metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Methyl­pyrazine-2-carboxyl­ato-κ2N1,O)bis­­[2-(4-methyl­pyridin-2-yl-κN)-3,5-bis­­(tri­fluoro­meth­yl)phenyl-κC1]iridium(III) chloro­form hemisolvate

aDepartment of Chemistry Education and Department of Chemical Materials, Graduate School, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 18 December 2013; accepted 27 December 2013; online 8 January 2014)

In the title complex, [Ir(C14H8F6N)2(C6H5N2O2)]·0.5CHCl3, the IrIII atom adopts a distorted octa­hedral geometry, being coordinated by three N atoms (arranged meridionally), two C atoms and one O atom of three bidentate ligands. The complex mol­ecules pack with no specific inter­molecular inter­actions between them. The SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] was used to model a disordered chloro­form solvent mol­ecule; the calculated unit-cell data allow for the presence of half of this mol­ecule in the asymmetric unit.

Related literature

For phospho­rescent Ir complexes, see: Chen et al. (2010[Chen, Z.-Q., Bian, Z.-Q. & Huang, C.-H. (2010). Adv. Mater. 22, 1534-1539.]). For phospho­rescent Ir complexes in OLED, see: Chang et al. (2013[Chang, C.-H., Wu, Z.-J., Chiu, C.-H., Liang, Y.-H., Tsai, Y.-S., Liao, J.-L., Chi, Y., Hsieh, H.-Y., Kuo, T.-Y., Lee, G.-H., Pan, H.-A., Chou, P.-T., Lin, J.-S. & Tseng, M.-R. (2013). ACS Appl. Mater. Interfaces, 5, 7341-7351.]); Park et al. (2013[Park, H. J., Kim, J. N., Yoo, H.-J., Wee, K.-R., Kang, S. O., Cho, D. W. & Yoon, U. C. (2013). J. Org. Chem. 78, 8054-8064.]); Seo et al. (2010[Seo, H.-J., Yoo, K.-M., Song, M., Park, J. S., Jin, S.-H., Kim, Y. I. & Kim, J.-J. (2010). Org. Electron., 11, 564-572.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C14H8F6N)2(C6H5N2O2)]·0.5CHCl3

  • Mr = 997.43

  • Triclinic, [P \overline 1]

  • a = 11.0949 (3) Å

  • b = 12.3669 (4) Å

  • c = 14.2892 (4) Å

  • α = 94.399 (3)°

  • β = 110.888 (1)°

  • γ = 102.695 (2)°

  • V = 1760.93 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 296 K

  • 0.36 × 0.27 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.284, Tmax = 0.351

  • 46539 measured reflections

  • 8709 independent reflections

  • 8016 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.04

  • 8709 reflections

  • 481 parameters

  • H-atom parameters not refined

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected bond lengths (Å)

Ir1—C30 1.993 (3)
Ir1—C9 1.999 (3)
Ir1—N23 2.028 (2)
Ir1—N2 2.035 (2)
Ir1—N44 2.147 (2)
Ir1—O52 2.149 (2)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

Synthesis of 2-(2,4-bis­(tri­fluoro­methyl)­phenyl)-4-methyl­pyridine (dCF3pmpy): A Suzuki coupling reaction between 2-bromo-4-methyl­pyridine and 2,4-bis­(tri­fluoro­methyl)­phenyl­boronic acid using tetra­kis(tri­phenyl­phosphine)palladium(0) as a catalyst yielded 2-(2,4-bis­(tri­fluoro­methyl)­phenyl)-4-methyl­pyridine in freshly distilled THF under nitro­gen atmosphere.

Synthesis of title complex: The cyclo­metalated iridium(III) µ-chloro-bridged dimer, [(dCF3pmpy)2Ir(µ-Cl)]2 was prepared from the reaction of the iridium(III) trichloride trihydrate and dCF3pmpy in a solution of 2-eth­oxy­ethanol/water (3:1 v/v). The prepared iridium(III) dimer (0.25 g, 0.15 mmol), sodium carbonate (0.16 g, 1.5 mmol) and 2.2 equivalents 5-methyl­pyrazine-2-carb­oxy­lic acid (mprz) (0.45 g, 0.3 mmol) were dissolved in 2-eth­oxy­ethanol (20 ml) and the mixture was heated at 130 °C for 24 h. The mixture extracted with di­chloro­methane (3 × 50 ml) and dried over anhydrous magnesium sulfate. The crude product was flash chromatographed on silica gel using di­chloro­methane/methanol as an eluent to afford the title iridium(III) complex. Yield: 0.17 g (60%). The yellow crystals were obtained from its n-hexane/chloro­form solution by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms. There is a disordered chloro­form solvent molecule which was difficult to model. Therefore, the SQUEEZE command of PLATON (Spek 2009) was used to model the electron density in the void regions. There is one cavity of 165 Å3 per unit cell. This cavity contains approximately 58 electrons which were assigned to one solvent chloro­form (CHCl3) molecule. With Z = 2, the Ir complex has a 0.5 solvent chloro­form equivalent. The reported molecular formula and derived unit cell characteristics take into account the presence of the solvent molecule. The maximum and minimum residual electron density peaks of 1.21 and -0.90 eÅ-3, respectively, were located at 1.16 and 0.84 Å from the F39 and Ir1 atoms, respectively.

Results and discussion top

Phospho­rescent cyclo­metalated iridium(III) complexes have attracted significant attention with respect to their enormous potential in a range of photonic applications (Chen et al., 2010). For example, these iridium(III) complexes can be used as light emitting phosphors in an emitting layer in organic light-emitting diodes (OLEDs) since the emission wavelength of the iridium(III) complexes are tunable from red to blue by changing the electronic nature of the coordinated ligands (Chang et al., 2013; Park et al., 2013; Seo et al., 2010). In this study, we prepared a green emitting Ir(dCF3pmpy)2(mprz) complex where dCF3pmpy is 2-(2,4-bis­(triflouro­methyl)­phenyl)-4-methyl­pyridine and mprz is 5-methyl­pyrazine-2-carb­oxy­lic acid and studied its single-crystal X-ray structure. The title compound showed an emission at 517 nm in a di­chloro­methane solution. The HOMO and LUMO energy levels were obtained -6.04 eV and -3.42 eV from the electrochemical properties, respectively.

In (I), Fig. 1, the IrIII atom is coordinated by three N atoms, two C atoms, and one O atom of three bidentate ligands in a distorted o­cta­hedral geometry. The angles around Ir atoms are in the range of 77.10 (8) – 99.81 (10)°. The Ir—C bond distances of 1.993 (3) – 1.999 (3) Å are shorter than the Ir—N distances of 2.028 (2) – 2.035 (2) Å due to the stronger trans influence of the benzene ring compared to the pyridine ring (Table 1). The dihedral angle between the benzene and pyridine rings in the bidentate dCF3pmpy ligands are 16.97 (14) – 16.98 (9)°.

Related literature top

For phosphorescent Ir complexes, see: Chen et al. (2010). For phosphorescent Ir complexes in OLED, see: Chang et al. (2013); Park et al. (2013); Seo et al. (2010).

Structure description top

Phospho­rescent cyclo­metalated iridium(III) complexes have attracted significant attention with respect to their enormous potential in a range of photonic applications (Chen et al., 2010). For example, these iridium(III) complexes can be used as light emitting phosphors in an emitting layer in organic light-emitting diodes (OLEDs) since the emission wavelength of the iridium(III) complexes are tunable from red to blue by changing the electronic nature of the coordinated ligands (Chang et al., 2013; Park et al., 2013; Seo et al., 2010). In this study, we prepared a green emitting Ir(dCF3pmpy)2(mprz) complex where dCF3pmpy is 2-(2,4-bis­(triflouro­methyl)­phenyl)-4-methyl­pyridine and mprz is 5-methyl­pyrazine-2-carb­oxy­lic acid and studied its single-crystal X-ray structure. The title compound showed an emission at 517 nm in a di­chloro­methane solution. The HOMO and LUMO energy levels were obtained -6.04 eV and -3.42 eV from the electrochemical properties, respectively.

In (I), Fig. 1, the IrIII atom is coordinated by three N atoms, two C atoms, and one O atom of three bidentate ligands in a distorted o­cta­hedral geometry. The angles around Ir atoms are in the range of 77.10 (8) – 99.81 (10)°. The Ir—C bond distances of 1.993 (3) – 1.999 (3) Å are shorter than the Ir—N distances of 2.028 (2) – 2.035 (2) Å due to the stronger trans influence of the benzene ring compared to the pyridine ring (Table 1). The dihedral angle between the benzene and pyridine rings in the bidentate dCF3pmpy ligands are 16.97 (14) – 16.98 (9)°.

For phosphorescent Ir complexes, see: Chen et al. (2010). For phosphorescent Ir complexes in OLED, see: Chang et al. (2013); Park et al. (2013); Seo et al. (2010).

Synthesis and crystallization top

Synthesis of 2-(2,4-bis­(tri­fluoro­methyl)­phenyl)-4-methyl­pyridine (dCF3pmpy): A Suzuki coupling reaction between 2-bromo-4-methyl­pyridine and 2,4-bis­(tri­fluoro­methyl)­phenyl­boronic acid using tetra­kis(tri­phenyl­phosphine)palladium(0) as a catalyst yielded 2-(2,4-bis­(tri­fluoro­methyl)­phenyl)-4-methyl­pyridine in freshly distilled THF under nitro­gen atmosphere.

Synthesis of title complex: The cyclo­metalated iridium(III) µ-chloro-bridged dimer, [(dCF3pmpy)2Ir(µ-Cl)]2 was prepared from the reaction of the iridium(III) trichloride trihydrate and dCF3pmpy in a solution of 2-eth­oxy­ethanol/water (3:1 v/v). The prepared iridium(III) dimer (0.25 g, 0.15 mmol), sodium carbonate (0.16 g, 1.5 mmol) and 2.2 equivalents 5-methyl­pyrazine-2-carb­oxy­lic acid (mprz) (0.45 g, 0.3 mmol) were dissolved in 2-eth­oxy­ethanol (20 ml) and the mixture was heated at 130 °C for 24 h. The mixture extracted with di­chloro­methane (3 × 50 ml) and dried over anhydrous magnesium sulfate. The crude product was flash chromatographed on silica gel using di­chloro­methane/methanol as an eluent to afford the title iridium(III) complex. Yield: 0.17 g (60%). The yellow crystals were obtained from its n-hexane/chloro­form solution by slow evaporation at room temperature.

Refinement details top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms. There is a disordered chloro­form solvent molecule which was difficult to model. Therefore, the SQUEEZE command of PLATON (Spek 2009) was used to model the electron density in the void regions. There is one cavity of 165 Å3 per unit cell. This cavity contains approximately 58 electrons which were assigned to one solvent chloro­form (CHCl3) molecule. With Z = 2, the Ir complex has a 0.5 solvent chloro­form equivalent. The reported molecular formula and derived unit cell characteristics take into account the presence of the solvent molecule. The maximum and minimum residual electron density peaks of 1.21 and -0.90 eÅ-3, respectively, were located at 1.16 and 0.84 Å from the F39 and Ir1 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. The chloroform molecule is not shown.
(5-Methylpyrazine-2-carboxylato-κ2N1,O)bis[2-(4-methylpyridin-2-yl-κN)-3,5-bis(trifluoromethyl)phenyl-κC1]iridium(III) chloroform hemisolvate top
Crystal data top
[Ir(C14H8F6N)2(C6H5N2O2)]·0.5CHCl3Z = 2
Mr = 997.43F(000) = 966
Triclinic, P1Dx = 1.881 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.0949 (3) ÅCell parameters from 9024 reflections
b = 12.3669 (4) Åθ = 2.5–28.3°
c = 14.2892 (4) ŵ = 4.01 mm1
α = 94.399 (3)°T = 296 K
β = 110.888 (1)°Block, yellow
γ = 102.695 (2)°0.36 × 0.27 × 0.26 mm
V = 1760.93 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
8016 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.284, Tmax = 0.351k = 1616
46539 measured reflectionsl = 1919
8709 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters not refined
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8709 reflectionsΔρmax = 1.22 e Å3
481 parametersΔρmin = 0.90 e Å3
Crystal data top
[Ir(C14H8F6N)2(C6H5N2O2)]·0.5CHCl3γ = 102.695 (2)°
Mr = 997.43V = 1760.93 (9) Å3
Triclinic, P1Z = 2
a = 11.0949 (3) ÅMo Kα radiation
b = 12.3669 (4) ŵ = 4.01 mm1
c = 14.2892 (4) ÅT = 296 K
α = 94.399 (3)°0.36 × 0.27 × 0.26 mm
β = 110.888 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8709 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
8016 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.351Rint = 0.069
46539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064H-atom parameters not refined
S = 1.04Δρmax = 1.22 e Å3
8709 reflectionsΔρmin = 0.90 e Å3
481 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.03883 (2)0.25529 (2)0.20131 (2)0.02728 (4)
N20.1883 (2)0.40036 (17)0.26029 (17)0.0284 (4)
C30.1693 (3)0.5036 (2)0.2518 (2)0.0333 (6)
H30.08240.51120.23130.04*
C40.2723 (3)0.5980 (2)0.2721 (2)0.0387 (6)
H40.25540.66830.26810.046*
C50.4014 (3)0.5881 (2)0.2986 (3)0.0418 (7)
C60.4208 (3)0.4820 (2)0.3097 (2)0.0383 (6)
H60.50680.4730.32770.046*
C70.3165 (3)0.3897 (2)0.2949 (2)0.0290 (5)
C80.3232 (3)0.2723 (2)0.3049 (2)0.0290 (5)
C90.1971 (3)0.1931 (2)0.2568 (2)0.0297 (5)
C100.1925 (3)0.0790 (2)0.2549 (2)0.0358 (6)
H100.11090.02550.22150.043*
C110.3056 (3)0.0440 (2)0.3011 (3)0.0381 (6)
C120.4279 (3)0.1215 (3)0.3550 (3)0.0410 (7)
H120.50310.09730.38910.049*
C130.4371 (3)0.2356 (2)0.3577 (2)0.0349 (6)
C140.5175 (4)0.6877 (3)0.3150 (5)0.0797 (15)
H14A0.49210.73150.26210.12*
H14B0.59240.66180.31370.12*
H14C0.54190.73340.37980.12*
C150.2965 (4)0.0789 (3)0.2947 (3)0.0525 (9)
F160.1865 (3)0.13855 (19)0.3003 (3)0.0883 (9)
F170.3047 (5)0.1224 (2)0.2134 (3)0.1211 (14)
F180.3937 (3)0.1016 (2)0.3709 (3)0.1000 (10)
C190.5741 (3)0.3107 (3)0.4222 (3)0.0493 (8)
F200.6443 (2)0.35089 (19)0.3678 (2)0.0669 (6)
F210.5699 (2)0.40044 (19)0.47936 (17)0.0694 (6)
F220.6487 (2)0.2576 (2)0.4880 (2)0.0780 (8)
N230.0887 (2)0.09914 (19)0.14990 (18)0.0316 (5)
C240.1141 (3)0.0403 (3)0.0586 (2)0.0440 (7)
H240.09390.07880.01040.053*
C250.1684 (3)0.0741 (3)0.0334 (3)0.0475 (8)
H250.18420.11150.03060.057*
C260.1994 (3)0.1336 (3)0.1039 (3)0.0447 (7)
C270.1780 (3)0.0718 (2)0.1968 (3)0.0411 (7)
H270.19990.10910.2450.049*
C280.1243 (3)0.0451 (2)0.2193 (2)0.0318 (5)
C290.0885 (3)0.1206 (2)0.3161 (2)0.0307 (5)
C300.0002 (3)0.2272 (2)0.3244 (2)0.0284 (5)
C310.0482 (3)0.3046 (2)0.4146 (2)0.0339 (6)
H310.10770.37350.42160.041*
C320.0082 (3)0.2796 (2)0.4939 (2)0.0373 (6)
C330.0821 (3)0.1794 (3)0.4843 (2)0.0390 (6)
H330.11040.16490.53710.047*
C340.1315 (3)0.0999 (2)0.3966 (2)0.0343 (6)
C350.2524 (4)0.2593 (3)0.0832 (4)0.0676 (11)
H35A0.18010.29270.11250.101*
H35B0.29330.28530.01110.101*
H35C0.31760.28030.11270.101*
C360.0617 (4)0.3628 (3)0.5896 (3)0.0562 (9)
F370.1506 (5)0.4477 (3)0.5970 (3)0.173 (2)
F380.0266 (4)0.4019 (5)0.6057 (4)0.185 (3)
F390.1054 (7)0.3199 (3)0.6689 (2)0.197 (3)
C400.2349 (3)0.0040 (3)0.3935 (3)0.0456 (7)
F410.34179 (19)0.03214 (18)0.30647 (17)0.0587 (5)
F420.2824 (2)0.0087 (2)0.46604 (18)0.0708 (7)
F430.1863 (2)0.09515 (17)0.40656 (19)0.0639 (6)
N440.1189 (2)0.33246 (19)0.13102 (18)0.0319 (5)
C450.2095 (3)0.3571 (2)0.1648 (2)0.0374 (6)
H450.20790.340.22740.045*
C460.3056 (3)0.4073 (3)0.1089 (2)0.0435 (7)
N470.3107 (3)0.4348 (3)0.0193 (2)0.0580 (8)
C480.2181 (4)0.4116 (4)0.0121 (3)0.0585 (10)
H480.21780.43150.07350.07*
C490.1226 (3)0.3600 (3)0.0412 (2)0.0397 (6)
C500.4071 (4)0.4341 (4)0.1458 (3)0.0615 (10)
H50A0.36280.47780.2130.092*
H50B0.46630.36550.14750.092*
H50C0.45760.47630.10090.092*
C510.0206 (3)0.3327 (3)0.0033 (2)0.0431 (7)
O520.0579 (2)0.28101 (18)0.05964 (16)0.0395 (4)
O530.0184 (3)0.3611 (3)0.0767 (2)0.0648 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02945 (6)0.02304 (6)0.03234 (6)0.00983 (4)0.01330 (4)0.00644 (4)
N20.0359 (11)0.0205 (9)0.0327 (11)0.0110 (8)0.0149 (9)0.0077 (8)
C30.0389 (14)0.0251 (12)0.0409 (15)0.0156 (11)0.0162 (12)0.0088 (11)
C40.0483 (16)0.0229 (12)0.0493 (17)0.0149 (12)0.0201 (14)0.0088 (12)
C50.0453 (16)0.0235 (13)0.0612 (19)0.0071 (11)0.0263 (15)0.0099 (12)
C60.0369 (14)0.0271 (13)0.0560 (18)0.0100 (11)0.0222 (13)0.0093 (12)
C70.0353 (13)0.0233 (11)0.0343 (13)0.0112 (10)0.0178 (11)0.0069 (10)
C80.0340 (13)0.0240 (11)0.0355 (13)0.0107 (10)0.0185 (11)0.0081 (10)
C90.0336 (13)0.0249 (12)0.0361 (14)0.0117 (10)0.0168 (11)0.0088 (10)
C100.0370 (14)0.0227 (12)0.0522 (17)0.0102 (10)0.0209 (13)0.0079 (11)
C110.0422 (15)0.0260 (13)0.0557 (18)0.0140 (11)0.0255 (14)0.0138 (12)
C120.0397 (15)0.0357 (15)0.0559 (19)0.0194 (12)0.0201 (14)0.0181 (13)
C130.0361 (14)0.0310 (13)0.0416 (15)0.0125 (11)0.0165 (12)0.0113 (11)
C140.057 (2)0.0304 (17)0.159 (5)0.0059 (16)0.053 (3)0.021 (2)
C150.060 (2)0.0298 (15)0.085 (3)0.0231 (14)0.0397 (19)0.0184 (16)
F160.0793 (17)0.0376 (11)0.170 (3)0.0179 (11)0.0682 (19)0.0377 (15)
F170.245 (4)0.0408 (13)0.141 (3)0.059 (2)0.134 (3)0.0245 (15)
F180.098 (2)0.0503 (14)0.146 (3)0.0419 (14)0.0219 (19)0.0427 (16)
C190.0427 (17)0.0423 (17)0.057 (2)0.0148 (14)0.0092 (15)0.0157 (15)
F200.0406 (11)0.0589 (13)0.1015 (18)0.0074 (9)0.0287 (11)0.0243 (12)
F210.0719 (15)0.0548 (13)0.0567 (13)0.0155 (11)0.0001 (11)0.0062 (10)
F220.0555 (13)0.0632 (14)0.0864 (17)0.0184 (11)0.0105 (12)0.0251 (12)
N230.0298 (11)0.0281 (11)0.0356 (12)0.0076 (9)0.0119 (9)0.0017 (9)
C240.0470 (17)0.0455 (17)0.0396 (16)0.0099 (14)0.0193 (14)0.0002 (13)
C250.0469 (17)0.0432 (17)0.0467 (18)0.0044 (14)0.0198 (14)0.0115 (14)
C260.0421 (16)0.0297 (14)0.060 (2)0.0055 (12)0.0210 (15)0.0028 (13)
C270.0418 (16)0.0294 (14)0.0532 (18)0.0073 (12)0.0213 (14)0.0042 (12)
C280.0264 (12)0.0291 (13)0.0388 (14)0.0080 (10)0.0115 (11)0.0036 (11)
C290.0287 (12)0.0287 (12)0.0351 (14)0.0107 (10)0.0106 (10)0.0062 (10)
C300.0285 (12)0.0265 (12)0.0318 (13)0.0113 (10)0.0107 (10)0.0078 (10)
C310.0374 (14)0.0285 (13)0.0371 (14)0.0085 (11)0.0157 (12)0.0056 (11)
C320.0392 (15)0.0385 (15)0.0340 (14)0.0109 (12)0.0137 (12)0.0040 (11)
C330.0416 (15)0.0409 (15)0.0418 (16)0.0127 (12)0.0226 (13)0.0113 (12)
C340.0310 (13)0.0356 (14)0.0402 (15)0.0104 (11)0.0160 (11)0.0134 (11)
C350.079 (3)0.0299 (16)0.091 (3)0.0001 (17)0.042 (2)0.0109 (17)
C360.070 (2)0.053 (2)0.0418 (19)0.0057 (18)0.0253 (17)0.0032 (15)
F370.222 (5)0.134 (3)0.100 (2)0.107 (3)0.098 (3)0.074 (2)
F380.127 (3)0.227 (5)0.164 (4)0.057 (3)0.037 (3)0.126 (4)
F390.375 (8)0.101 (3)0.0358 (15)0.055 (4)0.003 (3)0.0066 (16)
C400.0473 (17)0.0408 (16)0.0519 (19)0.0063 (13)0.0257 (15)0.0100 (14)
F410.0373 (10)0.0578 (12)0.0718 (14)0.0018 (9)0.0198 (10)0.0047 (10)
F420.0751 (15)0.0686 (14)0.0758 (15)0.0053 (12)0.0525 (13)0.0081 (12)
F430.0744 (15)0.0389 (11)0.0836 (16)0.0148 (10)0.0338 (12)0.0250 (10)
N440.0320 (11)0.0318 (11)0.0343 (12)0.0114 (9)0.0133 (9)0.0081 (9)
C450.0378 (14)0.0402 (15)0.0371 (15)0.0145 (12)0.0149 (12)0.0081 (12)
C460.0395 (16)0.0484 (18)0.0451 (17)0.0198 (13)0.0143 (13)0.0079 (14)
N470.0589 (18)0.082 (2)0.0509 (17)0.0445 (18)0.0234 (15)0.0273 (16)
C480.064 (2)0.083 (3)0.049 (2)0.044 (2)0.0262 (18)0.0326 (19)
C490.0426 (16)0.0434 (16)0.0371 (15)0.0166 (13)0.0158 (13)0.0119 (12)
C500.054 (2)0.087 (3)0.059 (2)0.042 (2)0.0242 (18)0.017 (2)
C510.0473 (17)0.0476 (17)0.0416 (16)0.0182 (14)0.0211 (14)0.0133 (13)
O520.0465 (12)0.0419 (11)0.0398 (11)0.0198 (9)0.0224 (9)0.0114 (9)
O530.0802 (19)0.094 (2)0.0504 (14)0.0460 (16)0.0411 (14)0.0379 (14)
Geometric parameters (Å, º) top
Ir1—C301.993 (3)C25—H250.93
Ir1—C91.999 (3)C26—C271.395 (5)
Ir1—N232.028 (2)C26—C351.502 (4)
Ir1—N22.035 (2)C27—C281.400 (4)
Ir1—N442.147 (2)C27—H270.93
Ir1—O522.149 (2)C28—C291.480 (4)
N2—C31.347 (3)C29—C341.413 (4)
N2—C71.370 (3)C29—C301.427 (4)
C3—C41.371 (4)C30—C311.400 (4)
C3—H30.93C31—C321.388 (4)
C4—C51.381 (4)C31—H310.93
C4—H40.93C32—C331.374 (4)
C5—C61.388 (4)C32—C361.490 (4)
C5—C141.509 (4)C33—C341.388 (4)
C6—C71.377 (4)C33—H330.93
C6—H60.93C34—C401.508 (4)
C7—C81.485 (3)C35—H35A0.96
C8—C91.414 (4)C35—H35B0.96
C8—C131.414 (4)C35—H35C0.96
C9—C101.398 (3)C36—F371.241 (5)
C10—C111.376 (4)C36—F381.264 (5)
C10—H100.93C36—F391.270 (5)
C11—C121.386 (4)C40—F411.332 (4)
C11—C151.493 (4)C40—F421.334 (4)
C12—C131.389 (4)C40—F431.351 (4)
C12—H120.93N44—C451.339 (4)
C13—C191.507 (4)N44—C491.342 (4)
C14—H14A0.96C45—C461.386 (4)
C14—H14B0.96C45—H450.93
C14—H14C0.96C46—N471.334 (4)
C15—F171.285 (5)C46—C501.489 (5)
C15—F161.312 (4)N47—C481.333 (5)
C15—F181.330 (5)C48—C491.381 (4)
C19—F201.333 (4)C48—H480.93
C19—F221.334 (4)C49—C511.504 (4)
C19—F211.346 (4)C50—H50A0.96
N23—C241.347 (4)C50—H50B0.96
N23—C281.361 (4)C50—H50C0.96
C24—C251.373 (5)C51—O531.228 (4)
C24—H240.93C51—O521.280 (4)
C25—C261.387 (5)
C30—Ir1—C988.44 (11)C24—C25—C26119.6 (3)
C30—Ir1—N2379.81 (10)C24—C25—H25120.2
C9—Ir1—N2392.01 (10)C26—C25—H25120.2
C30—Ir1—N299.81 (10)C25—C26—C27117.2 (3)
C9—Ir1—N279.63 (10)C25—C26—C35122.3 (3)
N23—Ir1—N2171.64 (8)C27—C26—C35120.4 (3)
C30—Ir1—N4497.99 (10)C26—C27—C28121.5 (3)
C9—Ir1—N44173.03 (9)C26—C27—H27119.2
N23—Ir1—N4491.77 (9)C28—C27—H27119.2
N2—Ir1—N4496.54 (9)N23—C28—C27119.2 (3)
C30—Ir1—O52173.79 (9)N23—C28—C29112.9 (2)
C9—Ir1—O5296.65 (9)C27—C28—C29127.7 (3)
N23—Ir1—O5296.41 (9)C34—C29—C30118.8 (2)
N2—Ir1—O5284.65 (9)C34—C29—C28128.4 (2)
N44—Ir1—O5277.10 (8)C30—C29—C28112.8 (2)
C3—N2—C7118.7 (2)C31—C30—C29118.9 (2)
C3—N2—Ir1123.82 (19)C31—C30—Ir1125.1 (2)
C7—N2—Ir1116.56 (16)C29—C30—Ir1115.97 (19)
N2—C3—C4122.8 (3)C32—C31—C30120.7 (3)
N2—C3—H3118.6C32—C31—H31119.7
C4—C3—H3118.6C30—C31—H31119.7
C3—C4—C5119.5 (3)C33—C32—C31120.6 (3)
C3—C4—H4120.2C33—C32—C36119.5 (3)
C5—C4—H4120.2C31—C32—C36119.8 (3)
C4—C5—C6117.3 (3)C32—C33—C34120.5 (3)
C4—C5—C14121.9 (3)C32—C33—H33119.7
C6—C5—C14120.8 (3)C34—C33—H33119.7
C7—C6—C5121.9 (3)C33—C34—C29120.3 (3)
C7—C6—H6119.1C33—C34—C40115.4 (3)
C5—C6—H6119.1C29—C34—C40124.3 (3)
N2—C7—C6119.4 (2)C26—C35—H35A109.5
N2—C7—C8113.0 (2)C26—C35—H35B109.5
C6—C7—C8127.5 (2)H35A—C35—H35B109.5
C9—C8—C13119.7 (2)C26—C35—H35C109.5
C9—C8—C7112.8 (2)H35A—C35—H35C109.5
C13—C8—C7127.4 (2)H35B—C35—H35C109.5
C10—C9—C8117.9 (2)F37—C36—F38104.0 (5)
C10—C9—Ir1125.5 (2)F37—C36—F39106.9 (5)
C8—C9—Ir1116.52 (18)F38—C36—F39101.3 (5)
C11—C10—C9121.6 (3)F37—C36—C32116.6 (3)
C11—C10—H10119.2F38—C36—C32113.4 (4)
C9—C10—H10119.2F39—C36—C32113.1 (3)
C10—C11—C12120.7 (3)F41—C40—F42105.4 (3)
C10—C11—C15119.7 (3)F41—C40—F43106.7 (3)
C12—C11—C15119.6 (3)F42—C40—F43105.9 (3)
C11—C12—C13119.4 (3)F41—C40—C34113.2 (3)
C11—C12—H12120.3F42—C40—C34112.4 (3)
C13—C12—H12120.3F43—C40—C34112.8 (3)
C12—C13—C8120.3 (3)C45—N44—C49117.6 (2)
C12—C13—C19114.0 (3)C45—N44—Ir1129.33 (19)
C8—C13—C19125.7 (2)C49—N44—Ir1113.06 (19)
C5—C14—H14A109.5N44—C45—C46121.8 (3)
C5—C14—H14B109.5N44—C45—H45119.1
H14A—C14—H14B109.5C46—C45—H45119.1
C5—C14—H14C109.5N47—C46—C45121.2 (3)
H14A—C14—H14C109.5N47—C46—C50116.8 (3)
H14B—C14—H14C109.5C45—C46—C50121.9 (3)
F17—C15—F16107.5 (4)C48—N47—C46116.1 (3)
F17—C15—F18105.2 (3)N47—C48—C49123.9 (3)
F16—C15—F18103.8 (3)N47—C48—H48118.1
F17—C15—C11113.1 (3)C49—C48—H48118.1
F16—C15—C11113.5 (3)N44—C49—C48119.4 (3)
F18—C15—C11112.8 (3)N44—C49—C51117.7 (3)
F20—C19—F22106.2 (3)C48—C49—C51123.0 (3)
F20—C19—F21106.5 (3)C46—C50—H50A109.5
F22—C19—F21105.2 (3)C46—C50—H50B109.5
F20—C19—C13113.1 (3)H50A—C50—H50B109.5
F22—C19—C13112.3 (3)C46—C50—H50C109.5
F21—C19—C13112.9 (3)H50A—C50—H50C109.5
C24—N23—C28119.3 (2)H50B—C50—H50C109.5
C24—N23—Ir1122.1 (2)O53—C51—O52125.7 (3)
C28—N23—Ir1116.99 (18)O53—C51—C49118.9 (3)
N23—C24—C25123.0 (3)O52—C51—C49115.4 (3)
N23—C24—H24118.5C51—O52—Ir1116.56 (19)
C25—C24—H24118.5
Selected bond lengths (Å) top
Ir1—C301.993 (3)Ir1—N22.035 (2)
Ir1—C91.999 (3)Ir1—N442.147 (2)
Ir1—N232.028 (2)Ir1—O522.149 (2)
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, C.-H., Wu, Z.-J., Chiu, C.-H., Liang, Y.-H., Tsai, Y.-S., Liao, J.-L., Chi, Y., Hsieh, H.-Y., Kuo, T.-Y., Lee, G.-H., Pan, H.-A., Chou, P.-T., Lin, J.-S. & Tseng, M.-R. (2013). ACS Appl. Mater. Interfaces, 5, 7341–7351.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, Z.-Q., Bian, Z.-Q. & Huang, C.-H. (2010). Adv. Mater. 22, 1534–1539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, H. J., Kim, J. N., Yoo, H.-J., Wee, K.-R., Kang, S. O., Cho, D. W. & Yoon, U. C. (2013). J. Org. Chem. 78, 8054–8064.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeo, H.-J., Yoo, K.-M., Song, M., Park, J. S., Jin, S.-H., Kim, Y. I. & Kim, J.-J. (2010). Org. Electron., 11, 564–572.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds