metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m47-m48

Poly[[di­aqua­deca-μ2-cyanido-κ20C:N-hexa­cyanido-κ6C-bis­­(μ2-5-methyl­pyrimidine-κ2N:N′)bis­­(5-methyl­pyrimidine-κN)tricopper(II)ditungstate(V)] dihydrate]

aDepartment of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*Correspondence e-mail: ohkoshi@chem.s.u-tokyo.ac.jp

(Received 16 December 2013; accepted 4 January 2014; online 18 January 2014)

In the title complex, {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n, the coordination polyhedron of the eight-coordinated WV atom is a bicapped trigonal prism, in which five CN groups are bridged to CuII ions, and the other three CN groups are terminally bound. Two of the CuII ions lie on a centre of inversion and each of the three independent CuII cations is pseudo-octahedrally coordinated. In the crystal structure, cyanido-bridged-Cu—W—Cu layers are linked by pillars involving the third independent CuII ion, generating a three-dimensional network with non-coordinating water mol­ecules and 5-methyl­pyrimidine mol­ecules. O—H⋯O and O—H⋯N hydrogen bonds involve the coordinating and non-coordin­ating water mol­ecules, the CN groups and the 5-methyl­pyrimidine mol­ecules.

Related literature

For background to functional three-dimensional networks, see: Catala et al. (2005[Catala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746-748.]); Garde et al. (1999[Garde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587-595.]); Herrera et al. (2004[Herrera, J. M., Marvaud, V., Verdaguer, M., Marrot, J., Kalisz, M. & Mathonière, C. (2004). Angew. Chem. Int. Ed. 43, 5468-5471.], 2008[Herrera, J. M., Franz, P., Podgajny, R., Pilkington, M., Biner, M., Decurtins, S., Stoeckli-Evans, H., Neels, A., Garde, R., Dromzée, Y., Julve, M., Sieklucka, B., Hashimoto, K., Ohkoshi, S. & Verdaguer, M. (2008). C. R. Chim. 11, 1192-1199.]); Imoto et al. (2012[Imoto, K., Takemura, M., Tokoro, H. & Ohkoshi, S. (2012). Eur. J. Inorg. Chem. pp. 2649-2652.]); Leipoldt et al. (1994[Leipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241-322.]); Ohkoshi & Tokoro (2012[Ohkoshi, S. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749-1758.]); Ohkoshi et al. (2011[Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. (2011). Nat. Chem. 3, 564-569.]); Sieklucka et al. (2009[Sieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapa, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032-2039.]); Zhong et al. (2000[Zhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095-5101.]). For related structures, see: Ohkoshi et al. (2007[Ohkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084-3085.], 2012[Ohkoshi, S. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749-1758.]); Podgajny et al. (2002[Podgajny, R., Korzeniak, T., Balanda, M., Wasiutynski, T., Errington, W., Kemp, T. J., Alcockc, N. W. & Sieklucka, B. (2002). Chem. Commun. pp. 1138-1139.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3W2(CN)16(C5H6N2)4(H2O)2]·2H2O

  • Mr = 1423.19

  • Triclinic, [P \overline 1]

  • a = 7.5953 (4) Å

  • b = 11.8232 (7) Å

  • c = 14.7017 (8) Å

  • α = 79.614 (1)°

  • β = 84.824 (2)°

  • γ = 73.090 (1)°

  • V = 1241.45 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.94 mm−1

  • T = 296 K

  • 0.16 × 0.10 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.452, Tmax = 0.772

  • 12240 measured reflections

  • 5666 independent reflections

  • 5465 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.24

  • 5666 reflections

  • 333 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.02 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6i 0.92 (2) 1.86 (2) 2.771 (5) 167 (5)
O1—H2⋯O2 0.93 (2) 1.79 (2) 2.700 (4) 165 (4)
O2—H3⋯N12ii 0.95 (2) 2.00 (3) 2.914 (5) 161 (4)
O2—H4⋯N2iii 0.93 (2) 2.02 (2) 2.944 (5) 169 (6)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z+1; (iii) -x+1, -y+2, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PyMOLWin (DeLano, 2007[DeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pyMOL.org]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]·2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2·2H2O (1.8 × 10 -2 mol dm-3), 5-methyl­pyrimidine (2.4 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-type crystal. Elemental analyses: calcd for Cu3[W(CN)8]2(5-methyl­pyrimidine)4·4H2O, Calculated: Cu, 13.40; W, 25.83; C, 30.38; H, 2.27; N, 23.63%. Found: Cu, 13.12; W, 25.96; C, 30.05; H, 2.35; N, 23.64%. In the Infrared (IR) spectra, cyano stretching peaks were observed at 2204, 2194, 2169, 2161, 2148, and 2142 cm-1.

Refinement top

The H atoms of the 5-methyl­pyrimidine molecules were placed in calculated positions with C—H = 0.95 Å, and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The H atoms of water molecules were placed by using restraints of 0.96 (2) Å for O—H distances and DANG of 1.5 (4) Å for H—H distances. The maximum and minimum residual electron density peaks were located 0.74 and 1.60 Å, respectively, from the W1 and C3 atoms.

Results and discussion top

Synthesis of various kinds of three-dimensional network complexes exhibiting long-range magnetic ordering is an important issue. From this perspective, o­cta­cyano­metalate [M(CN)8] (M = Mo, W, Nb)-based magnets have been studied because they show high TC (Garde et al., 1999; Zhong et al., 2000; Herrera et al., 2008; Sieklucka et al., 2009; Imoto et al., 2012) and functionalities such as photomagnetism (Herrera et al., 2004; Catala et al., 2005; Ohkoshi et al., 2011, 2012) and chemically sensitive magnetism (Ohkoshi et al., 2007). In addition, o­cta­cyano­metalates have an advantage to construct various crystal structures due to the versatility that they can adopt different spatial configurations depending on their chemical environment, e.g., square anti­prism (D4d), dodecahedron (D2d), and bicapped trigonal prism (C2v) (Leipoldt et al., 1994). Several o­cta­cyano­metalate-based magnets of Cu—W systems such as {[Cu3[W(CN)8]2]·3.4H2O}n (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]·8H2O}n (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(pyrimidine)4]·4H2O}n (Ohkoshi et al., 2012), {[(tetrenH5)0.8Cu4[W(CN)8]4]·7.2H2O}n (Podgajny et al., 2002), have been reported. Here, we present a new candidate for copper-o­cta­cyano­tungstate-based magnets, {[Cu3[W(CN)8]2(5-methyl­pyrimidine)4(H2O)2]·2H2O}n.

The asymmetric unit of the present compound consists of a [W(CN)8]3- anion, a one-half of [Cu1(5-methyl­pyrimidine)2]2+ cation, a one-half of [Cu2(5-methyl­pyrimidine)2]2+ cation, a one-half of [Cu3(H2O)2]2+ cation, and a water molecule (Fig. 1). The coordination geometry of W is an eight-coordinated bicapped trigonal prism, where five CN groups of [W(CN)8] are bridged to Cu2+ ions (two Cu1, two Cu2 and one Cu3), and the other three CN groups are free. The coordination geometries of the three types of Cu2+ ions (Cu1, Cu2 and Cu3) are six-coordinated pseudo-o­cta­hedron. Cu1 is coordinated to four nitro­gen atoms of CN ligands, two nitro­gen atoms of 5-methyl­pyrimidine molecules. Cu2 is coordinated to four nitro­gen atoms of CN ligands, two nitro­gen atoms of 5-methyl­pyrimidine molecules. Cu3 is coordinated to two nitro­gen atoms of CN ligands, two nitro­gen atoms of 5-methyl­pyrimidine molecules, and two oxygen atoms of H2O molecules. The cyano-bridged-Cu1—W—Cu2 layers are linked by Cu3 pillar unit (Figs. 2 and 3) and then, involving non-coordinated water molecules, the 3-D structure is constructed. In the crystal structure, the coordinated water make hydrogen bonds with the non-coordinated water (O1—H2···O2, 2.700 (4)) and the CN groups (O1—H1···N6, 2.771 (5)). Besides, hydrogen bonds between the non-coordinated water and the CN groups (O2—H4···N2, 2.944 (5)) or the 5-methyl­pyrimidine molecules (O2—H3···N12, 2.914 (5)).

The magnetization versus. temperature curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (TC) of 10 K, the coercive field (Hc) of 150 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value agrees with the expected value of 3.0 µB, indicating that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu1 and Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu3) are anti­ferromagnetically coupled.

Related literature top

For background to functional three-dimensional networks, see: Catala et al. (2005); Garde et al. (1999); Herrera et al. (2004, 2008); Leipoldt et al. (1994); Ohkoshi & Tokoro (2012); Ohkoshi et al. (2012); Sieklucka et al. (2009); Zhong et al. (2000). For related structures, see: Ohkoshi et al. (2007, 2012); Podgajny et al. (2002).

Structure description top

Synthesis of various kinds of three-dimensional network complexes exhibiting long-range magnetic ordering is an important issue. From this perspective, o­cta­cyano­metalate [M(CN)8] (M = Mo, W, Nb)-based magnets have been studied because they show high TC (Garde et al., 1999; Zhong et al., 2000; Herrera et al., 2008; Sieklucka et al., 2009; Imoto et al., 2012) and functionalities such as photomagnetism (Herrera et al., 2004; Catala et al., 2005; Ohkoshi et al., 2011, 2012) and chemically sensitive magnetism (Ohkoshi et al., 2007). In addition, o­cta­cyano­metalates have an advantage to construct various crystal structures due to the versatility that they can adopt different spatial configurations depending on their chemical environment, e.g., square anti­prism (D4d), dodecahedron (D2d), and bicapped trigonal prism (C2v) (Leipoldt et al., 1994). Several o­cta­cyano­metalate-based magnets of Cu—W systems such as {[Cu3[W(CN)8]2]·3.4H2O}n (Garde et al., 1999), {[Cu3[W(CN)8]2(pyrimidine)2]·8H2O}n (Ohkoshi et al., 2007), {[Cu3[W(CN)8]2(pyrimidine)4]·4H2O}n (Ohkoshi et al., 2012), {[(tetrenH5)0.8Cu4[W(CN)8]4]·7.2H2O}n (Podgajny et al., 2002), have been reported. Here, we present a new candidate for copper-o­cta­cyano­tungstate-based magnets, {[Cu3[W(CN)8]2(5-methyl­pyrimidine)4(H2O)2]·2H2O}n.

The asymmetric unit of the present compound consists of a [W(CN)8]3- anion, a one-half of [Cu1(5-methyl­pyrimidine)2]2+ cation, a one-half of [Cu2(5-methyl­pyrimidine)2]2+ cation, a one-half of [Cu3(H2O)2]2+ cation, and a water molecule (Fig. 1). The coordination geometry of W is an eight-coordinated bicapped trigonal prism, where five CN groups of [W(CN)8] are bridged to Cu2+ ions (two Cu1, two Cu2 and one Cu3), and the other three CN groups are free. The coordination geometries of the three types of Cu2+ ions (Cu1, Cu2 and Cu3) are six-coordinated pseudo-o­cta­hedron. Cu1 is coordinated to four nitro­gen atoms of CN ligands, two nitro­gen atoms of 5-methyl­pyrimidine molecules. Cu2 is coordinated to four nitro­gen atoms of CN ligands, two nitro­gen atoms of 5-methyl­pyrimidine molecules. Cu3 is coordinated to two nitro­gen atoms of CN ligands, two nitro­gen atoms of 5-methyl­pyrimidine molecules, and two oxygen atoms of H2O molecules. The cyano-bridged-Cu1—W—Cu2 layers are linked by Cu3 pillar unit (Figs. 2 and 3) and then, involving non-coordinated water molecules, the 3-D structure is constructed. In the crystal structure, the coordinated water make hydrogen bonds with the non-coordinated water (O1—H2···O2, 2.700 (4)) and the CN groups (O1—H1···N6, 2.771 (5)). Besides, hydrogen bonds between the non-coordinated water and the CN groups (O2—H4···N2, 2.944 (5)) or the 5-methyl­pyrimidine molecules (O2—H3···N12, 2.914 (5)).

The magnetization versus. temperature curve at 10 Oe showed a spontaneous magnetization with a Curie temperature (TC) of 10 K, the coercive field (Hc) of 150 Oe at 2 K, and, the saturation magnetization (Ms) value of 3.1 µB. This Ms value agrees with the expected value of 3.0 µB, indicating that this compound is a ferrimagnet in which WV (S = 1/2) and CuII (S = 1/2, Cu1 and Cu2) in the layer are ferromagnetically coupled and WV and the bridged CuII (S = 1/2, Cu3) are anti­ferromagnetically coupled.

For background to functional three-dimensional networks, see: Catala et al. (2005); Garde et al. (1999); Herrera et al. (2004, 2008); Leipoldt et al. (1994); Ohkoshi & Tokoro (2012); Ohkoshi et al. (2012); Sieklucka et al. (2009); Zhong et al. (2000). For related structures, see: Ohkoshi et al. (2007, 2012); Podgajny et al. (2002).

Synthesis and crystallization top

The title compound was prepared by reacting an aqueous solution of Cs3[W(CN)8]·2H2O (1.2 × 10 -2 mol dm-3) with a mixed aqueous solution of CuCl2·2H2O (1.8 × 10 -2 mol dm-3), 5-methyl­pyrimidine (2.4 × 10 -2 mol dm-3) at room temperature. The prepared compound was a green plate-type crystal. Elemental analyses: calcd for Cu3[W(CN)8]2(5-methyl­pyrimidine)4·4H2O, Calculated: Cu, 13.40; W, 25.83; C, 30.38; H, 2.27; N, 23.63%. Found: Cu, 13.12; W, 25.96; C, 30.05; H, 2.35; N, 23.64%. In the Infrared (IR) spectra, cyano stretching peaks were observed at 2204, 2194, 2169, 2161, 2148, and 2142 cm-1.

Refinement details top

The H atoms of the 5-methyl­pyrimidine molecules were placed in calculated positions with C—H = 0.95 Å, and refined using a riding model with Uiso(H) = 1.2 Ueq(C). The H atoms of water molecules were placed by using restraints of 0.96 (2) Å for O—H distances and DANG of 1.5 (4) Å for H—H distances. The maximum and minimum residual electron density peaks were located 0.74 and 1.60 Å, respectively, from the W1 and C3 atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PyMOLWin (DeLano, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (30% probability level) of the atoms comprising the asymmetric unit of {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n. Symmetry codes: (i) +x,+y,+z and (ii) -x,-y,-z.
[Figure 2] Fig. 2. Crystal structure of {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n along the a axis. Blue, orange, gray, light blue, and red represent W, Cu, C, N, and O atoms, respectively. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Crystal structure of {[Cu3[W(CN)8]2(C5H6N2)4(H2O)2]·2H2O}n along the b axis. Blue, orange, gray, light blue, and red represent W, Cu, C, N, and O atoms, respectively. Hydrogen atoms are omitted for clarity.
Poly[[diaquadeca-µ2-cyanido-κ20C:N-hexacyanido-κ6C-bis(µ2-5-methylpyrimidine-κ2N:N')bis(5-methylpyrimidine-κN)tricopper(II)ditungstate(V)] dihydrate] top
Crystal data top
[Cu3W2(CN)16(C5H6N2)4(H2O)2]·2H2OZ = 1
Mr = 1423.19F(000) = 683
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.5953 (4) ÅCell parameters from 10947 reflections
b = 11.8232 (7) Åθ = 3.0–27.5°
c = 14.7017 (8) ŵ = 5.94 mm1
α = 79.614 (1)°T = 296 K
β = 84.824 (2)°Platelet, green
γ = 73.090 (1)°0.16 × 0.10 × 0.05 mm
V = 1241.45 (12) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5666 independent reflections
Radiation source: fine-focus sealed tube5465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1514
Tmin = 0.452, Tmax = 0.772l = 1919
12240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.3667P]
where P = (Fo2 + 2Fc2)/3
5666 reflections(Δ/σ)max = 0.003
333 parametersΔρmax = 3.02 e Å3
6 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Cu3W2(CN)16(C5H6N2)4(H2O)2]·2H2Oγ = 73.090 (1)°
Mr = 1423.19V = 1241.45 (12) Å3
Triclinic, P1Z = 1
a = 7.5953 (4) ÅMo Kα radiation
b = 11.8232 (7) ŵ = 5.94 mm1
c = 14.7017 (8) ÅT = 296 K
α = 79.614 (1)°0.16 × 0.10 × 0.05 mm
β = 84.824 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5666 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5465 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 0.772Rint = 0.033
12240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 3.02 e Å3
5666 reflectionsΔρmin = 0.86 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.548569 (15)0.875339 (10)0.768726 (8)0.01497 (6)
Cu11.00001.00001.00000.01979 (14)
Cu20.00001.00000.50000.02293 (14)
Cu31.00000.50001.00000.02754 (15)
O10.9257 (4)0.4659 (3)1.12961 (19)0.0325 (6)
O20.8939 (5)0.6502 (3)1.2207 (3)0.0446 (8)
N10.2221 (4)0.9864 (3)0.9186 (2)0.0253 (6)
N20.4282 (6)1.1699 (3)0.7155 (3)0.0439 (10)
N30.2648 (5)0.9438 (3)0.5964 (3)0.0352 (8)
N40.8430 (4)0.9479 (3)0.6057 (2)0.0274 (7)
N50.7737 (7)0.6301 (4)0.6849 (4)0.0615 (13)
N60.2689 (5)0.7008 (4)0.8104 (3)0.0437 (9)
N70.6975 (5)0.6771 (3)0.9555 (3)0.0376 (9)
N80.8384 (5)0.9585 (3)0.8789 (2)0.0309 (7)
N91.1037 (4)0.8172 (3)1.0463 (2)0.0222 (6)
N101.1143 (4)0.6182 (3)1.0366 (2)0.0240 (6)
N110.0743 (4)0.8306 (3)0.4682 (2)0.0271 (7)
N120.0945 (6)0.6994 (4)0.3619 (3)0.0550 (12)
C10.3400 (5)0.9497 (3)0.8680 (2)0.0219 (7)
C20.4714 (5)1.0702 (4)0.7326 (3)0.0262 (8)
C30.3692 (5)0.9207 (4)0.6532 (3)0.0272 (8)
C40.7413 (5)0.9202 (3)0.6609 (2)0.0219 (7)
C50.6973 (6)0.7146 (3)0.7133 (3)0.0323 (9)
C60.3645 (5)0.7610 (3)0.7957 (3)0.0269 (8)
C70.6405 (5)0.7462 (3)0.8920 (3)0.0260 (8)
C80.7391 (5)0.9303 (3)0.8395 (3)0.0231 (7)
C91.0448 (5)0.7368 (3)1.0154 (3)0.0227 (7)
H90.94720.76510.97580.027*
C101.2529 (5)0.5779 (3)1.0949 (3)0.0281 (8)
H101.30360.49581.11110.034*
C111.3227 (5)0.6550 (3)1.1315 (3)0.0286 (8)
C121.2427 (5)0.7751 (4)1.1046 (3)0.0292 (8)
H121.28650.82961.12760.035*
C131.4754 (7)0.6078 (4)1.1980 (4)0.0532 (14)
H13A1.51100.52191.20770.064*
H13B1.43400.63541.25580.064*
H13C1.57900.63601.17300.064*
C140.0516 (6)0.8084 (4)0.3854 (3)0.0413 (10)
H140.00220.87350.34030.050*
C150.1642 (7)0.6077 (4)0.4271 (4)0.0501 (12)
H150.19500.53090.41250.060*
C160.1936 (7)0.6203 (4)0.5156 (4)0.0423 (11)
C170.1426 (6)0.7371 (4)0.5327 (3)0.0332 (9)
H170.15680.75070.59160.040*
C180.2772 (12)0.5161 (6)0.5890 (5)0.083 (2)
H18A0.28440.54520.64510.099*
H18B0.39870.47490.56840.099*
H18C0.20190.46200.60030.099*
H10.868 (7)0.410 (3)1.159 (3)0.052 (15)*
H20.913 (6)0.520 (3)1.170 (3)0.047 (14)*
H30.981 (5)0.653 (5)1.262 (3)0.044 (14)*
H40.785 (4)0.699 (5)1.244 (4)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01514 (9)0.01469 (9)0.01571 (9)0.00529 (6)0.00316 (6)0.00411 (6)
Cu10.0179 (3)0.0139 (3)0.0246 (3)0.0026 (2)0.0084 (2)0.0033 (2)
Cu20.0273 (3)0.0226 (3)0.0205 (3)0.0112 (3)0.0107 (3)0.0063 (3)
Cu30.0403 (4)0.0269 (3)0.0249 (3)0.0228 (3)0.0015 (3)0.0074 (3)
O10.0436 (16)0.0348 (16)0.0273 (14)0.0244 (14)0.0064 (12)0.0076 (12)
O20.0377 (17)0.056 (2)0.0461 (19)0.0118 (16)0.0010 (15)0.0275 (17)
N10.0222 (14)0.0207 (15)0.0297 (16)0.0032 (12)0.0065 (13)0.0039 (13)
N20.052 (2)0.0182 (18)0.057 (3)0.0024 (17)0.003 (2)0.0084 (17)
N30.0321 (18)0.042 (2)0.0337 (19)0.0125 (16)0.0125 (15)0.0027 (16)
N40.0259 (15)0.0313 (17)0.0242 (15)0.0099 (14)0.0073 (13)0.0038 (13)
N50.076 (3)0.035 (2)0.068 (3)0.006 (2)0.019 (3)0.024 (2)
N60.048 (2)0.043 (2)0.052 (2)0.0315 (19)0.0051 (18)0.0095 (18)
N70.050 (2)0.0295 (19)0.0361 (19)0.0172 (17)0.0145 (17)0.0056 (16)
N80.0343 (17)0.0225 (16)0.0375 (18)0.0093 (14)0.0094 (15)0.0026 (14)
N90.0204 (14)0.0214 (15)0.0237 (15)0.0041 (12)0.0020 (12)0.0058 (13)
N100.0310 (16)0.0206 (15)0.0244 (15)0.0138 (13)0.0000 (13)0.0033 (12)
N110.0303 (16)0.0279 (16)0.0260 (16)0.0092 (14)0.0038 (13)0.0122 (14)
N120.064 (3)0.051 (3)0.053 (3)0.003 (2)0.012 (2)0.031 (2)
C10.0194 (16)0.0170 (16)0.0269 (17)0.0041 (13)0.0024 (14)0.0012 (14)
C20.0224 (18)0.026 (2)0.0273 (19)0.0029 (15)0.0001 (15)0.0046 (16)
C30.0276 (18)0.0292 (19)0.0279 (18)0.0138 (16)0.0020 (16)0.0045 (16)
C40.0210 (16)0.0225 (17)0.0212 (17)0.0045 (14)0.0014 (14)0.0051 (14)
C50.040 (2)0.0203 (18)0.034 (2)0.0060 (17)0.0104 (18)0.0099 (16)
C60.0270 (18)0.0239 (18)0.0299 (19)0.0087 (15)0.0015 (15)0.0032 (15)
C70.0311 (19)0.0220 (18)0.0274 (19)0.0125 (16)0.0013 (16)0.0020 (16)
C80.0279 (17)0.0190 (16)0.0233 (17)0.0085 (14)0.0001 (15)0.0030 (14)
C90.0266 (18)0.0149 (16)0.0270 (18)0.0075 (14)0.0051 (15)0.0008 (14)
C100.0301 (18)0.0183 (17)0.037 (2)0.0066 (15)0.0039 (16)0.0065 (15)
C110.0229 (17)0.0195 (17)0.042 (2)0.0009 (15)0.0094 (16)0.0066 (16)
C120.0270 (18)0.0244 (19)0.041 (2)0.0109 (15)0.0042 (17)0.0110 (17)
C130.047 (3)0.030 (2)0.085 (4)0.001 (2)0.038 (3)0.014 (3)
C140.049 (3)0.040 (2)0.032 (2)0.000 (2)0.008 (2)0.0137 (19)
C150.054 (3)0.030 (2)0.065 (3)0.002 (2)0.006 (3)0.023 (2)
C160.047 (3)0.027 (2)0.050 (3)0.004 (2)0.001 (2)0.009 (2)
C170.042 (2)0.033 (2)0.028 (2)0.0157 (19)0.0000 (18)0.0070 (18)
C180.120 (6)0.043 (3)0.070 (4)0.007 (4)0.010 (4)0.006 (3)
Geometric parameters (Å, º) top
W1—C12.156 (3)N4—C41.141 (5)
W1—C82.160 (4)N4—Cu2ii1.991 (3)
W1—C42.160 (4)N5—C51.131 (5)
W1—C52.167 (4)N6—C61.139 (5)
W1—C32.167 (4)N7—C71.148 (5)
W1—C72.171 (4)N8—C81.144 (5)
W1—C62.178 (4)N9—C91.323 (5)
W1—C22.182 (4)N9—C121.341 (5)
Cu1—N1i1.962 (3)N10—C91.335 (5)
Cu1—N1ii1.962 (3)N10—C101.338 (5)
Cu1—N92.081 (3)N11—C141.328 (5)
Cu1—N9iii2.081 (3)N11—C171.329 (6)
Cu1—N8iii2.444 (3)N12—C151.326 (7)
Cu1—N82.444 (3)N12—C141.334 (6)
Cu2—N4iv1.991 (3)C9—H90.9300
Cu2—N4v1.991 (3)C10—C111.383 (5)
Cu2—N11vi2.044 (3)C10—H100.9300
Cu2—N112.044 (3)C11—C121.372 (5)
Cu2—N32.427 (3)C11—C131.497 (6)
Cu2—N3vi2.427 (3)C12—H120.9300
Cu3—O11.943 (3)C13—H13A0.9600
Cu3—O1vii1.943 (3)C13—H13B0.9600
Cu3—N10vii2.015 (3)C13—H13C0.9600
Cu3—N102.015 (3)C14—H140.9300
O1—H10.924 (19)C15—C161.380 (7)
O1—H20.931 (19)C15—H150.9300
O2—H30.950 (19)C16—C171.385 (6)
O2—H40.933 (19)C16—C181.508 (8)
N1—C11.146 (5)C17—H170.9300
N1—Cu1v1.962 (3)C18—H18A0.9600
N2—C21.115 (6)C18—H18B0.9600
N3—C31.145 (5)C18—H18C0.9600
C1—W1—C886.95 (13)N10vii—Cu3—N10179.999 (1)
C1—W1—C4143.19 (14)Cu3—O1—H1129 (3)
C8—W1—C475.63 (14)Cu3—O1—H2122 (3)
C1—W1—C5145.49 (14)H1—O1—H2106 (3)
C8—W1—C5108.53 (15)H3—O2—H4102 (3)
C4—W1—C571.32 (15)C1—N1—Cu1v160.6 (3)
C1—W1—C396.29 (14)C3—N3—Cu2169.1 (3)
C8—W1—C3145.84 (14)C4—N4—Cu2ii174.1 (3)
C4—W1—C381.95 (14)C8—N8—Cu1164.1 (3)
C5—W1—C387.73 (16)C9—N9—C12116.7 (3)
C1—W1—C780.17 (14)C9—N9—Cu1121.9 (3)
C8—W1—C769.75 (14)C12—N9—Cu1121.2 (3)
C4—W1—C7121.55 (14)C9—N10—C10117.1 (3)
C5—W1—C776.96 (15)C9—N10—Cu3123.4 (2)
C3—W1—C7144.35 (14)C10—N10—Cu3118.9 (2)
C1—W1—C673.46 (14)C14—N11—C17117.4 (4)
C8—W1—C6140.10 (14)C14—N11—Cu2122.6 (3)
C4—W1—C6138.18 (14)C17—N11—Cu2120.0 (3)
C5—W1—C675.27 (15)C15—N12—C14116.6 (4)
C3—W1—C672.22 (14)N1—C1—W1175.9 (3)
C7—W1—C672.80 (14)N2—C2—W1178.3 (5)
C1—W1—C271.57 (14)N3—C3—W1175.3 (3)
C8—W1—C275.22 (14)N4—C4—W1177.1 (4)
C4—W1—C272.72 (14)N5—C5—W1179.3 (4)
C5—W1—C2141.37 (15)N6—C6—W1179.6 (4)
C3—W1—C273.68 (15)N7—C7—W1176.8 (4)
C7—W1—C2135.68 (15)N8—C8—W1178.4 (3)
C6—W1—C2127.18 (14)N9—C9—N10125.2 (3)
N1i—Cu1—N1ii179.999 (1)N9—C9—H9117.4
N1i—Cu1—N993.24 (12)N10—C9—H9117.4
N1ii—Cu1—N986.76 (12)N10—C10—C11121.9 (3)
N1i—Cu1—N9iii86.76 (12)N10—C10—H10119.1
N1ii—Cu1—N9iii93.24 (12)C11—C10—H10119.1
N9—Cu1—N9iii179.998 (1)C12—C11—C10116.3 (3)
N1i—Cu1—N8iii90.31 (13)C12—C11—C13122.8 (4)
N1ii—Cu1—N8iii89.69 (13)C10—C11—C13120.9 (4)
N9—Cu1—N8iii89.69 (12)N9—C12—C11122.7 (3)
N9iii—Cu1—N8iii90.31 (12)N9—C12—H12118.6
N1i—Cu1—N889.69 (13)C11—C12—H12118.6
N1ii—Cu1—N890.31 (13)C11—C13—H13A109.5
N9—Cu1—N890.31 (12)C11—C13—H13B109.5
N9iii—Cu1—N889.69 (12)H13A—C13—H13B109.5
N8iii—Cu1—N8180.000 (1)C11—C13—H13C109.5
N4iv—Cu2—N4v179.998 (1)H13A—C13—H13C109.5
N4iv—Cu2—N11vi89.30 (13)H13B—C13—H13C109.5
N4v—Cu2—N11vi90.70 (13)N11—C14—N12124.8 (5)
N4iv—Cu2—N1190.70 (13)N11—C14—H14117.6
N4v—Cu2—N1189.30 (13)N12—C14—H14117.6
N11vi—Cu2—N11179.999 (1)N12—C15—C16123.5 (4)
N4iv—Cu2—N388.44 (13)N12—C15—H15118.3
N4v—Cu2—N391.56 (13)C16—C15—H15118.3
N11vi—Cu2—N390.62 (13)C15—C16—C17115.1 (4)
N11—Cu2—N389.38 (13)C15—C16—C18123.5 (5)
N4iv—Cu2—N3vi91.56 (13)C17—C16—C18121.5 (5)
N4v—Cu2—N3vi88.44 (13)N11—C17—C16122.6 (4)
N11vi—Cu2—N3vi89.38 (13)N11—C17—H17118.7
N11—Cu2—N3vi90.62 (13)C16—C17—H17118.7
N3—Cu2—N3vi180.0C16—C18—H18A109.5
O1—Cu3—O1vii180.00 (17)C16—C18—H18B109.5
O1—Cu3—N10vii92.98 (12)H18A—C18—H18B109.5
O1vii—Cu3—N10vii87.01 (12)C16—C18—H18C109.5
O1—Cu3—N1087.02 (12)H18A—C18—H18C109.5
O1vii—Cu3—N1092.98 (12)H18B—C18—H18C109.5
N4iv—Cu2—N3—C3153.2 (18)Cu2ii—N4—C4—W1113 (6)
N4v—Cu2—N3—C326.8 (18)C1—W1—C4—N424 (7)
N11vi—Cu2—N3—C363.9 (18)C8—W1—C4—N440 (7)
N11—Cu2—N3—C3116.1 (18)C5—W1—C4—N4156 (7)
N3vi—Cu2—N3—C335 (58)C3—W1—C4—N4114 (7)
N1i—Cu1—N8—C824.6 (11)C7—W1—C4—N495 (7)
N1ii—Cu1—N8—C8155.4 (11)C6—W1—C4—N4165 (7)
N9—Cu1—N8—C868.6 (11)C2—W1—C4—N438 (7)
N9iii—Cu1—N8—C8111.4 (11)C1—W1—C5—N513 (39)
N8iii—Cu1—N8—C867 (100)C8—W1—C5—N5126 (39)
N1i—Cu1—N9—C979.9 (3)C4—W1—C5—N5167 (100)
N1ii—Cu1—N9—C9100.1 (3)C3—W1—C5—N584 (39)
N9iii—Cu1—N9—C9178 (28)C7—W1—C5—N563 (39)
N8iii—Cu1—N9—C9170.2 (3)C6—W1—C5—N512 (39)
N8—Cu1—N9—C99.8 (3)C2—W1—C5—N5144 (39)
N1i—Cu1—N9—C12104.5 (3)C1—W1—C6—N681 (62)
N1ii—Cu1—N9—C1275.5 (3)C8—W1—C6—N617 (62)
N9iii—Cu1—N9—C127 (28)C4—W1—C6—N6122 (62)
N8iii—Cu1—N9—C1214.2 (3)C5—W1—C6—N685 (62)
N8—Cu1—N9—C12165.8 (3)C3—W1—C6—N6177 (100)
O1—Cu3—N10—C9108.2 (3)C7—W1—C6—N64 (62)
O1vii—Cu3—N10—C971.8 (3)C2—W1—C6—N6131 (62)
N10vii—Cu3—N10—C956 (80)C1—W1—C7—N7151 (6)
O1—Cu3—N10—C1063.1 (3)C8—W1—C7—N760 (6)
O1vii—Cu3—N10—C10116.9 (3)C4—W1—C7—N73 (6)
N10vii—Cu3—N10—C10133 (80)C5—W1—C7—N755 (6)
N4iv—Cu2—N11—C1455.8 (4)C3—W1—C7—N7122 (6)
N4v—Cu2—N11—C14124.2 (4)C6—W1—C7—N7134 (6)
N11vi—Cu2—N11—C1419 (27)C2—W1—C7—N7100 (6)
N3—Cu2—N11—C14144.2 (4)Cu1—N8—C8—W16 (14)
N3vi—Cu2—N11—C1435.8 (4)C1—W1—C8—N844 (13)
N4iv—Cu2—N11—C17126.5 (3)C4—W1—C8—N8168 (13)
N4v—Cu2—N11—C1753.5 (3)C5—W1—C8—N8104 (13)
N11vi—Cu2—N11—C17164 (27)C3—W1—C8—N8141 (12)
N3—Cu2—N11—C1738.1 (3)C7—W1—C8—N836 (13)
N3vi—Cu2—N11—C17141.9 (3)C6—W1—C8—N815 (13)
Cu1v—N1—C1—W131 (5)C2—W1—C8—N8116 (13)
C8—W1—C1—N1173 (4)C12—N9—C9—N101.0 (6)
C4—W1—C1—N1126 (4)Cu1—N9—C9—N10174.7 (3)
C5—W1—C1—N154 (4)C10—N10—C9—N91.0 (6)
C3—W1—C1—N141 (4)Cu3—N10—C9—N9172.4 (3)
C7—W1—C1—N1103 (4)C9—N10—C10—C110.3 (6)
C6—W1—C1—N128 (4)Cu3—N10—C10—C11172.1 (3)
C2—W1—C1—N1112 (4)N10—C10—C11—C120.3 (6)
C1—W1—C2—N217 (16)N10—C10—C11—C13178.8 (4)
C8—W1—C2—N2109 (16)C9—N9—C12—C110.3 (6)
C4—W1—C2—N2172 (16)Cu1—N9—C12—C11175.4 (3)
C5—W1—C2—N2150 (16)C10—C11—C12—N90.3 (6)
C3—W1—C2—N285 (16)C13—C11—C12—N9178.8 (4)
C7—W1—C2—N270 (16)C17—N11—C14—N120.9 (7)
C6—W1—C2—N234 (16)Cu2—N11—C14—N12178.6 (4)
Cu2—N3—C3—W117 (6)C15—N12—C14—N110.2 (8)
C1—W1—C3—N330 (4)C14—N12—C15—C160.1 (8)
C8—W1—C3—N3124 (4)N12—C15—C16—C170.7 (8)
C4—W1—C3—N3173 (4)N12—C15—C16—C18178.4 (6)
C5—W1—C3—N3116 (4)C14—N11—C17—C161.5 (7)
C7—W1—C3—N352 (5)Cu2—N11—C17—C16179.3 (4)
C6—W1—C3—N340 (4)C15—C16—C17—N111.4 (7)
C2—W1—C3—N399 (4)C18—C16—C17—N11177.7 (5)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x+2, y+2, z+2; (iv) x+1, y+2, z+1; (v) x1, y, z; (vi) x, y+2, z+1; (vii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6viii0.92 (2)1.86 (2)2.771 (5)167 (5)
O1—H2···O20.93 (2)1.79 (2)2.700 (4)165 (4)
O2—H3···N12ix0.95 (2)2.00 (3)2.914 (5)161 (4)
O2—H4···N2i0.93 (2)2.02 (2)2.944 (5)169 (6)
Symmetry codes: (i) x+1, y+2, z+2; (viii) x+1, y+1, z+2; (ix) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6i0.924 (19)1.86 (2)2.771 (5)167 (5)
O1—H2···O20.931 (19)1.79 (2)2.700 (4)165 (4)
O2—H3···N12ii0.950 (19)2.00 (3)2.914 (5)161 (4)
O2—H4···N2iii0.933 (19)2.02 (2)2.944 (5)169 (6)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1; (iii) x+1, y+2, z+2.
 

Acknowledgements

The present research was supported partly by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST), the Asahi Glass Foundation, the Advanced Photon Science Alliance (APSA) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the Cryogenic Research Center, The University of Tokyo, and the Center for Nano Lithography & Analysis, The University of Tokyo, supported by MEXT. YT is grateful for a JSPS Research Fellowship for Young Scientists.

References

First citationCatala, L., Mathonière, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P. & Mallah, T. (2005). Chem. Commun. pp. 746–748.  Web of Science CrossRef Google Scholar
First citationDeLano, W. L. (2007). The pyMOL Molecular Graphics System. DeLano Scientific LLC, Palo Alto, CA, USA. http://www.pyMOL.org  Google Scholar
First citationGarde, R., Desplanches, C., Bleuzen, A., Veillet, P. & Verdaguer, M. (1999). Mol. Cryst. Liq. Cryst. 334, 587–595.  Web of Science CrossRef CAS Google Scholar
First citationHerrera, J. M., Franz, P., Podgajny, R., Pilkington, M., Biner, M., Decurtins, S., Stoeckli-Evans, H., Neels, A., Garde, R., Dromzée, Y., Julve, M., Sieklucka, B., Hashimoto, K., Ohkoshi, S. & Verdaguer, M. (2008). C. R. Chim. 11, 1192–1199.  Web of Science CrossRef CAS Google Scholar
First citationHerrera, J. M., Marvaud, V., Verdaguer, M., Marrot, J., Kalisz, M. & Mathonière, C. (2004). Angew. Chem. Int. Ed. 43, 5468–5471.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationImoto, K., Takemura, M., Tokoro, H. & Ohkoshi, S. (2012). Eur. J. Inorg. Chem. pp. 2649–2652.  Web of Science CrossRef Google Scholar
First citationLeipoldt, J. G., Basson, S. S. & Roodt, A. (1994). Adv. Inorg. Chem. 40, 241–322.  CrossRef CAS Google Scholar
First citationOhkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. (2011). Nat. Chem. 3, 564–569.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOhkoshi, S. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749–1758.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOhkoshi, S., Tsunobuchi, Y., Takahashi, H., Hozumi, T., Shiro, M. & Hashimoto, K. (2007). J. Am. Chem. Soc. 129, 3084–3085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPodgajny, R., Korzeniak, T., Balanda, M., Wasiutynski, T., Errington, W., Kemp, T. J., Alcockc, N. W. & Sieklucka, B. (2002). Chem. Commun. pp. 1138–1139.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan, and Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Pinkowicz, D., Nowicka, B., Korzeniak, T., Bałanda, M., Wasiutyński, T., Pełka, R., Makarewicz, M., Czapa, M., Rams, M., Gaweł, B. & Łasocha, W. (2009). CrystEngComm, 11, 2032–2039.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Z. J., Seino, H., Mizobe, Y., Hidai, M., Verdaguer, M., Ohkoshi, S. & Hashimoto, K. (2000). Inorg. Chem. 39, 5095–5101.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m47-m48
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds