metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m49-m50

Tetra­kis(di­propyl­ammonium) tetra­kis(oxa­lato-κ2O1,O2)stannate(IV) mono­hydrate: a complex with an eight-coordinate SnIV atom

aLaboratoire de Chimie Minerale et Analytique, Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Dakar, Senegal, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: ndongo1982@gmail.com

(Received 10 December 2013; accepted 30 December 2013; online 18 January 2014)

In the title salt, [(CH3CH2CH2)2NH2]4[Sn(C2O4)4]·H2O, the SnIV atom of the stannate anion is located on a special position with -42m symmetry. It is eight-coordinated by four chelating oxalate anions. The di­propyl­ammonium cation possesses mirror symmetry while the lattice water mol­ecule is disordered about a position with -42m symmetry and has an occupancy of 0.25. In the crystal, the anions and cations are linked by N—H⋯O hydrogen bonds, forming a three-dimensional network. This network is futher stabilized by weak O—H⋯O hydrogen bonds involving the water mol­ecules and oxalate O atoms. The crystal studied was refined as an inversion twin.

Related literature

For the chemistry of organotin complexes, see: Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]). For examples of zirconate anions with eight-coordinate ZrIV atoms, see: Fu et al. (2005[Fu, Y.-L., Ren, J.-L., Xu, Z.-W. & Ng, S. W. (2005). Acta Cryst. E61, m2397-m2399.]); Imaz et al. (2007[Imaz, I., Thillet, A. & Sutter, J.-P. (2007). Cryst. Growth Des. 7, 1753-1761.]). For an example of a related oxalatostannate(IV) complex, see: Gueye et al. (2010[Gueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645-m1646.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)4[Sn(C2O4)4]·H2O

  • Mr = 897.57

  • Tetragonal, [I \overline 42m ]

  • a = 14.5996 (6) Å

  • c = 9.5718 (4) Å

  • V = 2040.21 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.45 × 0.30 × 0.22 mm

Data collection
  • STOE IPDS2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])' Tmin = 0.540, Tmax = 1.000

  • 9636 measured reflections

  • 1030 independent reflections

  • 1027 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.08

  • 1030 reflections

  • 83 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Refined as an inversion twin

  • Absolute structure parameter: 0.45 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1AN⋯O1i 0.88 (3) 2.50 (5) 3.091 (6) 125 (5)
N1—H1AN⋯O2i 0.88 (3) 2.12 (3) 2.997 (8) 179 (6)
N1—H1BN⋯O2 0.88 (3) 2.02 (4) 2.821 (7) 151 (5)
N1—H1BN⋯O4 0.88 (3) 2.44 (5) 3.105 (6) 133 (5)
O1W—H1WA⋯O3ii 0.85 2.27 3.125 (7) 179
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemistry and applications of organotin(IV) complexes have been extensively discussed by Evans & Karpel (1985). Continuing our interest in SnIV oxalate complexes (Gueye et al., 2010), we studied the reaction of dipropylammonium oxalate with SnBr2, and report herein on the crystal structure of the title compound, ((CH3CH2CH2)2NH2)4[Sn(C2O4)4].H2O.

The molecular structure of the title salt is illustrated in Fig. 1. The SnIV atom of the stannate anion is located on a special position with 42m symmetry. It is chelated by four bidentate oxalate ions, each lying in a mirror plane, and hence has a coordination number of eight. This coordination number has also been reported for some zirconium complexes, viz. bis(4,4'-bipyridinium) tetrakis(oxalato-κ2O,O')zirconate(IV) (Fu et al., 2005), or several salts with general composition [(H2amine)2Zr(C2O4)4] (Imaz et al., 2007).

The Sn1—O1 and Sn1—O3 bond lengths in the anion of the title compound are 2.142 (3) and 2.226 (3) Å, respectively. These values are similar to the bond lengths [2.189 (2) and 2.229 (2) Å] observed for another tin(IV)-oxalato complex, bis(dicyclohexylammonium)µ-oxalato-κ4O1,O2:O1',O2'-bis[aqua(oxalato -κ2O1,O2)diphenylstannate(IV)] (Gueye et al., 2010).

In the crystal of the title salt, the stannate(IV) anions are linked via N—H···O hydrogen bonds to the [(CH3CH2CH2)2NH2]+ cations (which have mirror symmetry), forming a three-dimensional network. The water molecule (disordered about a position with 42m symmetry), is also involved in weak O—H···O hydrogen bonds with the stannate(IV) anions, hence futher stabilizing the three-dimensional network (Fig. 2).

Related literature top

For the chemistry of organotin complexes, see: Evans & Karpel (1985). For examples of zirconate anions with eight-coordinate ZrIV atoms, see: Fu et al. (2005); Imaz et al. (2007). For an example of a related oxalatostannate(IV) complex, see: Gueye et al. (2010).

Experimental top

The title compound was prepared by reacting in a 1:1 molar ratio of SnBr2 and (Pr2NH2)2·C2O4 in methanol. The solution was allowed to stand and yielded colourless block-like crystals of the title compound. The proof of the presence of the tin atom was confirmed by the structure analysis and by electron dispersive X-ray (EDX) analysis.

Refinement top

The NH2 and water H atoms were located in difference Fourier maps and refined with distance restraints: N—H =0.88 (3) Å and O—H = 0.85 Å, with Uiso(H) = 1.2Ueq(N) and = 1.5Ueq(O), respectively. The C-bond H-atoms were included in calculated positions and treated as riding atoms: C–H = 0.99 and 0.98 Å for CH2 and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H-atoms.

Structure description top

The chemistry and applications of organotin(IV) complexes have been extensively discussed by Evans & Karpel (1985). Continuing our interest in SnIV oxalate complexes (Gueye et al., 2010), we studied the reaction of dipropylammonium oxalate with SnBr2, and report herein on the crystal structure of the title compound, ((CH3CH2CH2)2NH2)4[Sn(C2O4)4].H2O.

The molecular structure of the title salt is illustrated in Fig. 1. The SnIV atom of the stannate anion is located on a special position with 42m symmetry. It is chelated by four bidentate oxalate ions, each lying in a mirror plane, and hence has a coordination number of eight. This coordination number has also been reported for some zirconium complexes, viz. bis(4,4'-bipyridinium) tetrakis(oxalato-κ2O,O')zirconate(IV) (Fu et al., 2005), or several salts with general composition [(H2amine)2Zr(C2O4)4] (Imaz et al., 2007).

The Sn1—O1 and Sn1—O3 bond lengths in the anion of the title compound are 2.142 (3) and 2.226 (3) Å, respectively. These values are similar to the bond lengths [2.189 (2) and 2.229 (2) Å] observed for another tin(IV)-oxalato complex, bis(dicyclohexylammonium)µ-oxalato-κ4O1,O2:O1',O2'-bis[aqua(oxalato -κ2O1,O2)diphenylstannate(IV)] (Gueye et al., 2010).

In the crystal of the title salt, the stannate(IV) anions are linked via N—H···O hydrogen bonds to the [(CH3CH2CH2)2NH2]+ cations (which have mirror symmetry), forming a three-dimensional network. The water molecule (disordered about a position with 42m symmetry), is also involved in weak O—H···O hydrogen bonds with the stannate(IV) anions, hence futher stabilizing the three-dimensional network (Fig. 2).

For the chemistry of organotin complexes, see: Evans & Karpel (1985). For examples of zirconate anions with eight-coordinate ZrIV atoms, see: Fu et al. (2005); Imaz et al. (2007). For an example of a related oxalatostannate(IV) complex, see: Gueye et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular components of the title salt. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view approximately along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; C-bound H atoms have been omitted for clarity).
Tetrakis(dipropylammonium) tetrakis(oxalato-κ2O1,O2)stannate(IV) top
Crystal data top
(C6H16N)4[Sn(C2O4)4]·H2ODx = 1.461 Mg m3
Mr = 897.57Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42mCell parameters from 16495 reflections
a = 14.5996 (6) Åθ = 2.0–26.1°
c = 9.5718 (4) ŵ = 0.70 mm1
V = 2040.21 (19) Å3T = 173 K
Z = 2Rod, colourless
F(000) = 9440.45 × 0.30 × 0.22 mm
Data collection top
STOE IPDS2
diffractometer
1030 independent reflections
Radiation source: fine-focus sealed tube1027 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.071
φ + ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)'
h = 1717
Tmin = 0.540, Tmax = 1.000k = 1717
9636 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: inferred from neighbouring sites
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.030P)2 + 1.5457P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1030 reflectionsΔρmax = 0.39 e Å3
83 parametersΔρmin = 0.62 e Å3
3 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: difference Fourier mapAbsolute structure parameter: 0.45 (4)
Crystal data top
(C6H16N)4[Sn(C2O4)4]·H2OZ = 2
Mr = 897.57Mo Kα radiation
Tetragonal, I42mµ = 0.70 mm1
a = 14.5996 (6) ÅT = 173 K
c = 9.5718 (4) Å0.45 × 0.30 × 0.22 mm
V = 2040.21 (19) Å3
Data collection top
STOE IPDS2
diffractometer
1030 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)'
1027 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 1.000Rint = 0.071
9636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.39 e Å3
S = 1.08Δρmin = 0.62 e Å3
1030 reflectionsAbsolute structure: Refined as an inversion twin
83 parametersAbsolute structure parameter: 0.45 (4)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.01816 (16)
O10.40111 (16)0.40111 (16)0.5675 (4)0.0298 (8)
O20.29743 (14)0.29743 (14)0.5079 (8)0.0356 (7)
O30.43891 (16)0.43891 (16)0.3084 (3)0.0281 (7)
O40.3366 (2)0.3366 (2)0.2305 (4)0.0436 (10)
C10.3559 (2)0.3559 (2)0.4778 (6)0.0276 (13)
C20.3776 (2)0.3776 (2)0.3231 (5)0.0249 (9)
N10.1921 (2)0.1921 (2)0.3202 (5)0.0289 (9)
H1AN0.195 (3)0.195 (3)0.228 (3)0.035*
H1BN0.2322 (15)0.2322 (15)0.350 (6)0.035*
C30.0985 (3)0.2174 (3)0.3686 (4)0.0369 (8)
H3A0.09470.20870.47110.044*
H3B0.05320.17600.32450.044*
C40.0741 (3)0.3159 (3)0.3335 (4)0.0475 (10)
H4A0.01600.33150.38110.057*
H4B0.12230.35640.37200.057*
C50.0637 (3)0.3361 (3)0.1801 (4)0.0497 (10)
H5A0.12320.32960.13370.075*
H5B0.04130.39890.16790.075*
H5C0.01990.29310.13880.075*
O1W0.00000.026 (3)0.50000.091 (15)0.25
H1WA0.01670.03550.58400.136*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02109 (19)0.02109 (19)0.0123 (2)0.0000.0000.000
O10.0352 (12)0.0352 (12)0.0190 (15)0.0117 (16)0.0020 (10)0.0020 (10)
O20.0417 (10)0.0417 (10)0.0234 (17)0.0187 (13)0.0001 (18)0.0001 (18)
O30.0346 (11)0.0346 (11)0.0151 (14)0.0089 (14)0.0026 (9)0.0026 (9)
O40.0548 (17)0.0548 (17)0.0211 (19)0.026 (2)0.0044 (12)0.0044 (12)
C10.0298 (13)0.0298 (13)0.023 (4)0.0010 (17)0.0020 (15)0.0020 (15)
C20.0273 (14)0.0273 (14)0.020 (2)0.0032 (18)0.0006 (13)0.0006 (13)
N10.0323 (14)0.0323 (14)0.022 (2)0.0083 (18)0.0029 (13)0.0029 (13)
C30.0356 (19)0.049 (2)0.0262 (17)0.0009 (16)0.0026 (14)0.0014 (16)
C40.056 (3)0.054 (3)0.033 (2)0.015 (2)0.0008 (19)0.0046 (18)
C50.064 (3)0.051 (3)0.035 (2)0.002 (2)0.000 (2)0.0054 (18)
O1W0.15 (5)0.065 (15)0.057 (7)0.0000.01 (3)0.000
Geometric parameters (Å, º) top
Sn1—O1i2.142 (3)N1—H1AN0.88 (3)
Sn1—O1ii2.142 (3)N1—H1BN0.88 (3)
Sn1—O1iii2.142 (3)C3—C41.519 (6)
Sn1—O12.142 (3)C3—H3A0.9900
Sn1—O32.226 (3)C3—H3B0.9900
Sn1—O3ii2.226 (3)C4—C51.506 (5)
Sn1—O3iii2.226 (3)C4—H4A0.9900
Sn1—O3i2.226 (3)C4—H4B0.9900
O1—C11.269 (6)C5—H5A0.9800
O2—C11.240 (6)C5—H5B0.9800
O3—C21.274 (6)C5—H5C0.9800
O4—C21.225 (6)O1W—O1Wv0.55 (6)
C1—C21.547 (7)O1W—O1Wvi0.55 (6)
N1—C31.490 (4)O1W—O1Wvii0.77 (8)
N1—C3iv1.490 (4)O1W—H1WA0.8505
O1i—Sn1—O1ii95.23 (5)O4—C2—O3127.3 (4)
O1i—Sn1—O1iii95.23 (5)O4—C2—C1119.5 (4)
O1ii—Sn1—O1iii144.86 (18)O3—C2—C1113.2 (4)
O1i—Sn1—O1144.86 (18)C3—N1—C3iv111.0 (4)
O1ii—Sn1—O195.23 (5)C3—N1—H1AN110 (2)
O1iii—Sn1—O195.23 (5)C3iv—N1—H1AN110 (2)
O1i—Sn1—O3142.09 (12)C3—N1—H1BN110.1 (19)
O1ii—Sn1—O375.60 (8)C3iv—N1—H1BN110.1 (19)
O1iii—Sn1—O375.60 (8)H1AN—N1—H1BN106 (6)
O1—Sn1—O373.05 (13)N1—C3—C4112.4 (3)
O1i—Sn1—O3ii75.60 (8)N1—C3—H3A109.1
O1ii—Sn1—O3ii73.05 (13)C4—C3—H3A109.1
O1iii—Sn1—O3ii142.09 (12)N1—C3—H3B109.1
O1—Sn1—O3ii75.60 (8)C4—C3—H3B109.1
O3—Sn1—O3ii132.75 (11)H3A—C3—H3B107.9
O1i—Sn1—O3iii75.60 (8)C5—C4—C3115.2 (4)
O1ii—Sn1—O3iii142.09 (12)C5—C4—H4A108.5
O1iii—Sn1—O3iii73.05 (13)C3—C4—H4A108.5
O1—Sn1—O3iii75.60 (8)C5—C4—H4B108.5
O3—Sn1—O3iii132.75 (11)C3—C4—H4B108.5
O3ii—Sn1—O3iii69.05 (17)H4A—C4—H4B107.5
O1i—Sn1—O3i73.05 (13)C4—C5—H5A109.5
O1ii—Sn1—O3i75.60 (8)C4—C5—H5B109.5
O1iii—Sn1—O3i75.60 (8)H5A—C5—H5B109.5
O1—Sn1—O3i142.09 (12)C4—C5—H5C109.5
O3—Sn1—O3i69.05 (17)H5A—C5—H5C109.5
O3ii—Sn1—O3i132.75 (11)H5B—C5—H5C109.5
O3iii—Sn1—O3i132.75 (11)O1Wv—O1W—O1Wvi90.004 (7)
C1—O1—Sn1119.8 (3)O1Wv—O1W—O1Wvii45.002 (4)
C2—O3—Sn1118.2 (3)O1Wvi—O1W—O1Wvii45.002 (4)
O2—C1—O1124.0 (6)O1Wv—O1W—H1WA108.2
O2—C1—C2120.3 (5)O1Wvi—O1W—H1WA84.7
O1—C1—C2115.7 (4)O1Wvii—O1W—H1WA98.9
Sn1—O1—C1—O2180.000 (1)O1—C1—C2—O4180.000 (1)
Sn1—O1—C1—C20.000 (1)O2—C1—C2—O3180.000 (1)
Sn1—O3—C2—O4180.000 (1)O1—C1—C2—O30.000 (1)
Sn1—O3—C2—C10.000 (1)C3iv—N1—C3—C4174.3 (3)
O2—C1—C2—O40.000 (1)N1—C3—C4—C567.2 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) y, x, z; (v) y, x, z; (vi) y, x, z+1; (vii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1AN···O1viii0.88 (3)2.50 (5)3.091 (6)125 (5)
N1—H1AN···O2viii0.88 (3)2.12 (3)2.997 (8)179 (6)
N1—H1BN···O20.88 (3)2.02 (4)2.821 (7)151 (5)
N1—H1BN···O40.88 (3)2.44 (5)3.105 (6)133 (5)
O1W—H1WA···O3ix0.852.273.125 (7)179
Symmetry codes: (viii) x+1/2, y+1/2, z1/2; (ix) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1AN···O1i0.88 (3)2.50 (5)3.091 (6)125 (5)
N1—H1AN···O2i0.88 (3)2.12 (3)2.997 (8)179 (6)
N1—H1BN···O20.88 (3)2.02 (4)2.821 (7)151 (5)
N1—H1BN···O40.88 (3)2.44 (5)3.105 (6)133 (5)
O1W—H1WA···O3ii0.852.273.125 (7)179
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y1/2, z+1/2.
 

Acknowledgements

HSE thanks the XRD Application Laboratory, CSEM, Neuchâtel for access to the X-ray diffraction equipment.

References

First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFu, Y.-L., Ren, J.-L., Xu, Z.-W. & Ng, S. W. (2005). Acta Cryst. E61, m2397–m2399.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645–m1646.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationImaz, I., Thillet, A. & Sutter, J.-P. (2007). Cryst. Growth Des. 7, 1753–1761.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m49-m50
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds