metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m43-m44

Poly[μ5-{hydrogen bis­­[(E)-cinnamato]}-caesium]

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 8 January 2014; accepted 13 January 2014; online 18 January 2014)

In the structure of the title polymeric complex, [Cs(C9H7O2)(C9H8O2)]n, a caesium salt of trans-cinnamic acid, the Cs+ ions of the two individual irregular CsO8 coordination polyhedra lie on twofold rotation axes and are linked by four bridging carboxyl O-atom donors from two cinnamate ligand species. These two ligand components are inter­linked through a delocalized H atom within a short O⋯H⋯O hydrogen bond. Structure extension gives a two-dimensional coordination polymer which lies parallel to (001). The structure was determined from a crystal twinned by non-merohedry, with a twin component ratio of approximately 1:1.

Related literature

For the structures of the ammonium salts of hydrogen bis­(3-chloro­cinnamate) and hydrogen bis­(3-bromo­cinnamate), see: Chowdhury & Kariuki (2006[Chowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth Des. 6, 774-780.]). For structures of alkali metal salts of ring-substituted trans-cinnamic acid, see: Kariuki et al. (1994[Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1994). Acta Cryst. C50, 1665-1667.], 1995[Kariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051-1053.]); Crowther et al. (2008[Crowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64-71.]); Smith & Wermuth (2009[Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, m1048.], 2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1594-m1595.]). For the structure of trans-cinnamic acid, see: Wierda et al. (1989[Wierda, D. A., Feng, T. L. & Barron, A. R. (1989). Acta Cryst. C45, 338-339.]); Abdelmoty et al. (2005[Abdelmoty, I., Bucholz, V., Di, L., Guo, C., Kowitz, K., Enkelmann, V., Wegner, G. & Foxman, B. M. (2005). Cryst. Growth Des. 5, 2210-2217.]).

[Scheme 1]

Experimental

Crystal data
  • [Cs(C9H7O2)(C9H8O2)]

  • Mr = 428.21

  • Monoclinic, P 2/c

  • a = 7.8608 (6) Å

  • b = 5.6985 (7) Å

  • c = 38.817 (3) Å

  • β = 98.733 (6)°

  • V = 1718.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 200 K

  • 0.35 × 0.35 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.711, Tmax = 0.980

  • 6675 measured reflections

  • 3353 independent reflections

  • 2552 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.144

  • S = 1.19

  • 3353 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −2.19 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—O13B 3.060 (8)
Cs1—O14A 3.182 (8)
Cs1—O13Ai 3.132 (9)
Cs1—O14Bi 3.183 (9)
Cs1—O13Bii 3.060 (8)
Cs1—O14Aii 3.182 (8)
Cs1—O13Aiii 3.132 (9)
Cs1—O14Biii 3.183 (9)
Cs2—O13B 3.063 (8)
Cs2—O14A 3.377 (9)
Cs2—O13Ai 3.108 (9)
Cs2—O14Bi 3.130 (9)
Cs2—O13Biv 3.063 (8)
Cs2—O14Aiv 3.377 (9)
Cs2—O13Av 3.108 (9)
Cs2—O14Bv 3.130 (9)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y+1, -z+{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{1\over 2}}]; (v) [-x, y+1, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14B—H14B⋯O14A 1.21 1.25 2.462 (10) 180

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The crystal structure of trans-cinnamic acid was reported by Wierda et al. (1989) and Abdelmoty et al. (2005). The alkali metal salts of trans-cinnamic acid are unknown in the crystallographic literature although a limited number of examples of salts of ring-substituted cinnamates have been reported, e.g. the sodium salts of 2-nitrocinnamate [a dihydrate (Smith & Wermuth, 2009)], of 2-chlorocinnamate [a dihydrate (Kariuki et al., 1995)], of 3-chlorocinnamate [anhydrous (Crowther et al., 2008), of 4-chlorocinnamate [a dihydrate (Kariuki et al., 1994); potassium salts of 3-chloro- and 3-bromocinnamate [both anhydrous (Crowther et al., 2008)]; and a rubidium salt of 2-nitrocinnamate [a monohydrate (Smith & Wermuth, 2011)].

The reaction of trans-cinnamic acid with caesium hydroxide in aqueous ethanol afforded crystals of the title complex, [Cs(C9H7O2)(C9H8O2)]n, (I), the structure of which is reported herein.

In the structure of (I) the asymmetric unit (Fig. 1) comprises two independent irregular CsO8 coordination polyhedra [Cs1—O, 3.060 (8)–3.183 (9) Å; Cs2—O, 3.063 (9)–3.377 (9) Å: Table 1], in which the Cs+ ions lie on a twofold rotation axis and are linked by four bridging carboxyl O-donors from the two trans-cinnamate ligand species. These two ligand species are inter-linked through a delocalized H atom on an approximately central intermediate site within a short O14A···H14B··· O14B hydrogen bond [2.462 (10) Å] (Table 2). Although this phenomenon involving coordinating dimeric carboxylate species is not known among the alkali metal substituted-cinnamate structures, it is found in both ammonium hydrogen bis(3-chlorocinnamate) and ammonium hydrogen bis(3-bromocinnamate) (Chowdhury & Kariuki, 2006), with the O···H···O values [2.554 (6) Å for the 3-Cl-analogue and 2.466 (5) Å for the 3-Br-analogue] similar to that in the structure of (I). In this complex, the two Cs+ ions are quadruply bridged giving a Cs1···Cs2 separation of 3.9318 (3) Å and generate an overall two-dimensional coordination polymer lying parallel to (001) (Figs. 2, 3). No inter-ring ππ interactions are present in the structure [minimun ring centroid separation = 4.826 (8) Å].

The two linked cinnamate species in the title complex are close to coplanar [inter-ring dihedral angle = 3.9 (6)°], with the side chain carboxyl group of the A ligand component slightly rotated out of the plane [torsion angle C11A—C12A— C13A—O13A = 169.0 (13)°] compared to that of the B ligand component [torsion angle C11B—C12B— C13B—O14B = -179.2 (11)°]. With the analogous ammonium hydrogen salts of the 3-chloro- and 3-bromocinnamates (Chowdhury & Kariuki, 2006), the two cinnamate components are related either by crystallographic inversion symmetry (3-Cl) with the two benzene rings essentially planar, or by twofold rotational symmetry (3-Br) with the two rings significantly rotated out of the least-squares plane [inter-ring dihedral angle = 29.8 (2)°].

Related literature top

For the structures of the ammonium salts of hydrogen bis(3-chlorocinnamate) and hydrogen bis(3-bromocinnamate), see: Chowdhury & Kariuki (2006). For structures of alkali metal salts of ring-substituted trans-cinnamic acid, see: Kariuki et al. (1994, 1995); Crowther et al. (2008); Smith & Wermuth (2009, 2011). For the structure of trans-cinnamic acid, see: Wierda et al. (1989); Abdelmoty et al. (2005).

Experimental top

The title compound was synthesized by heating together for 10 minutes, 148 mg (1.0 mmol) of trans-cinnamic acid and 75 mg (0.5 mmol) of CsOH in 15 ml of an 1:9 (vol/vol) ethanol–water mixture. Partial room temperature evaporation of the solution gave colourless elongated crystals of the title complex from which a specimen was cleaved for the X-ray analysis. These crystals were invariably twinned, a feature identified in the later structure solution and refinement routines.

Refinement top

Hydrogen atoms were placed in calculated positions [C—H = 0.95 Å] and allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(C). The carboxylic acid H-atom was found to be delocalized in a site approximating to midway between two carboxyl O-atoms of the dimeric acid–anion unit and was subsequently allowed to ride at that site, with Uiso(H) = 1.5Ueq(O). The presence of a non-merohedral twin was identified using TwinRotMat within PLATON (Spek, 2009) (twin law: 1 0 0, 0 1 0, 1.5 0 1) reducing the conventional R-factor from 0.23 to 0.072, with a final BASF factor (HKLF 5 format) of 0.4836. Maximum and minimum residual electron densities were 1.26 eÅ-3 (1.00 Å from Cs1) and -2.19 eÅ-3 (1.94 Å from H14B), respectively.

Structure description top

The crystal structure of trans-cinnamic acid was reported by Wierda et al. (1989) and Abdelmoty et al. (2005). The alkali metal salts of trans-cinnamic acid are unknown in the crystallographic literature although a limited number of examples of salts of ring-substituted cinnamates have been reported, e.g. the sodium salts of 2-nitrocinnamate [a dihydrate (Smith & Wermuth, 2009)], of 2-chlorocinnamate [a dihydrate (Kariuki et al., 1995)], of 3-chlorocinnamate [anhydrous (Crowther et al., 2008), of 4-chlorocinnamate [a dihydrate (Kariuki et al., 1994); potassium salts of 3-chloro- and 3-bromocinnamate [both anhydrous (Crowther et al., 2008)]; and a rubidium salt of 2-nitrocinnamate [a monohydrate (Smith & Wermuth, 2011)].

The reaction of trans-cinnamic acid with caesium hydroxide in aqueous ethanol afforded crystals of the title complex, [Cs(C9H7O2)(C9H8O2)]n, (I), the structure of which is reported herein.

In the structure of (I) the asymmetric unit (Fig. 1) comprises two independent irregular CsO8 coordination polyhedra [Cs1—O, 3.060 (8)–3.183 (9) Å; Cs2—O, 3.063 (9)–3.377 (9) Å: Table 1], in which the Cs+ ions lie on a twofold rotation axis and are linked by four bridging carboxyl O-donors from the two trans-cinnamate ligand species. These two ligand species are inter-linked through a delocalized H atom on an approximately central intermediate site within a short O14A···H14B··· O14B hydrogen bond [2.462 (10) Å] (Table 2). Although this phenomenon involving coordinating dimeric carboxylate species is not known among the alkali metal substituted-cinnamate structures, it is found in both ammonium hydrogen bis(3-chlorocinnamate) and ammonium hydrogen bis(3-bromocinnamate) (Chowdhury & Kariuki, 2006), with the O···H···O values [2.554 (6) Å for the 3-Cl-analogue and 2.466 (5) Å for the 3-Br-analogue] similar to that in the structure of (I). In this complex, the two Cs+ ions are quadruply bridged giving a Cs1···Cs2 separation of 3.9318 (3) Å and generate an overall two-dimensional coordination polymer lying parallel to (001) (Figs. 2, 3). No inter-ring ππ interactions are present in the structure [minimun ring centroid separation = 4.826 (8) Å].

The two linked cinnamate species in the title complex are close to coplanar [inter-ring dihedral angle = 3.9 (6)°], with the side chain carboxyl group of the A ligand component slightly rotated out of the plane [torsion angle C11A—C12A— C13A—O13A = 169.0 (13)°] compared to that of the B ligand component [torsion angle C11B—C12B— C13B—O14B = -179.2 (11)°]. With the analogous ammonium hydrogen salts of the 3-chloro- and 3-bromocinnamates (Chowdhury & Kariuki, 2006), the two cinnamate components are related either by crystallographic inversion symmetry (3-Cl) with the two benzene rings essentially planar, or by twofold rotational symmetry (3-Br) with the two rings significantly rotated out of the least-squares plane [inter-ring dihedral angle = 29.8 (2)°].

For the structures of the ammonium salts of hydrogen bis(3-chlorocinnamate) and hydrogen bis(3-bromocinnamate), see: Chowdhury & Kariuki (2006). For structures of alkali metal salts of ring-substituted trans-cinnamic acid, see: Kariuki et al. (1994, 1995); Crowther et al. (2008); Smith & Wermuth (2009, 2011). For the structure of trans-cinnamic acid, see: Wierda et al. (1989); Abdelmoty et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme and the molecular configuration of the two ligands and the two CsO8 coordination polyhedra of the title complex, with non-H atoms drawn with displacement ellipsoids at the 40% probability level. The two Cs+ cations lie on twofold rotation axes. The O14A···O14B hydrogen bond with the delocalized H atom (H14B) is shown as a dashed link. [For symmetry codes: see Table 1].
[Figure 2] Fig. 2. A view of the partially expanded polymeric extension of the structure viewed along the approximate a-cell direction. C-bound H atoms are omitted. A and B denote the two different ligand components.
[Figure 3] Fig. 3. The packing of the layered structure of compound (I) viewed along b.
Poly[µ5-{hydrogen bis[(E)-cinnamato]}-caesium] top
Crystal data top
[Cs(C9H7O2)(C9H8O2)]F(000) = 840
Mr = 428.21Dx = 1.655 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1674 reflections
a = 7.8608 (6) Åθ = 3.6–28.2°
b = 5.6985 (7) ŵ = 2.17 mm1
c = 38.817 (3) ÅT = 200 K
β = 98.733 (6)°Plate, colourless
V = 1718.6 (3) Å30.35 × 0.35 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3353 independent reflections
Radiation source: Enhance (Mo) X-ray source2552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 77
Tmin = 0.711, Tmax = 0.980l = 1147
6675 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.020P)2 + 18.34P]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 2.19 e Å3
Crystal data top
[Cs(C9H7O2)(C9H8O2)]V = 1718.6 (3) Å3
Mr = 428.21Z = 4
Monoclinic, P2/cMo Kα radiation
a = 7.8608 (6) ŵ = 2.17 mm1
b = 5.6985 (7) ÅT = 200 K
c = 38.817 (3) Å0.35 × 0.35 × 0.06 mm
β = 98.733 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3353 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2552 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.980Rint = 0.046
6675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.020P)2 + 18.34P]
where P = (Fo2 + 2Fc2)/3
3353 reflectionsΔρmax = 1.26 e Å3
210 parametersΔρmin = 2.19 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.500000.6438 (2)0.250000.0261 (3)
Cs20.000000.6257 (2)0.250000.0300 (3)
O13A0.2828 (13)0.1322 (15)0.3028 (2)0.037 (3)
O13B0.2180 (12)0.3903 (14)0.20079 (19)0.030 (3)
O14A0.3036 (12)0.2355 (14)0.28374 (18)0.029 (3)
O14B0.2197 (13)0.0396 (14)0.22718 (18)0.033 (3)
C1A0.5037 (15)0.4316 (19)0.3905 (3)0.025 (3)
C1B0.0000 (15)0.079 (2)0.1031 (3)0.025 (3)
C2A0.5963 (19)0.636 (2)0.3964 (3)0.035 (4)
C2B0.0132 (16)0.208 (2)0.0728 (3)0.028 (3)
C3A0.6620 (19)0.707 (2)0.4301 (4)0.042 (5)
C3B0.0664 (16)0.128 (3)0.0403 (3)0.040 (4)
C4A0.6346 (18)0.574 (3)0.4585 (3)0.042 (5)
C4B0.1524 (18)0.082 (2)0.0373 (3)0.041 (4)
C5A0.5426 (19)0.373 (3)0.4529 (3)0.039 (4)
C5B0.1628 (16)0.210 (2)0.0668 (3)0.035 (4)
C6A0.4764 (15)0.299 (2)0.4191 (3)0.029 (4)
C6B0.0870 (15)0.133 (2)0.0997 (3)0.031 (4)
C11A0.4356 (17)0.359 (2)0.3541 (3)0.032 (4)
C11B0.0831 (14)0.173 (2)0.1369 (3)0.025 (3)
C12A0.3722 (13)0.155 (2)0.3444 (3)0.023 (3)
C12B0.1178 (15)0.054 (2)0.1672 (3)0.026 (3)
C13A0.3148 (16)0.076 (2)0.3078 (3)0.028 (4)
C13B0.1901 (15)0.176 (2)0.1998 (3)0.027 (4)
H2A0.615600.730900.377200.0410*
H2B0.076400.351100.074400.0340*
H3A0.726500.848200.433600.0510*
H3B0.060900.219900.020000.0480*
H4A0.679300.623100.481500.0500*
H4B0.204100.138000.015200.0490*
H5A0.522800.280000.472300.0470*
H5B0.223200.354900.064800.0410*
H6A0.412400.157000.415800.0350*
H6B0.095000.225600.119700.0370*
H11A0.439100.472800.336400.0380*
H11B0.115400.334300.137400.0290*
H12A0.361100.045400.362300.0280*
H12B0.095700.109900.167600.0320*
H14B0.260800.136200.255000.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0221 (5)0.0212 (5)0.0350 (5)0.00000.0041 (5)0.0000
Cs20.0232 (5)0.0238 (6)0.0438 (6)0.00000.0075 (6)0.0000
O13A0.056 (5)0.027 (5)0.028 (4)0.001 (6)0.003 (4)0.006 (4)
O13B0.047 (5)0.026 (4)0.016 (4)0.004 (5)0.000 (4)0.000 (3)
O14A0.046 (6)0.033 (5)0.006 (3)0.003 (4)0.006 (3)0.005 (3)
O14B0.055 (5)0.025 (4)0.013 (4)0.004 (5)0.015 (4)0.005 (3)
C1A0.022 (6)0.022 (6)0.030 (6)0.003 (5)0.006 (5)0.009 (5)
C1B0.020 (5)0.034 (6)0.022 (5)0.004 (6)0.005 (5)0.007 (5)
C2A0.038 (7)0.027 (6)0.039 (6)0.004 (7)0.007 (6)0.003 (6)
C2B0.027 (6)0.028 (6)0.027 (6)0.007 (6)0.000 (5)0.003 (5)
C3A0.044 (9)0.021 (7)0.059 (9)0.012 (6)0.002 (7)0.024 (6)
C3B0.043 (8)0.050 (8)0.027 (6)0.026 (8)0.005 (5)0.000 (7)
C4A0.031 (7)0.059 (10)0.033 (7)0.006 (8)0.001 (6)0.022 (7)
C4B0.037 (7)0.053 (8)0.030 (7)0.011 (8)0.003 (6)0.012 (6)
C5A0.035 (7)0.048 (7)0.035 (6)0.003 (8)0.005 (6)0.012 (7)
C5B0.029 (7)0.021 (6)0.054 (8)0.005 (6)0.006 (6)0.004 (6)
C6A0.031 (7)0.027 (7)0.030 (6)0.007 (6)0.005 (5)0.004 (5)
C6B0.032 (7)0.027 (6)0.032 (6)0.002 (6)0.002 (5)0.002 (6)
C11A0.035 (7)0.029 (6)0.032 (6)0.002 (7)0.006 (6)0.002 (6)
C11B0.030 (6)0.021 (6)0.021 (5)0.004 (5)0.001 (4)0.001 (5)
C12A0.036 (6)0.017 (6)0.016 (5)0.008 (5)0.002 (4)0.008 (5)
C12B0.038 (7)0.013 (5)0.027 (6)0.009 (5)0.001 (5)0.006 (5)
C13A0.021 (6)0.036 (8)0.027 (6)0.002 (6)0.003 (5)0.002 (5)
C13B0.023 (6)0.043 (8)0.015 (5)0.000 (6)0.001 (5)0.010 (6)
Geometric parameters (Å, º) top
Cs1—O13B3.060 (8)C2A—C3A1.392 (19)
Cs1—O14A3.182 (8)C2B—C3B1.397 (17)
Cs1—O13Ai3.132 (9)C3A—C4A1.38 (2)
Cs1—O14Bi3.183 (9)C3B—C4B1.37 (2)
Cs1—O13Bii3.060 (8)C4A—C5A1.35 (2)
Cs1—O14Aii3.182 (8)C4B—C5B1.371 (16)
Cs1—O13Aiii3.132 (9)C5A—C6A1.401 (17)
Cs1—O14Biii3.183 (9)C5B—C6B1.396 (16)
Cs2—O13B3.063 (8)C11A—C12A1.298 (16)
Cs2—O14A3.377 (9)C11B—C12B1.349 (16)
Cs2—O13Ai3.108 (9)C12A—C13A1.493 (16)
Cs2—O14Bi3.130 (9)C12B—C13B1.480 (16)
Cs2—O13Biv3.063 (8)C2A—H2A0.9500
Cs2—O14Aiv3.377 (9)C2B—H2B0.9500
Cs2—O13Av3.108 (9)C3A—H3A0.9500
Cs2—O14Bv3.130 (9)C3B—H3B0.9500
O13A—C13A1.222 (14)C4A—H4A0.9500
O13B—C13B1.240 (14)C4B—H4B0.9500
O14A—C13A1.297 (14)C5A—H5A0.9500
O14B—C13B1.309 (14)C5B—H5B0.9500
O14B—H14B1.2100C6A—H6A0.9500
C1A—C11A1.492 (16)C6B—H6B0.9500
C1A—C2A1.374 (17)C11A—H11A0.9500
C1A—C6A1.386 (16)C11B—H11B0.9500
C1B—C11B1.475 (16)C12A—H12A0.9500
C1B—C6B1.385 (16)C12B—H12B0.9500
C1B—C2B1.404 (16)
O13B—Cs1—O14A64.0 (2)Cs2—O14A—C13A135.0 (8)
O13Ai—Cs1—O13B100.7 (2)Cs1vi—O14B—C13B132.6 (7)
O13B—Cs1—O14Bi75.9 (2)Cs2vi—O14B—C13B129.8 (7)
O13B—Cs1—O13Bii123.7 (2)Cs1vi—O14B—Cs2vi77.04 (18)
O13B—Cs1—O14Aii75.4 (2)Cs1—O14A—H14B93.00
O13Aiii—Cs1—O13B101.5 (2)Cs2—O14A—H14B83.00
O13B—Cs1—O14Biii155.98 (19)Cs2vi—O14B—H14B100.00
O13Ai—Cs1—O14A71.5 (2)Cs1vi—O14B—H14B90.00
O14A—Cs1—O14Bi105.9 (2)C13B—O14B—H14B116.00
O13Bii—Cs1—O14A75.4 (2)C6A—C1A—C11A122.0 (10)
O14A—Cs1—O14Aii86.0 (2)C2A—C1A—C6A118.1 (11)
O13Aiii—Cs1—O14A156.1 (2)C2A—C1A—C11A119.9 (10)
O14A—Cs1—O14Biii139.65 (18)C2B—C1B—C6B118.4 (11)
O13Ai—Cs1—O14Bi58.0 (2)C2B—C1B—C11B118.4 (10)
O13Ai—Cs1—O13Bii101.5 (2)C6B—C1B—C11B123.2 (10)
O13Ai—Cs1—O14Aii156.1 (2)C1A—C2A—C3A121.0 (11)
O13Ai—Cs1—O13Aiii131.9 (2)C1B—C2B—C3B120.4 (12)
O13Ai—Cs1—O14Biii87.3 (2)C2A—C3A—C4A120.7 (12)
O13Bii—Cs1—O14Bi155.98 (19)C2B—C3B—C4B120.6 (12)
O14Aii—Cs1—O14Bi139.65 (18)C3A—C4A—C5A118.7 (12)
O13Aiii—Cs1—O14Bi87.3 (2)C3B—C4B—C5B119.0 (11)
O14Bi—Cs1—O14Biii89.8 (2)C4A—C5A—C6A121.2 (12)
O13Bii—Cs1—O14Aii64.0 (2)C4B—C5B—C6B121.7 (11)
O13Aiii—Cs1—O13Bii100.7 (2)C1A—C6A—C5A120.4 (11)
O13Bii—Cs1—O14Biii75.9 (2)C1B—C6B—C5B119.8 (11)
O13Aiii—Cs1—O14Aii71.5 (2)C1A—C11A—C12A126.2 (11)
O14Aii—Cs1—O14Biii105.9 (2)C1B—C11B—C12B126.6 (11)
O13Aiii—Cs1—O14Biii58.0 (2)C11A—C12A—C13A126.4 (11)
O13B—Cs2—O14A61.58 (19)C11B—C12B—C13B120.7 (10)
O13Ai—Cs2—O13B101.2 (2)O13A—C13A—C12A118.0 (10)
O13B—Cs2—O14Bi76.6 (2)O13A—C13A—O14A125.2 (11)
O13B—Cs2—O13Biv128.1 (2)O14A—C13A—C12A116.9 (10)
O13B—Cs2—O14Aiv84.2 (2)O14B—C13B—C12B114.4 (10)
O13Av—Cs2—O13B101.3 (2)O13B—C13B—O14B123.4 (10)
O13B—Cs2—O14Bv153.1 (2)O13B—C13B—C12B122.2 (10)
O13Ai—Cs2—O14A69.2 (2)C1A—C2A—H2A120.00
O14A—Cs2—O14Bi102.6 (2)C3A—C2A—H2A119.00
O13Biv—Cs2—O14A84.2 (2)C1B—C2B—H2B120.00
O14A—Cs2—O14Aiv97.7 (2)C3B—C2B—H2B120.00
O13Av—Cs2—O14A160.1 (2)C2A—C3A—H3A120.00
O14A—Cs2—O14Bv140.74 (18)C4A—C3A—H3A120.00
O13Ai—Cs2—O14Bi58.8 (2)C2B—C3B—H3B120.00
O13Ai—Cs2—O13Biv101.3 (2)C4B—C3B—H3B120.00
O13Ai—Cs2—O14Aiv160.1 (2)C3A—C4A—H4A121.00
O13Ai—Cs2—O13Av127.3 (2)C5A—C4A—H4A121.00
O13Ai—Cs2—O14Bv81.3 (2)C3B—C4B—H4B121.00
O13Biv—Cs2—O14Bi153.1 (2)C5B—C4B—H4B120.00
O14Aiv—Cs2—O14Bi140.74 (18)C4A—C5A—H5A119.00
O13Av—Cs2—O14Bi81.3 (2)C6A—C5A—H5A119.00
O14Bi—Cs2—O14Bv82.2 (2)C4B—C5B—H5B119.00
O13Biv—Cs2—O14Aiv61.58 (19)C6B—C5B—H5B119.00
O13Av—Cs2—O13Biv101.2 (2)C1A—C6A—H6A120.00
O13Biv—Cs2—O14Bv76.6 (2)C5A—C6A—H6A120.00
O13Av—Cs2—O14Aiv69.2 (2)C1B—C6B—H6B120.00
O14Aiv—Cs2—O14Bv102.6 (2)C5B—C6B—H6B120.00
O13Av—Cs2—O14Bv58.8 (2)C1A—C11A—H11A117.00
Cs1vi—O13A—C13A112.3 (8)C12A—C11A—H11A117.00
Cs2vi—O13A—C13A130.2 (8)C1B—C11B—H11B117.00
Cs1vi—O13A—Cs2vi78.11 (18)C12B—C11B—H11B117.00
Cs1—O13B—Cs279.91 (18)C11A—C12A—H12A117.00
Cs1—O13B—C13B126.3 (7)C13A—C12A—H12A117.00
Cs2—O13B—C13B109.7 (7)C11B—C12B—H12B120.00
Cs1—O14A—Cs273.59 (16)C13B—C12B—H12B120.00
Cs1—O14A—C13A145.6 (8)
O14A—Cs1—O13B—Cs265.6 (2)O13Biv—Cs2—O14A—Cs1160.72 (18)
O14A—Cs1—O13B—C13B41.6 (9)O13Biv—Cs2—O14A—C13A3.5 (9)
O13Ai—Cs1—O13B—Cs22.5 (2)O14Aiv—Cs2—O14A—Cs1139.03 (16)
O13Ai—Cs1—O13B—C13B104.7 (9)O14Aiv—Cs2—O14A—C13A63.8 (10)
O14Bi—Cs1—O13B—Cs250.38 (19)O14Bv—Cs2—O14A—Cs1100.2 (3)
O14Bi—Cs1—O13B—C13B157.5 (9)O14Bv—Cs2—O14A—C13A57.0 (11)
O13Bii—Cs1—O13B—Cs2114.2 (2)O13B—Cs2—O13Ai—Cs12.5 (2)
O13Bii—Cs1—O13B—C13B7.0 (10)O14A—Cs2—O13Ai—Cs156.01 (18)
O14Aii—Cs1—O13B—Cs2158.3 (2)O13B—Cs2—O14Bi—Cs149.32 (18)
O14Aii—Cs1—O13B—C13B51.2 (9)O14A—Cs2—O14Bi—Cs17.01 (18)
O13Aiii—Cs1—O13B—Cs2134.6 (2)Cs1vi—O13A—C13A—O14A56.2 (15)
O13Aiii—Cs1—O13B—C13B118.3 (9)Cs1vi—O13A—C13A—C12A123.5 (9)
O14Biii—Cs1—O13B—Cs2105.2 (5)Cs2vi—O13A—C13A—O14A37.0 (18)
O14Biii—Cs1—O13B—C13B147.6 (9)Cs2vi—O13A—C13A—C12A143.3 (8)
O13B—Cs1—O14A—Cs257.9 (2)Cs1—O13B—C13B—O14B31.2 (16)
O13B—Cs1—O14A—C13A151.0 (13)Cs1—O13B—C13B—C12B149.6 (8)
O13Ai—Cs1—O14A—Cs254.52 (19)Cs2—O13B—C13B—O14B60.7 (13)
O13Ai—Cs1—O14A—C13A96.5 (12)Cs2—O13B—C13B—C12B118.6 (10)
O14Bi—Cs1—O14A—Cs27.10 (18)Cs1—O14A—C13A—O13A125.8 (12)
O14Bi—Cs1—O14A—C13A143.9 (12)Cs1—O14A—C13A—C12A54.0 (17)
O13Bii—Cs1—O14A—Cs2162.23 (19)Cs2—O14A—C13A—O13A95.3 (14)
O13Bii—Cs1—O14A—C13A11.2 (12)Cs2—O14A—C13A—C12A85.0 (13)
O14Aii—Cs1—O14A—Cs2133.66 (17)Cs1vi—O14B—C13B—O13B109.4 (12)
O14Aii—Cs1—O14A—C13A75.3 (12)Cs1vi—O14B—C13B—C12B71.3 (13)
O13Aiii—Cs1—O14A—Cs2114.2 (5)Cs2vi—O14B—C13B—O13B138.9 (10)
O13Aiii—Cs1—O14A—C13A94.7 (13)Cs2vi—O14B—C13B—C12B40.4 (14)
O14Biii—Cs1—O14A—Cs2116.3 (3)C6A—C1A—C2A—C3A0.5 (19)
O14Biii—Cs1—O14A—C13A34.7 (14)C11A—C1A—C2A—C3A179.7 (12)
O13B—Cs1—O13Ai—Cs22.5 (2)C2A—C1A—C6A—C5A0.2 (18)
O14A—Cs1—O13Ai—Cs260.15 (19)C11A—C1A—C6A—C5A179.9 (12)
O13B—Cs1—O14Bi—Cs249.60 (18)C2A—C1A—C11A—C12A167.7 (13)
O14A—Cs1—O14Bi—Cs27.55 (19)C6A—C1A—C11A—C12A13 (2)
O14A—Cs2—O13B—Cs161.2 (2)C6B—C1B—C2B—C3B2.8 (18)
O14A—Cs2—O13B—C13B63.9 (7)C11B—C1B—C2B—C3B178.7 (11)
O13Ai—Cs2—O13B—Cs12.5 (2)C2B—C1B—C6B—C5B1.7 (18)
O13Ai—Cs2—O13B—C13B122.6 (7)C11B—C1B—C6B—C5B179.8 (11)
O14Bi—Cs2—O13B—Cs151.35 (19)C2B—C1B—C11B—C12B164.0 (12)
O14Bi—Cs2—O13B—C13B176.5 (8)C6B—C1B—C11B—C12B14.4 (19)
O13Biv—Cs2—O13B—Cs1116.5 (2)C1A—C2A—C3A—C4A0 (2)
O13Biv—Cs2—O13B—C13B8.6 (8)C1B—C2B—C3B—C4B3 (2)
O14Aiv—Cs2—O13B—Cs1163.16 (19)C2A—C3A—C4A—C5A0 (2)
O14Aiv—Cs2—O13B—C13B38.1 (7)C2B—C3B—C4B—C5B2 (2)
O13Av—Cs2—O13B—Cs1129.5 (2)C3A—C4A—C5A—C6A0 (2)
O13Av—Cs2—O13B—C13B105.4 (7)C3B—C4B—C5B—C6B1 (2)
O14Bv—Cs2—O13B—Cs190.3 (5)C4A—C5A—C6A—C1A0 (2)
O14Bv—Cs2—O13B—C13B144.6 (7)C4B—C5B—C6B—C1B0.7 (19)
O13B—Cs2—O14A—Cs159.9 (2)C1A—C11A—C12A—C13A175.6 (12)
O13B—Cs2—O14A—C13A142.9 (10)C1B—C11B—C12B—C13B175.3 (11)
O13Ai—Cs2—O14A—Cs156.3 (2)C11A—C12A—C13A—O13A169.0 (13)
O13Ai—Cs2—O14A—C13A100.9 (10)C11A—C12A—C13A—O14A10.7 (18)
O14Bi—Cs2—O14A—Cs17.12 (18)C11B—C12B—C13B—O13B1.6 (18)
O14Bi—Cs2—O14A—C13A150.1 (9)C11B—C12B—C13B—O14B179.2 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x, y, z+1/2; (v) x, y+1, z+1/2; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14B—H14B···O14A1.211.252.462 (10)180
C11B—H11B···O13B0.952.492.830 (14)101
Selected bond lengths (Å) top
Cs1—O13B3.060 (8)Cs2—O13B3.063 (8)
Cs1—O14A3.182 (8)Cs2—O14A3.377 (9)
Cs1—O13Ai3.132 (9)Cs2—O13Ai3.108 (9)
Cs1—O14Bi3.183 (9)Cs2—O14Bi3.130 (9)
Cs1—O13Bii3.060 (8)Cs2—O13Biv3.063 (8)
Cs1—O14Aii3.182 (8)Cs2—O14Aiv3.377 (9)
Cs1—O13Aiii3.132 (9)Cs2—O13Av3.108 (9)
Cs1—O14Biii3.183 (9)Cs2—O14Bv3.130 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x, y, z+1/2; (v) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14B—H14B···O14A1.211.252.462 (10)180
 

Acknowledgements

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAbdelmoty, I., Bucholz, V., Di, L., Guo, C., Kowitz, K., Enkelmann, V., Wegner, G. & Foxman, B. M. (2005). Cryst. Growth Des. 5, 2210–2217.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationChowdhury, M. & Kariuki, B. M. (2006). Cryst. Growth Des. 6, 774–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrowther, D., Chowdhury, M. & Kariuki, B. M. (2008). J. Mol. Struct. 872, 64–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKariuki, B. M., Valim, J. B., Jones, W. & King, J. (1994). Acta Cryst. C50, 1665–1667.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKariuki, B. M., Valim, J. B., Jones, W. & King, J. (1995). Acta Cryst. C51, 1051–1053.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, m1048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1594–m1595.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWierda, D. A., Feng, T. L. & Barron, A. R. (1989). Acta Cryst. C45, 338–339.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m43-m44
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds