organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(3,4-Di­meth­­oxy­phen­yl)eth­yl](3-{N-[2-(3,4-di­meth­­oxy­phen­yl)eth­yl]carbamo­yl}prop­yl)aza­nium chloride dihydrate

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: a-saidov85@mail.ru

(Received 23 January 2014; accepted 28 January 2014; online 31 January 2014)

The asymmetric unit of the title hydrated salt, C24H35N2O5+·Cl·2H2O, contains one organic cation that has its protonation site at the amine function, one chloride anion and two lattice water mol­ecules. In the crystal, one pair of lattice water mol­ecules and two chloride anions form a four-membered centrosymmetric hydrogen-bond cycle. In addition, O—H⋯O, N—H⋯O and N—H⋯Cl hydrogen bonds involving the N—H groups, the water mol­ecules and the C=O group are observed. As a result, a hydrogen-bonded layer parallel to (100) is formed. The thickness of such a layer corresponds to the length of the a axis [21.977 (3) Å].

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of related compounds, see: Bentley (2006[Bentley, K. W. (2006). Nat. Prod. Rep. 23, 444-463.]); Saidov et al. (2013[Saidov, A. Sh., Alimova, M., Levkovich, M. G. & Vinogradova, V. I. (2013). Chem. Nat. Compd, 49, 302-304.]). For the crystal structure of a related compound, see: Peters et al. (1994[Peters, K., Peters, E.-M., Schnering, H. G., Bringmann, G. & Gassen, M. (1994). Z. Kristallogr. 209, 667-668.]).

[Scheme 1]

Experimental

Crystal data
  • C24H35N2O5+·Cl·2H2O

  • Mr = 503.02

  • Monoclinic, P 21 /c

  • a = 21.977 (3) Å

  • b = 12.2295 (10) Å

  • c = 10.2217 (9) Å

  • β = 93.490 (9)°

  • V = 2742.2 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.59 mm−1

  • T = 295 K

  • 0.60 × 0.40 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.599, Tmax = 1.000

  • 11225 measured reflections

  • 4860 independent reflections

  • 3012 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 0.97

  • 4860 reflections

  • 339 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.87 (2) 2.44 (2) 3.300 (2) 173 (2)
O2W—H1W2⋯O3 0.95 (5) 1.75 (5) 2.704 (3) 179 (6)
N2—H2⋯Cl1 0.92 (3) 2.22 (3) 3.127 (2) 169 (3)
O2W—H2W2⋯O1Wii 0.80 (4) 1.97 (4) 2.767 (4) 171 (4)
N2—H3⋯O2Wiii 0.99 (2) 1.72 (2) 2.709 (3) 177 (2)
O1W—H1W1⋯Cl1i 0.87 (5) 2.31 (5) 3.177 (3) 177 (6)
O1W—H2W1⋯Cl1 0.91 (4) 2.31 (4) 3.194 (4) 164 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, C24H35N2O5+.Cl-(H2O)2, was isolated as an intermediate product in the synthesis of isoquinoline alkaloid analogues (Saidov et al., 2013). Similar compounds have been synthesized (Bentley, 2006), or their structures characterized (Peters et al., 1994).

A perspective view of the moleculular entities of the title compound, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles are in normal ranges (Allen et al., 1987). The organic molecule contains two N atoms, amidic and aminic. The N atom on an amide is usually less nucleophilic than the N atom of an amine, due to the resonance stabilization of the N atom lone-pair provided by the amide carbonyl group. Therefore, in the cation the protonization of the amino N atom is observed.

In the crystal structure, two chloride anion and one lattice water molecule form a centrosymmetric four-membered hydrogen-bonding cycle (Fig. 2). The protonated organic molecules are bridged by N—H···Cl and CO···H—O(w) hydrogen bonds (Table 1). As a result, hydrogen-bonded layers parallel to (100) are formed that have a thickness corresponding to the length of the a axis.

Related literature top

For standard bond lengths, see: Allen et al. (1987). For the synthesis of related compounds, see: Bentley (2006); Saidov et al. (2013). For the crystal structure of a related compound, see: Peters et al. (1994).

Experimental top

To a solution of 2.0 g. (0.004 mol) N,N-(3,4-dimethoxyphenyl ethyl)succindiamide in 30 ml absolute benzene was added 6.7 g (0.04 mol) POCl3. The reaction mixture was boiled for 2 h. Benzene and excess POCl3 were then removed under reduced pressure, and the residue was dissolved in 30 ml methanol. To the received solution was added 3.8 g (0.1 mol) NaBH4 at 273-278 K under ice cooling. Then methanol was removed, the residue dissolved in water and extracted with chloroform. From the chloroformic layer were obtained three componds with Rf 0.9, 0.5 and 0.2 (title compound) (chloroform:methanol=8:1). The compounds were isolated by column chromatography (silica gel); 0.075 g of the title compound were obtained with a m.p. 406-408 K. IR (KBr, ν, cm-1): 3434, 3258, 2940, 1651, 1590, 1519. Crystals suitable for X-ray diffraction analysis were obtained from a chloroform–methanol (8:1) mixture by slow evaporation.

