organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o221-o222

5-Amino-1H-pyrazol-2-ium hydrogen succinate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 21 January 2014; accepted 22 January 2014; online 29 January 2014)

In the cation of the title salt, C3H6N3+·C4H5O4, the protonated pyrazolium ring is planar (r.m.s. deviation = 0.012 Å). An intra­molecular C—H⋯O hydrogen bond occurs in the anion. In the crystal, N—H⋯O hydrogen bonds and a weak C—H⋯O inter­action between the cations and anions form two sets of R22(8) graph-set ring motifs. Inter­molecular O—H⋯O hydrogen bonds between these lead to a criss-cross pattern along the b axis. In addition to the classical hydrogen bonds, a weak C—H⋯π(pyrazolium) inter­action is observed and contributes to crystal packing. All of these inter­actions link the mol­ecules into a two-dimensional supra­molecular framework parallel to (10-1).

Related literature

For the broad spectrum of biological properties of pyrazoles, see: Hall et al. (2009[Hall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Giblin, G. M. P., Goldsmith, P., Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]) and for their biological and medicinal activities, see: Vinogradov et al. (1994[Vinogradov, V. M., Dalinger, I. L. & Shevelev, S. A. (1994). Khim.-Farm. Zh. 28, 37-46.]). For succinic acid derivatives used in chemicals, food and pharmaceuticals, see: Sauer et al. (2008[Sauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100-108.]). For related structures, see: Kavitha et al. (2013[Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260-o261.]); Kettmann et al. (2005[Kettmann, V., Lokaj, J., Milata, V., Černuchová, P., Loupy, A. & Vo-Thanh, G. (2005). Acta Cryst. E61, o3852-o3854.]); Koziol et al. (2006[Koziol, A. E., Lis, T., Kolodziejczyk, E., Kusakiewicz-Dawid, A. & Rzeszotarska, B. (2006). Acta Cryst. E62, o3664-o3666.]); Parvez et al. (2001[Parvez, M., Dalrymple, S. & Cote, A. (2001). Acta Cryst. E57, o163-o165.]); Yamuna et al. (2013[Yamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425-o1426.]).

[Scheme 1]

Experimental

Crystal data
  • C3H6N3+·C4H5O4

  • Mr = 201.19

  • Monoclinic, C 2/c

  • a = 18.525 (3) Å

  • b = 6.7872 (9) Å

  • c = 14.564 (3) Å

  • β = 108.900 (18)°

  • V = 1732.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.32 × 0.24 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.591, Tmax = 1.000

  • 5745 measured reflections

  • 2922 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.212

  • S = 1.08

  • 2922 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyrazolium ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1B⋯O3Bi 0.82 1.79 2.5832 (18) 164
N1A—H1AA⋯O4Bii 0.86 2.08 2.874 (2) 153
N1A—H1AB⋯O2Biii 0.86 2.07 2.923 (2) 170
N2A—H2A⋯O3Bii 0.95 (3) 1.76 (3) 2.7132 (19) 174 (3)
N3A—H3A⋯O4Biv 0.94 (3) 1.79 (3) 2.672 (2) 156 (3)
C2A—H2AA⋯O1Biii 0.93 2.54 3.372 (2) 148
C3A—H3AA⋯O2B 0.93 2.47 3.214 (2) 138
C3B—H3BACg1v 0.97 2.69 3.511 (2) 142
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Experimental top

Synthesis and crystallization top

A mixture of commercially available 3-amino­pyrazole (0.5 g, 6.02 mmol) and succinic acid (0.71 g, 6.02 mmol) were dissolved in 5 ml of hot di­methyl­sulfoxide. The reaction mixture was stirred for 15 mins at 323 K. The resulting solution was allowed to cool slowly at room temperature upon which X-ray quality crystals of the title salt were obtained after few days; M.pt: 368–373 K.

Refinement top

The N-bound H2A and H3A atoms were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.82Å (OH) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (OH) x Ueq of the parent atom.

Results and discussion top

Pyrazoles comprise an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, such as anti-bacterial and anti-inflammatory activities, anti-cancer (Hall et al., 2009). The chemistry of amino­pyrazoles has been extensively investigated in the past. The considerable biological and medicinal activities of pyrazoles (Vinogradov et al., 1994), for which amino­pyrazoles are preferred precursors, have stimulated these investigations. Succinic acid derivatives are also mostly being used in chemicals, food and pharmaceuticals (Sauer et al., 2008). Recently, the crystal structure of 3-amino­pyrazolium tri­fluoro­acetate (Yamuna et al., 2013) was reported from our research group. Some other structures of related compounds, viz., 4-[bis­(4-fluoro­phenyl) methyl]-1-[(2E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium 3-carb­oxy­propano­ate (Kavitha et al., 2013), doxyl­amine hydrogen succinate (Parvez et al., 2001), 5-amino-4-methyl­sulfonyl-1-phenyl-1H-pyrazole (Kettmann et al., 2005) and ethyl 1-acetyl-3-amino-1H-pyrazole-4-carboxyl­ate (Koziol et al., 2006) have also been reported. In continuation of our work on pyrazoles, this paper reports the crystal structure of the title salt, 5-amino-1H-pyrazol-2-ium hydrogen succinate, C3H6N3+.C4H5O4-, (I).

The title salt, (I), crystallizes with one independent monocation (A) and a monoanion (B) in the asymmetric unit (Fig. 1). In the cation the protonated pyrazolium ring is planar. In the crystal, N—H···O hydrogen bonds involving two hydrogen atoms on the amino group (H1AA, H1AB), a N2A—H2A···O3B inter­molecular hydrogen bond and a weak C2A—H2AA···O1B inter­molecular inter­action between cations and anions form two sets of R22(8) graph set ring motifs (Fig. 2). Inter­molecular O—H···O hydrogen bonds between the anions leads to a criss-cross pattern along the b axis. In addition to the classical hydrogen bonds, a weak C—H···Cg(pyrazolium) inter­molecular inter­action is observed and contributes to crystal packing. All of these inter­actions directly link the molecules into a 2D supra­molecular framework along (1 0 -1).

Related literature top

For the broad spectrum of biological properties of pyrazoles, see: Hall et al. (2009) and for their biological and medicinal activities, see: Vinogradov et al. (1994). For succinic acid derivatives used in chemicals, food and pharmaceuticals, see: Sauer et al. (2008). For related structures, see: Kavitha et al. (2013); Kettmann et al. (2005); Koziol et al. (2006); Parvez et al. (2001); Yamuna et al. (2013).

Structure description top

Pyrazoles comprise an important class of heterocyclic compounds and many pyrazole derivatives are reported to have a broad spectrum of biological properties, such as anti-bacterial and anti-inflammatory activities, anti-cancer (Hall et al., 2009). The chemistry of amino­pyrazoles has been extensively investigated in the past. The considerable biological and medicinal activities of pyrazoles (Vinogradov et al., 1994), for which amino­pyrazoles are preferred precursors, have stimulated these investigations. Succinic acid derivatives are also mostly being used in chemicals, food and pharmaceuticals (Sauer et al., 2008). Recently, the crystal structure of 3-amino­pyrazolium tri­fluoro­acetate (Yamuna et al., 2013) was reported from our research group. Some other structures of related compounds, viz., 4-[bis­(4-fluoro­phenyl) methyl]-1-[(2E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium 3-carb­oxy­propano­ate (Kavitha et al., 2013), doxyl­amine hydrogen succinate (Parvez et al., 2001), 5-amino-4-methyl­sulfonyl-1-phenyl-1H-pyrazole (Kettmann et al., 2005) and ethyl 1-acetyl-3-amino-1H-pyrazole-4-carboxyl­ate (Koziol et al., 2006) have also been reported. In continuation of our work on pyrazoles, this paper reports the crystal structure of the title salt, 5-amino-1H-pyrazol-2-ium hydrogen succinate, C3H6N3+.C4H5O4-, (I).

The title salt, (I), crystallizes with one independent monocation (A) and a monoanion (B) in the asymmetric unit (Fig. 1). In the cation the protonated pyrazolium ring is planar. In the crystal, N—H···O hydrogen bonds involving two hydrogen atoms on the amino group (H1AA, H1AB), a N2A—H2A···O3B inter­molecular hydrogen bond and a weak C2A—H2AA···O1B inter­molecular inter­action between cations and anions form two sets of R22(8) graph set ring motifs (Fig. 2). Inter­molecular O—H···O hydrogen bonds between the anions leads to a criss-cross pattern along the b axis. In addition to the classical hydrogen bonds, a weak C—H···Cg(pyrazolium) inter­molecular inter­action is observed and contributes to crystal packing. All of these inter­actions directly link the molecules into a 2D supra­molecular framework along (1 0 -1).

For the broad spectrum of biological properties of pyrazoles, see: Hall et al. (2009) and for their biological and medicinal activities, see: Vinogradov et al. (1994). For succinic acid derivatives used in chemicals, food and pharmaceuticals, see: Sauer et al. (2008). For related structures, see: Kavitha et al. (2013); Kettmann et al. (2005); Koziol et al. (2006); Parvez et al. (2001); Yamuna et al. (2013).

Synthesis and crystallization top

A mixture of commercially available 3-amino­pyrazole (0.5 g, 6.02 mmol) and succinic acid (0.71 g, 6.02 mmol) were dissolved in 5 ml of hot di­methyl­sulfoxide. The reaction mixture was stirred for 15 mins at 323 K. The resulting solution was allowed to cool slowly at room temperature upon which X-ray quality crystals of the title salt were obtained after few days; M.pt: 368–373 K.

Refinement details top

The N-bound H2A and H3A atoms were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.82Å (OH) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (OH) x Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C3H6N3+.C4H5O4-) showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate a C3A—H3AA···O1B intermolecular hydrogen bond linking the cation and anion within the asymmetric unit.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate O—H···O, N—H···O hydrogen bonds and weak C—H···O intermolecular interactions forming R22(8) graph set ring motifs. H atoms not involved in hydrogen bonding have been removed for clarity.
5-Amino-1H-pyrazol-2-ium 3-carboxypropanoate top
Crystal data top
C3H6N3+·C4H5O4F(000) = 848
Mr = 201.19Dx = 1.543 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.525 (3) ÅCell parameters from 1155 reflections
b = 6.7872 (9) Åθ = 3.2–32.9°
c = 14.564 (3) ŵ = 0.13 mm1
β = 108.900 (18)°T = 173 K
V = 1732.4 (5) Å3Irregular, colorless
Z = 80.32 × 0.24 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
2922 independent reflections
Radiation source: Enhance (Mo) X-ray Source1925 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.053
ω scansθmax = 33.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1127
Tmin = 0.591, Tmax = 1.000k = 99
5745 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.1004P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2922 reflectionsΔρmax = 0.36 e Å3
136 parametersΔρmin = 0.40 e Å3
0 restraints
Crystal data top
C3H6N3+·C4H5O4V = 1732.4 (5) Å3
Mr = 201.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.525 (3) ŵ = 0.13 mm1
b = 6.7872 (9) ÅT = 173 K
c = 14.564 (3) Å0.32 × 0.24 × 0.12 mm
β = 108.900 (18)°
Data collection top
Agilent Eos Gemini
diffractometer
2922 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
1925 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 1.000Rint = 0.053
5745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
2922 reflectionsΔρmin = 0.40 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1B0.43675 (7)0.1627 (2)0.31692 (11)0.0344 (4)
H1B0.39960.19910.27190.052*
O2B0.49764 (7)0.1136 (2)0.36893 (11)0.0333 (4)
O3B0.32006 (7)0.6651 (2)0.19603 (10)0.0272 (3)
O4B0.26029 (7)0.3890 (2)0.13537 (12)0.0363 (4)
C1B0.44071 (9)0.0315 (3)0.31702 (12)0.0229 (4)
C2B0.37281 (9)0.1414 (3)0.25149 (13)0.0218 (4)
H2BA0.32920.11730.27290.026*
H2BB0.36080.09040.18600.026*
C3B0.38592 (9)0.3623 (3)0.24999 (13)0.0230 (4)
H3BA0.40140.41120.31610.028*
H3BB0.42760.38610.22480.028*
C4B0.31721 (9)0.4781 (3)0.18995 (12)0.0228 (4)
N1A0.63879 (8)0.9224 (2)0.48607 (12)0.0309 (4)
H1AA0.67820.99400.51360.037*
H1AB0.59880.97450.44560.037*
N2A0.70115 (8)0.6414 (2)0.56897 (12)0.0253 (4)
H2A0.7424 (17)0.704 (4)0.617 (2)0.057 (8)*
N3A0.68467 (8)0.4473 (2)0.57546 (12)0.0266 (4)
H3A0.7227 (16)0.354 (4)0.603 (2)0.051 (8)*
C1A0.63984 (9)0.7296 (3)0.50616 (12)0.0230 (4)
C2A0.58387 (9)0.5854 (3)0.46966 (13)0.0258 (4)
H2AA0.53580.60310.42410.031*
C3A0.61415 (10)0.4134 (3)0.51456 (14)0.0272 (4)
H3AA0.58970.29180.50440.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1B0.0265 (7)0.0171 (7)0.0430 (8)0.0006 (5)0.0117 (6)0.0017 (6)
O2B0.0216 (6)0.0230 (7)0.0404 (8)0.0020 (5)0.0107 (5)0.0005 (6)
O3B0.0237 (6)0.0148 (7)0.0323 (7)0.0010 (5)0.0057 (5)0.0003 (5)
O4B0.0230 (6)0.0186 (7)0.0476 (9)0.0014 (5)0.0157 (6)0.0001 (6)
C1B0.0182 (7)0.0179 (9)0.0261 (8)0.0013 (6)0.0019 (6)0.0017 (6)
C2B0.0158 (7)0.0180 (9)0.0250 (8)0.0008 (6)0.0021 (5)0.0006 (6)
C3B0.0171 (7)0.0163 (9)0.0289 (9)0.0003 (6)0.0019 (6)0.0020 (6)
C4B0.0195 (7)0.0182 (9)0.0247 (8)0.0015 (6)0.0012 (6)0.0018 (6)
N1A0.0221 (7)0.0196 (9)0.0387 (9)0.0001 (6)0.0073 (6)0.0024 (7)
N2A0.0186 (7)0.0175 (8)0.0306 (8)0.0012 (5)0.0047 (5)0.0002 (6)
N3A0.0215 (7)0.0175 (8)0.0319 (8)0.0009 (6)0.0037 (5)0.0007 (6)
C1A0.0188 (7)0.0194 (9)0.0245 (8)0.0032 (6)0.0018 (5)0.0012 (6)
C2A0.0176 (7)0.0218 (9)0.0300 (9)0.0007 (6)0.0033 (6)0.0021 (7)
C3A0.0227 (8)0.0206 (10)0.0313 (9)0.0025 (6)0.0011 (6)0.0025 (7)
Geometric parameters (Å, º) top
O1B—H1B0.8200N1A—H1AA0.8600
O1B—C1B1.320 (2)N1A—H1AB0.8600
O2B—C1B1.216 (2)N1A—C1A1.339 (2)
O3B—C4B1.272 (2)N2A—H2A0.95 (3)
O4B—C4B1.252 (2)N2A—N3A1.362 (2)
C1B—C2B1.507 (2)N2A—C1A1.346 (2)
C2B—H2BA0.9700N3A—H3A0.94 (3)
C2B—H2BB0.9700N3A—C3A1.340 (2)
C2B—C3B1.520 (2)C1A—C2A1.399 (2)
C3B—H3BA0.9700C2A—H2AA0.9300
C3B—H3BB0.9700C2A—C3A1.367 (3)
C3B—C4B1.510 (2)C3A—H3AA0.9300
C1B—O1B—H1B109.5H1AA—N1A—H1AB120.0
O1B—C1B—C2B117.32 (14)C1A—N1A—H1AA120.0
O2B—C1B—O1B119.68 (15)C1A—N1A—H1AB120.0
O2B—C1B—C2B123.00 (17)N3A—N2A—H2A121.7 (17)
C1B—C2B—H2BA109.0C1A—N2A—H2A126.8 (17)
C1B—C2B—H2BB109.0C1A—N2A—N3A108.58 (14)
C1B—C2B—C3B113.14 (14)N2A—N3A—H3A122.1 (17)
H2BA—C2B—H2BB107.8C3A—N3A—N2A108.22 (15)
C3B—C2B—H2BA109.0C3A—N3A—H3A127.1 (17)
C3B—C2B—H2BB109.0N1A—C1A—N2A122.17 (15)
C2B—C3B—H3BA108.7N1A—C1A—C2A130.06 (15)
C2B—C3B—H3BB108.7N2A—C1A—C2A107.76 (16)
H3BA—C3B—H3BB107.6C1A—C2A—H2AA127.0
C4B—C3B—C2B114.39 (14)C3A—C2A—C1A106.08 (15)
C4B—C3B—H3BA108.7C3A—C2A—H2AA127.0
C4B—C3B—H3BB108.7N3A—C3A—C2A109.32 (17)
O3B—C4B—C3B118.07 (14)N3A—C3A—H3AA125.3
O4B—C4B—O3B122.26 (15)C2A—C3A—H3AA125.3
O4B—C4B—C3B119.66 (16)
O1B—C1B—C2B—C3B174.71 (17)N2A—N3A—C3A—C2A1.2 (2)
O2B—C1B—C2B—C3B5.4 (3)N2A—C1A—C2A—C3A1.1 (2)
C1B—C2B—C3B—C4B176.32 (15)N3A—N2A—C1A—N1A178.99 (17)
C2B—C3B—C4B—O3B170.20 (17)N3A—N2A—C1A—C2A1.9 (2)
C2B—C3B—C4B—O4B10.8 (3)C1A—N2A—N3A—C3A1.9 (2)
N1A—C1A—C2A—C3A179.8 (2)C1A—C2A—C3A—N3A0.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrazolium ring.
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O3Bi0.821.792.5832 (18)164
N1A—H1AA···O4Bii0.862.082.874 (2)153
N1A—H1AB···O2Biii0.862.072.923 (2)170
N2A—H2A···O3Bii0.95 (3)1.76 (3)2.7132 (19)174 (3)
N3A—H3A···O4Biv0.94 (3)1.79 (3)2.672 (2)156 (3)
C2A—H2AA···O1Biii0.932.543.372 (2)148
C3A—H3AA···O2B0.932.473.214 (2)138
C3B—H3BA···Cg1v0.972.693.511 (2)142
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyrazolium ring.
D—H···AD—HH···AD···AD—H···A
O1B—H1B···O3Bi0.821.792.5832 (18)164
N1A—H1AA···O4Bii0.862.082.874 (2)153
N1A—H1AB···O2Biii0.862.072.923 (2)170
N2A—H2A···O3Bii0.95 (3)1.76 (3)2.7132 (19)174 (3)
N3A—H3A···O4Biv0.94 (3)1.79 (3)2.672 (2)156 (3)
C2A—H2AA···O1Biii0.932.543.372 (2)148
C3A—H3AA···O2B0.932.473.214 (2)138
C3B—H3BA···Cg1v0.972.693.511 (2)142
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y+3/2, z+1.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHall, A., Billinton, A., Brown, S. H., Clayton, N. M., Chowdhury, A., Giblin, G. M. P., Goldsmith, P., Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science PubMed Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o260–o261.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKettmann, V., Lokaj, J., Milata, V., Černuchová, P., Loupy, A. & Vo-Thanh, G. (2005). Acta Cryst. E61, o3852–o3854.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoziol, A. E., Lis, T., Kolodziejczyk, E., Kusakiewicz-Dawid, A. & Rzeszotarska, B. (2006). Acta Cryst. E62, o3664–o3666.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParvez, M., Dalrymple, S. & Cote, A. (2001). Acta Cryst. E57, o163–o165.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSauer, M., Porro, D., Mattanovich, D. & Branduaradi, P. (2008). Trends Biotechnol. 26, 100–108.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinogradov, V. M., Dalinger, I. L. & Shevelev, S. A. (1994). Khim.-Farm. Zh. 28, 37–46.  CAS Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Scadova, D. R., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1425–o1426.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o221-o222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds