organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tris(4-meth­­oxy­phen­yl)-1,3,5-triazinane-2,4,6-trione

aThe School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: fangli@sxu.edu.cn

(Received 26 December 2013; accepted 30 December 2013; online 8 January 2014)

The complete mol­ecule of the title compound, C24H21N3O6, is generated by the application of threefold rotation symmetry about an axis perpendicular to the central ring. The mol­ecule exhibits a propeller-like shape. The dihedral angle between each benzene ring and the heterocyclic ring is 74.0 (1)°. The mol­ecules pack with no specific inter­molecular inter­actions between them. The SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] was used to model disordered solvent mol­ecules, presumed to be acetone; the calculated unit-cell data do not take into account the presence of these.

Related literature

For general background to trimerization of aromatic iso­cyanates, see: Raders & Verkade (2010[Raders, S. M. & Verkade, J. G. (2010). J. Org. Chem. 75, 5308-5311.]); Duong et al. (2004[Duong, H. A., Cross, M. J. & Janis, L. (2004). Org. Lett. 6, 4679-4681.]); Tang et al. (1994[Tang, J., Mohan, T. & Verkade, J. G. (1994). J. Org. Chem. 59, 4931-4938.]); Zhitinkina et al. (1985[Zhitinkina, A. K., Shibanova, N. A. & Tarakanov, O. G. (1985). Russ. Chem. Rev. (Engl. Transl.), 54, 1104-1125.]); Nawata et al. (1975[Nawata, T., Kresta, J. E. & Frisch, K. C. (1975). J. Cell. Plast. 11, 267-278.]); Nicholas & Gmitter (1965[Nicholas, L. & Gmitter, G. T. (1965). J. Cell. Plast. 1, 85-90.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21N3O6

  • Mr = 447.44

  • Trigonal, R 3c

  • a = 13.2008 (14) Å

  • c = 26.695 (3) Å

  • V = 4028.7 (8) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.51 × 0.49 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.997

  • 6995 measured reflections

  • 1577 independent reflections

  • 1142 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.05

  • 1577 reflections

  • 101 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Experimental top

Synthesis and crystallization top

To a stirred solution of lithium di­benzyl­amide (0.04 g) in di­ethyl ether was added 4-meth­oxy­phenyl iso­thio­cyanate (29.8 g). After stirring for 2 min, the mixture afforded a white precipitate. The resulting precipitate was collected by suction filtration and recrystallized from acetone to obtain white crystals of 1,3,5-tris-(4-meth­oxy­phenyl)-1,3,5-triazinane-2,4,6-trione (yield: 90%), m.p. 530–531 K.

Refinement top

The H atoms were placed in their idealised positions with C—H = 0.95–0.98 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq. The structure contains solvent accessible voids of 153 A3. The SQUEEZE procedure in PLATON (Spek, 2009) was used to model the disordered solvent molecules, presumed to be 4–6 acetone molecules per unit cell.

Results and discussion top

Trimerization of aromatic iso­cyanates, manufactured by cyclo­trimerizing corresponding iso­cyanates, has been known to enhance the properties of polyurethanes or coating materials (Raders & Verkade, 2010; Duong et al., 2004; Tang et al., 1994; Zhitinkina et al., 1985; Nawata et al., 1975; Nicholas & Gmitter, 1965). Polymers, such as polyurethanes incorporated with isocyanurates, have enhanced thermal resistance, flame retardation, chemical resistance and film-forming characteristics. Isocyanurates are also used in the synthesis of co-polymer resins to improve their water-resistance, transparency and impact resistance. During research on the properties of lithium di­benzyl­amide, a simple and efficient catalyst for iso­cyanate cyclo­trimerization to isocyanurate, we obtained crystals of 1,3,5-tris-(4-meth­oxy­phenyl)-1,3,5-triazinane-2,4,6-trione.

In the title compound, C24H21N3O6, the six-membered heterocyclic ring lies on a threefold rotation axis and adopts a planar conformation. The molecule exhibits a propeller-like shape. The dihedral angle between each benzene ring and the heterocyclic ring is 74.0 (1).

Related literature top

For general background to trimerization of aromatic isocyanates, see: Raders & Verkade (2010); Duong et al. (2004); Tang et al. (1994); Zhitinkina et al. (1985); Nawata et al. (1975); Nicholas & Gmitter (1965).

Structure description top

Trimerization of aromatic iso­cyanates, manufactured by cyclo­trimerizing corresponding iso­cyanates, has been known to enhance the properties of polyurethanes or coating materials (Raders & Verkade, 2010; Duong et al., 2004; Tang et al., 1994; Zhitinkina et al., 1985; Nawata et al., 1975; Nicholas & Gmitter, 1965). Polymers, such as polyurethanes incorporated with isocyanurates, have enhanced thermal resistance, flame retardation, chemical resistance and film-forming characteristics. Isocyanurates are also used in the synthesis of co-polymer resins to improve their water-resistance, transparency and impact resistance. During research on the properties of lithium di­benzyl­amide, a simple and efficient catalyst for iso­cyanate cyclo­trimerization to isocyanurate, we obtained crystals of 1,3,5-tris-(4-meth­oxy­phenyl)-1,3,5-triazinane-2,4,6-trione.

In the title compound, C24H21N3O6, the six-membered heterocyclic ring lies on a threefold rotation axis and adopts a planar conformation. The molecule exhibits a propeller-like shape. The dihedral angle between each benzene ring and the heterocyclic ring is 74.0 (1).

For general background to trimerization of aromatic isocyanates, see: Raders & Verkade (2010); Duong et al. (2004); Tang et al. (1994); Zhitinkina et al. (1985); Nawata et al. (1975); Nicholas & Gmitter (1965).

Synthesis and crystallization top

To a stirred solution of lithium di­benzyl­amide (0.04 g) in di­ethyl ether was added 4-meth­oxy­phenyl iso­thio­cyanate (29.8 g). After stirring for 2 min, the mixture afforded a white precipitate. The resulting precipitate was collected by suction filtration and recrystallized from acetone to obtain white crystals of 1,3,5-tris-(4-meth­oxy­phenyl)-1,3,5-triazinane-2,4,6-trione (yield: 90%), m.p. 530–531 K.

Refinement details top

The H atoms were placed in their idealised positions with C—H = 0.95–0.98 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq. The structure contains solvent accessible voids of 153 A3. The SQUEEZE procedure in PLATON (Spek, 2009) was used to model the disordered solvent molecules, presumed to be 4–6 acetone molecules per unit cell.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of I showing 30% probability displacement ellipsoids. The hydrogen atoms are omitted for clarity.
1,3,5-Tris(4-methoxyphenyl)-1,3,5-triazinane-2,4,6-trione top
Crystal data top
C24H21N3O6Dx = 1.107 Mg m3
Mr = 447.44Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 1247 reflections
Hall symbol: R 3 -2"cθ = 2.3–20.4°
a = 13.2008 (14) ŵ = 0.08 mm1
c = 26.695 (3) ÅT = 200 K
V = 4028.7 (8) Å3Block, colourless
Z = 60.51 × 0.49 × 0.04 mm
F(000) = 1404
Data collection top
Bruker SMART CCD area-detector
diffractometer
1577 independent reflections
Radiation source: fine-focus sealed tube1142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 915
Tmin = 0.960, Tmax = 0.997k = 1514
6995 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0687P)2]
where P = (Fo2 + 2Fc2)/3
1577 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C24H21N3O6Z = 6
Mr = 447.44Mo Kα radiation
Trigonal, R3cµ = 0.08 mm1
a = 13.2008 (14) ÅT = 200 K
c = 26.695 (3) Å0.51 × 0.49 × 0.04 mm
V = 4028.7 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1577 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1142 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.997Rint = 0.031
6995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1577 reflectionsΔρmin = 0.12 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24317 (15)0.68853 (16)0.06336 (8)0.0507 (6)
O10.37628 (17)0.88360 (16)0.06161 (9)0.0710 (6)
O20.1275 (2)0.7774 (3)0.06263 (12)0.1146 (9)
C10.1470 (2)0.7108 (2)0.06541 (11)0.0552 (7)
C20.0864 (2)0.6942 (2)0.10907 (12)0.0652 (7)
H20.10900.67090.13870.078*
C30.0104 (3)0.7124 (3)0.10944 (13)0.0768 (9)
H30.05650.69700.13880.092*
C40.0369 (2)0.7525 (3)0.06691 (14)0.0724 (8)
C50.0253 (3)0.7708 (3)0.02514 (15)0.0878 (10)
H50.00500.79830.00390.105*
C60.1168 (3)0.7514 (3)0.02308 (12)0.0729 (8)
H60.16000.76540.00710.088*
C70.3566 (2)0.7838 (2)0.06225 (11)0.0566 (7)
C80.2060 (4)0.7446 (5)0.1028 (2)0.1312 (17)
H8A0.24140.66040.10870.197*
H8B0.26740.76310.09480.197*
H8C0.16410.78740.13290.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0390 (12)0.0406 (12)0.0734 (15)0.0206 (10)0.0029 (11)0.0033 (11)
O10.0571 (12)0.0488 (12)0.1124 (15)0.0306 (10)0.0006 (11)0.0036 (10)
O20.0943 (19)0.158 (3)0.127 (2)0.0896 (19)0.0056 (17)0.0234 (18)
C10.0452 (16)0.0456 (15)0.0770 (18)0.0242 (14)0.0011 (15)0.0026 (14)
C20.0608 (17)0.0636 (18)0.0762 (19)0.0350 (14)0.0076 (14)0.0051 (15)
C30.0591 (18)0.080 (2)0.089 (2)0.0331 (16)0.0207 (15)0.0075 (17)
C40.0538 (16)0.078 (2)0.098 (2)0.0429 (16)0.0027 (18)0.0036 (17)
C50.071 (2)0.111 (3)0.093 (3)0.054 (2)0.008 (2)0.0187 (19)
C60.0654 (19)0.079 (2)0.081 (2)0.0410 (16)0.0038 (16)0.0179 (16)
C70.0465 (16)0.0472 (16)0.0751 (19)0.0227 (11)0.0012 (14)0.0021 (14)
C80.085 (3)0.174 (4)0.166 (4)0.088 (3)0.016 (3)0.011 (4)
Geometric parameters (Å, º) top
N1—C7i1.384 (3)C3—C41.370 (5)
N1—C71.393 (3)C3—H30.9500
N1—C11.440 (3)C4—C51.333 (4)
O1—C71.209 (3)C5—C61.356 (4)
O2—C41.395 (4)C5—H50.9500
O2—C81.400 (5)C6—H60.9500
C1—C21.368 (4)C7—N1ii1.384 (3)
C1—C61.392 (4)C8—H8A0.9800
C2—C31.413 (4)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C7i—N1—C7124.2 (3)C4—C5—C6121.7 (3)
C7i—N1—C1117.35 (19)C4—C5—H5119.2
C7—N1—C1118.43 (19)C6—C5—H5119.2
C4—O2—C8117.0 (3)C5—C6—C1119.6 (3)
C2—C1—C6119.7 (2)C5—C6—H6120.2
C2—C1—N1120.3 (3)C1—C6—H6120.2
C6—C1—N1120.0 (2)O1—C7—N1ii122.2 (2)
C1—C2—C3119.1 (3)O1—C7—N1122.1 (2)
C1—C2—H2120.5N1ii—C7—N1115.7 (3)
C3—C2—H2120.5O2—C8—H8A109.5
C4—C3—C2119.1 (3)O2—C8—H8B109.5
C4—C3—H3120.4H8A—C8—H8B109.5
C2—C3—H3120.4O2—C8—H8C109.5
C5—C4—C3120.7 (3)H8A—C8—H8C109.5
C5—C4—O2114.3 (3)H8B—C8—H8C109.5
C3—C4—O2125.0 (3)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z.

Experimental details

Crystal data
Chemical formulaC24H21N3O6
Mr447.44
Crystal system, space groupTrigonal, R3c
Temperature (K)200
a, c (Å)13.2008 (14), 26.695 (3)
V3)4028.7 (8)
Z6
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.51 × 0.49 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6995, 1577, 1142
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.05
No. of reflections1577
No. of parameters101
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We thank the SXNSFC (2011021011–1) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuong, H. A., Cross, M. J. & Janis, L. (2004). Org. Lett. 6, 4679-4681.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNawata, T., Kresta, J. E. & Frisch, K. C. (1975). J. Cell. Plast. 11, 267–278.  CrossRef CAS Google Scholar
First citationNicholas, L. & Gmitter, G. T. (1965). J. Cell. Plast. 1, 85–90.  CrossRef CAS Google Scholar
First citationRaders, S. M. & Verkade, J. G. (2010). J. Org. Chem. 75, 5308–5311.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, J., Mohan, T. & Verkade, J. G. (1994). J. Org. Chem. 59, 4931–4938.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhitinkina, A. K., Shibanova, N. A. & Tarakanov, O. G. (1985). Russ. Chem. Rev. (Engl. Transl.), 54, 1104–1125.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds