 1.991 (3) |
W1—C4 | 2.160 (4) | N5—C5 | 1.131 (5) |
W1—C5 | 2.167 (4) | N6—C6 | 1.139 (5) |
W1—C3 | 2.167 (4) | N7—C7 | 1.148 (5) |
W1—C7 | 2.171 (4) | N8—C8 | 1.144 (5) |
W1—C6 | 2.178 (4) | N9—C9 | 1.323 (5) |
W1—C2 | 2.182 (4) | N9—C12 | 1.341 (5) |
Cu1—N1i | 1.962 (3) | N10—C9 | 1.335 (5) |
Cu1—N1ii | 1.962 (3) | N10—C10 | 1.338 (5) |
Cu1—N9 | 2.081 (3) | N11—C14 | 1.328 (5) |
Cu1—N9iii | 2.081 (3) | N11—C17 | 1.329 (6) |
Cu1—N8iii | 2.444 (3) | N12—C15 | 1.326 (7) |
Cu1—N8 | 2.444 (3) | N12—C14 | 1.334 (6) |
Cu2—N4iv | 1.991 (3) | C9—H9 | 0.9300 |
Cu2—N4v | 1.991 (3) | C10—C11 | 1.383 (5) |
Cu2—N11vi | 2.044 (3) | C10—H10 | 0.9300 |
Cu2—N11 | 2.044 (3) | C11—C12 | 1.372 (5) |
Cu2—N3 | 2.427 (3) | C11—C13 | 1.497 (6) |
Cu2—N3vi | 2.427 (3) | C12—H12 | 0.9300 |
Cu3—O1 | 1.943 (3) | C13—H13A | 0.9600 |
Cu3—O1vii | 1.943 (3) | C13—H13B | 0.9600 |
Cu3—N10vii | 2.015 (3) | C13—H13C | 0.9600 |
Cu3—N10 | 2.015 (3) | C14—H14 | 0.9300 |
O1—H1 | 0.924 (19) | C15—C16 | 1.380 (7) |
O1—H2 | 0.931 (19) | C15—H15 | 0.9300 |
O2—H3 | 0.950 (19) | C16—C17 | 1.385 (6) |
O2—H4 | 0.933 (19) | C16—C18 | 1.508 (8) |
N1—C1 | 1.146 (5) | C17—H17 | 0.9300 |
N1—Cu1v | 1.962 (3) | C18—H18A | 0.9600 |
N2—C2 | 1.115 (6) | C18—H18B | 0.9600 |
N3—C3 | 1.145 (5) | C18—H18C | 0.9600 |
C1—W1—C8 | 86.95 (13) | N10vii—Cu3—N10 | 179.999 (1) |
C1—W1—C4 | 143.19 (14) | Cu3—O1—H1 | 129 (3) |
C8—W1—C4 | 75.63 (14) | Cu3—O1—H2 | 122 (3) |
C1—W1—C5 | 145.49 (14) | H1—O1—H2 | 106 (3) |
C8—W1—C5 | 108.53 (15) | H3—O2—H4 | 102 (3) |
C4—W1—C5 | 71.32 (15) | C1—N1—Cu1v | 160.6 (3) |
C1—W1—C3 | 96.29 (14) | C3—N3—Cu2 | 169.1 (3) |
C8—W1—C3 | 145.84 (14) | C4—N4—Cu2ii | 174.1 (3) |
C4—W1—C3 | 81.95 (14) | C8—N8—Cu1 | 164.1 (3) |
C5—W1—C3 | 87.73 (16) | C9—N9—C12 | 116.7 (3) |
C1—W1—C7 | 80.17 (14) | C9—N9—Cu1 | 121.9 (3) |
C8—W1—C7 | 69.75 (14) | C12—N9—Cu1 | 121.2 (3) |
C4—W1—C7 | 121.55 (14) | C9—N10—C10 | 117.1 (3) |
C5—W1—C7 | 76.96 (15) | C9—N10—Cu3 | 123.4 (2) |
C3—W1—C7 | 144.35 (14) | C10—N10—Cu3 | 118.9 (2) |
C1—W1—C6 | 73.46 (14) | C14—N11—C17 | 117.4 (4) |
C8—W1—C6 | 140.10 (14) | C14—N11—Cu2 | 122.6 (3) |
C4—W1—C6 | 138.18 (14) | C17—N11—Cu2 | 120.0 (3) |
C5—W1—C6 | 75.27 (15) | C15—N12—C14 | 116.6 (4) |
C3—W1—C6 | 72.22 (14) | N1—C1—W1 | 175.9 (3) |
C7—W1—C6 | 72.80 (14) | N2—C2—W1 | 178.3 (5) |
C1—W1—C2 | 71.57 (14) | N3—C3—W1 | 175.3 (3) |
C8—W1—C2 | 75.22 (14) | N4—C4—W1 | 177.1 (4) |
C4—W1—C2 | 72.72 (14) | N5—C5—W1 | 179.3 (4) |
C5—W1—C2 | 141.37 (15) | N6—C6—W1 | 179.6 (4) |
C3—W1—C2 | 73.68 (15) | N7—C7—W1 | 176.8 (4) |
C7—W1—C2 | 135.68 (15) | N8—C8—W1 | 178.4 (3) |
C6—W1—C2 | 127.18 (14) | N9—C9—N10 | 125.2 (3) |
N1i—Cu1—N1ii | 179.999 (1) | N9—C9—H9 | 117.4 |
N1i—Cu1—N9 | 93.24 (12) | N10—C9—H9 | 117.4 |
N1ii—Cu1—N9 | 86.76 (12) | N10—C10—C11 | 121.9 (3) |
N1i—Cu1—N9iii | 86.76 (12) | N10—C10—H10 | 119.1 |
N1ii—Cu1—N9iii | 93.24 (12) | C11—C10—H10 | 119.1 |
N9—Cu1—N9iii | 179.998 (1) | C12—C11—C10 | 116.3 (3) |
N1i—Cu1—N8iii | 90.31 (13) | C12—C11—C13 | 122.8 (4) |
N1ii—Cu1—N8iii | 89.69 (13) | C10—C11—C13 | 120.9 (4) |
N9—Cu1—N8iii | 89.69 (12) | N9—C12—C11 | 122.7 (3) |
N9iii—Cu1—N8iii | 90.31 (12) | N9—C12—H12 | 118.6 |
N1i—Cu1—N8 | 89.69 (13) | C11—C12—H12 | 118.6 |
N1ii—Cu1—N8 | 90.31 (13) | C11—C13—H13A | 109.5 |
N9—Cu1—N8 | 90.31 (12) | C11—C13—H13B | 109.5 |
N9iii—Cu1—N8 | 89.69 (12) | H13A—C13—H13B | 109.5 |
N8iii—Cu1—N8 | 180.000 (1) | C11—C13—H13C | 109.5 |
N4iv—Cu2—N4v | 179.998 (1) | H13A—C13—H13C | 109.5 |
N4iv—Cu2—N11vi | 89.30 (13) | H13B—C13—H13C | 109.5 |
N4v—Cu2—N11vi | 90.70 (13) | N11—C14—N12 | 124.8 (5) |
N4iv—Cu2—N11 | 90.70 (13) | N11—C14—H14 | 117.6 |
N4v—Cu2—N11 | 89.30 (13) | N12—C14—H14 | 117.6 |
N11vi—Cu2—N11 | 179.999 (1) | N12—C15—C16 | 123.5 (4) |
N4iv—Cu2—N3 | 88.44 (13) | N12—C15—H15 | 118.3 |
N4v—Cu2—N3 | 91.56 (13) | C16—C15—H15 | 118.3 |
N11vi—Cu2—N3 | 90.62 (13) | C15—C16—C17 | 115.1 (4) |
N11—Cu2—N3 | 89.38 (13) | C15—C16—C18 | 123.5 (5) |
N4iv—Cu2—N3vi | 91.56 (13) | C17—C16—C18 | 121.5 (5) |
N4v—Cu2—N3vi | 88.44 (13) | N11—C17—C16 | 122.6 (4) |
N11vi—Cu2—N3vi | 89.38 (13) | N11—C17—H17 | 118.7 |
N11—Cu2—N3vi | 90.62 (13) | C16—C17—H17 | 118.7 |
N3—Cu2—N3vi | 180.0 | C16—C18—H18A | 109.5 |
O1—Cu3—O1vii | 180.00 (17) | C16—C18—H18B | 109.5 |
O1—Cu3—N10vii | 92.98 (12) | H18A—C18—H18B | 109.5 |
O1vii—Cu3—N10vii | 87.01 (12) | C16—C18—H18C | 109.5 |
O1—Cu3—N10 | 87.02 (12) | H18A—C18—H18C | 109.5 |
O1vii—Cu3—N10 | 92.98 (12) | H18B—C18—H18C | 109.5 |
N4iv—Cu2—N3—C3 | 153.2 (18) | Cu2ii—N4—C4—W1 | −113 (6) |
N4v—Cu2—N3—C3 | −26.8 (18) | C1—W1—C4—N4 | 24 (7) |
N11vi—Cu2—N3—C3 | 63.9 (18) | C8—W1—C4—N4 | −40 (7) |
N11—Cu2—N3—C3 | −116.1 (18) | C5—W1—C4—N4 | −156 (7) |
N3vi—Cu2—N3—C3 | −35 (58) | C3—W1—C4—N4 | 114 (7) |
N1i—Cu1—N8—C8 | −24.6 (11) | C7—W1—C4—N4 | −95 (7) |
N1ii—Cu1—N8—C8 | 155.4 (11) | C6—W1—C4—N4 | 165 (7) |
N9—Cu1—N8—C8 | 68.6 (11) | C2—W1—C4—N4 | 38 (7) |
N9iii—Cu1—N8—C8 | −111.4 (11) | C1—W1—C5—N5 | 13 (39) |
N8iii—Cu1—N8—C8 | −67 (100) | C8—W1—C5—N5 | 126 (39) |
N1i—Cu1—N9—C9 | 79.9 (3) | C4—W1—C5—N5 | −167 (100) |
N1ii—Cu1—N9—C9 | −100.1 (3) | C3—W1—C5—N5 | −84 (39) |
N9iii—Cu1—N9—C9 | 178 (28) | C7—W1—C5—N5 | 63 (39) |
N8iii—Cu1—N9—C9 | 170.2 (3) | C6—W1—C5—N5 | −12 (39) |
N8—Cu1—N9—C9 | −9.8 (3) | C2—W1—C5—N5 | −144 (39) |
N1i—Cu1—N9—C12 | −104.5 (3) | C1—W1—C6—N6 | −81 (62) |
N1ii—Cu1—N9—C12 | 75.5 (3) | C8—W1—C6—N6 | −17 (62) |
N9iii—Cu1—N9—C12 | −7 (28) | C4—W1—C6—N6 | 122 (62) |
N8iii—Cu1—N9—C12 | −14.2 (3) | C5—W1—C6—N6 | 85 (62) |
N8—Cu1—N9—C12 | 165.8 (3) | C3—W1—C6—N6 | 177 (100) |
O1—Cu3—N10—C9 | −108.2 (3) | C7—W1—C6—N6 | 4 (62) |
O1vii—Cu3—N10—C9 | 71.8 (3) | C2—W1—C6—N6 | −131 (62) |
N10vii—Cu3—N10—C9 | 56 (80) | C1—W1—C7—N7 | −151 (6) |
O1—Cu3—N10—C10 | 63.1 (3) | C8—W1—C7—N7 | −60 (6) |
O1vii—Cu3—N10—C10 | −116.9 (3) | C4—W1—C7—N7 | −3 (6) |
N10vii—Cu3—N10—C10 | −133 (80) | C5—W1—C7—N7 | 55 (6) |
N4iv—Cu2—N11—C14 | −55.8 (4) | C3—W1—C7—N7 | 122 (6) |
N4v—Cu2—N11—C14 | 124.2 (4) | C6—W1—C7—N7 | 134 (6) |
N11vi—Cu2—N11—C14 | −19 (27) | C2—W1—C7—N7 | −100 (6) |
N3—Cu2—N11—C14 | −144.2 (4) | Cu1—N8—C8—W1 | −6 (14) |
N3vi—Cu2—N11—C14 | 35.8 (4) | C1—W1—C8—N8 | 44 (13) |
N4iv—Cu2—N11—C17 | 126.5 (3) | C4—W1—C8—N8 | −168 (13) |
N4v—Cu2—N11—C17 | −53.5 (3) | C5—W1—C8—N8 | −104 (13) |
N11vi—Cu2—N11—C17 | 164 (27) | C3—W1—C8—N8 | 141 (12) |
N3—Cu2—N11—C17 | 38.1 (3) | C7—W1—C8—N8 | −36 (13) |
N3vi—Cu2—N11—C17 | −141.9 (3) | C6—W1—C8—N8 | −15 (13) |
Cu1v—N1—C1—W1 | 31 (5) | C2—W1—C8—N8 | 116 (13) |
C8—W1—C1—N1 | −173 (4) | C12—N9—C9—N10 | −1.0 (6) |
C4—W1—C1—N1 | 126 (4) | Cu1—N9—C9—N10 | 174.7 (3) |
C5—W1—C1—N1 | −54 (4) | C10—N10—C9—N9 | 1.0 (6) |
C3—W1—C1—N1 | 41 (4) | Cu3—N10—C9—N9 | 172.4 (3) |
C7—W1—C1—N1 | −103 (4) | C9—N10—C10—C11 | −0.3 (6) |
C6—W1—C1—N1 | −28 (4) | Cu3—N10—C10—C11 | −172.1 (3) |
C2—W1—C1—N1 | 112 (4) | N10—C10—C11—C12 | −0.3 (6) |
C1—W1—C2—N2 | −17 (16) | N10—C10—C11—C13 | 178.8 (4) |
C8—W1—C2—N2 | −109 (16) | C9—N9—C12—C11 | 0.3 (6) |
C4—W1—C2—N2 | 172 (16) | Cu1—N9—C12—C11 | −175.4 (3) |
C5—W1—C2—N2 | 150 (16) | C10—C11—C12—N9 | 0.3 (6) |
C3—W1—C2—N2 | 85 (16) | C13—C11—C12—N9 | −178.8 (4) |
C7—W1—C2—N2 | −70 (16) | C17—N11—C14—N12 | −0.9 (7) |
C6—W1—C2—N2 | 34 (16) | Cu2—N11—C14—N12 | −178.6 (4) |
Cu2—N3—C3—W1 | 17 (6) | C15—N12—C14—N11 | 0.2 (8) |
C1—W1—C3—N3 | −30 (4) | C14—N12—C15—C16 | −0.1 (8) |
C8—W1—C3—N3 | −124 (4) | N12—C15—C16—C17 | 0.7 (8) |
C4—W1—C3—N3 | −173 (4) | N12—C15—C16—C18 | −178.4 (6) |
C5—W1—C3—N3 | 116 (4) | C14—N11—C17—C16 | 1.5 (7) |
C7—W1—C3—N3 | 52 (5) | Cu2—N11—C17—C16 | 179.3 (4) |
C6—W1—C3—N3 | 40 (4) | C15—C16—C17—N11 | −1.4 (7) |
C2—W1—C3—N3 | −99 (4) | C18—C16—C17—N11 | 177.7 (5) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x+1, y, z; (iii) −x+2, −y+2, −z+2; (iv) −x+1, −y+2, −z+1; (v) x−1, y, z; (vi) −x, −y+2, −z+1; (vii) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N6viii | 0.92 (2) | 1.86 (2) | 2.771 (5) | 167 (5) |
O1—H2···O2 | 0.93 (2) | 1.79 (2) | 2.700 (4) | 165 (4) |
O2—H3···N12ix | 0.95 (2) | 2.00 (3) | 2.914 (5) | 161 (4) |
O2—H4···N2i | 0.93 (2) | 2.02 (2) | 2.944 (5) | 169 (6) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (viii) −x+1, −y+1, −z+2; (ix) x+1, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N6i | 0.924 (19) | 1.86 (2) | 2.771 (5) | 167 (5) |
O1—H2···O2 | 0.931 (19) | 1.79 (2) | 2.700 (4) | 165 (4) |
O2—H3···N12ii | 0.950 (19) | 2.00 (3) | 2.914 (5) | 161 (4) |
O2—H4···N2iii | 0.933 (19) | 2.02 (2) | 2.944 (5) | 169 (6) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z+1; (iii) −x+1, −y+2, −z+2. |
Acknowledgements
The present research was supported partly by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST), the Asahi Glass Foundation, the Advanced Photon Science Alliance (APSA) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the Cryogenic Research Center, The University of Tokyo, and the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT. YT is grateful for a JSPS Research Fellowship for Young Scientists.
References
Catala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748. Web of Science CrossRef Google Scholar
DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pyMOL.org Google Scholar
Garde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587–595. Web of Science CrossRef CAS Google Scholar
Herrera, J. M., Franz, P., Podgajny, R., Pilkington, M., Biner, M., Decurtins, S., Stoeckli-Evans, H., Neels, A., Garde, R., Dromzée, Y., Julve, M., Sieklucka, B., Hashimoto, K., Ohkoshi, S. & Verdaguer, M. (2008). C. R. Chim. 11, 1192–1199. Web of Science CrossRef CAS Google Scholar
Herrera, J. M., Marvaud, V., Verdaguer, M., Marrot, J., Kalisz, M. & Mathonière, C. (2004). Angew. Chem. Int. Ed. 43, 5468–5471. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Imoto, K., Takemura, M., Tokoro, H. & Ohkoshi, S. (2012). Eur. J. Inorg. Chem. pp. 2649–2652. Web of Science CrossRef Google Scholar
Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241–322. CrossRef CAS Google Scholar
Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. (2011). Nat. Chem. 3, 564–569. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ohkoshi, S. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749–1758. Web of Science CrossRef CAS PubMed Google Scholar
Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085. Web of Science CSD CrossRef PubMed CAS Google Scholar
Podgajny, R., Korzeniak, T., Balanda, M., Wasiutynski, T., Errington, W., Kemp, T. J., Alcockc, N. W. & Sieklucka, B. (2002). Chem. Commun. pp. 1138–1139. Web of Science CSD CrossRef Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapa, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032–2039. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095–5101. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.