Refinement top

Carbon-bound H atoms were placed geometrically and treated as riding on their parent atoms, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methylen), 0.96 Å (methyl) and were refined with Uiso(H)=1.2Ueq(C) for aromatic and methylen H atoms, Uiso(H)=1.5Ueq(C) for methyl H atoms. N-bound H atoms and water H atoms involved in the intermolecular hydrogen bonding were found by difference Fourier synthesis and refined isotropically [N1–H1=0.86 (2) Å, N2–H2 0.92 (3) Å, N2–H3 0.99 (3) Å, O1W–H1W1= 0.86 (5) Å, O1W–H2W1= 0.91 (5) Å, O2W–H1W2= 0.96 (4) Å, O2W–H2W2= 0.80 (4) Å].

Structure description top

The title compound, C24H35N2O5+.Cl-(H2O)2, was isolated as an intermediate product in the synthesis of isoquinoline alkaloid analogues (Saidov et al., 2013). Similar compounds have been synthesized (Bentley, 2006), or their structures characterized (Peters et al., 1994).

A perspective view of the moleculular entities of the title compound, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles are in normal ranges (Allen et al., 1987). The organic molecule contains two N atoms, amidic and aminic. The N atom on an amide is usually less nucleophilic than the N atom of an amine, due to the resonance stabilization of the N atom lone-pair provided by the amide carbonyl group. Therefore, in the cation the protonization of the amino N atom is observed.

In the crystal structure, two chloride anion and one lattice water molecule form a centrosymmetric four-membered hydrogen-bonding cycle (Fig. 2). The protonated organic molecules are bridged by N—H···Cl and CO···H—O(w) hydrogen bonds (Table 1). As a result, hydrogen-bonded layers parallel to (100) are formed that have a thickness corresponding to the length of the a axis.

For standard bond lengths, see: Allen et al. (1987). For the synthesis of related compounds, see: Bentley (2006); Saidov et al. (2013). For the crystal structure of a related compound, see: Peters et al. (1994).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing hydrogen bonds (dashed lines)
[2-(3,4-Dimethoxyphenyl)ethyl](3-{N-[2-(3,4-dimethoxyphenyl)ethyl]carbamoyl}propyl)azanium chloride dihydrate top
Crystal data top
C24H35N2O5+·Cl·2H2OF(000) = 1080
Mr = 503.02Dx = 1.218 Mg m3
Monoclinic, P21/cMelting point: 406(2) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 21.977 (3) ÅCell parameters from 3039 reflections
b = 12.2295 (10) Åθ = 3.6–67.2°
c = 10.2217 (9) ŵ = 1.59 mm1
β = 93.490 (9)°T = 295 K
V = 2742.2 (5) Å3Prism, colourless
Z = 40.60 × 0.40 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
4860 independent reflections
Radiation source: Enhance (Cu) X-ray Source3012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.2576 pixels mm-1θmax = 67.3°, θmin = 4.0°
ω scansh = 2526
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1412
Tmin = 0.599, Tmax = 1.000l = 1212
11225 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0748P)2]
where P = (Fo2 + 2Fc2)/3
4860 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H35N2O5+·Cl·2H2OV = 2742.2 (5) Å3
Mr = 503.02Z = 4
Monoclinic, P21/cCu Kα radiation
a = 21.977 (3) ŵ = 1.59 mm1
b = 12.2295 (10) ÅT = 295 K
c = 10.2217 (9) Å0.60 × 0.40 × 0.35 mm
β = 93.490 (9)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
4860 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3012 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 1.000Rint = 0.035
11225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.20 e Å3
4860 reflectionsΔρmin = 0.24 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60316 (3)0.54002 (5)0.43730 (7)0.0681 (2)
O10.04553 (8)0.60760 (16)0.00797 (18)0.0712 (5)
O20.04433 (7)0.62103 (15)0.24413 (18)0.0680 (5)
O30.35306 (8)0.87255 (13)0.4546 (2)0.0689 (5)
O40.83315 (9)1.01542 (13)0.90785 (19)0.0709 (5)
O50.89012 (7)0.84794 (15)1.01019 (17)0.0636 (5)
N10.33989 (9)0.69124 (17)0.4423 (2)0.0553 (5)
N20.59396 (8)0.76971 (17)0.5691 (2)0.0460 (5)
C10.21020 (10)0.58872 (18)0.2146 (2)0.0503 (6)
C20.21035 (11)0.5805 (2)0.0803 (2)0.0584 (6)
H2A0.24690.57120.04050.070*
C30.15577 (12)0.5863 (2)0.0040 (2)0.0605 (6)
H3A0.15650.58030.08660.073*
C40.10113 (11)0.60055 (19)0.0590 (2)0.0520 (6)
C50.10050 (10)0.60831 (18)0.1960 (2)0.0498 (6)
C60.15446 (10)0.60152 (19)0.2707 (2)0.0504 (6)
H6A0.15380.60560.36140.061*
C70.04354 (15)0.5862 (3)0.1458 (3)0.0874 (10)
H7A0.00200.58800.18070.131*
H7B0.06060.51530.16080.131*
H7C0.06670.64080.18830.131*
C80.03998 (14)0.6059 (3)0.3813 (3)0.0794 (9)
H8A0.00210.60620.40140.119*
H8B0.06110.66410.42790.119*
H8C0.05810.53720.40720.119*
C90.26858 (11)0.58427 (19)0.3007 (3)0.0574 (6)
H9A0.30030.55060.25250.069*
H9B0.26230.53930.37680.069*
C100.28909 (10)0.69740 (19)0.3453 (3)0.0557 (6)
H10A0.30110.73910.27040.067*
H10B0.25540.73520.38240.067*
C110.36817 (10)0.77996 (19)0.4917 (2)0.0503 (6)
C120.42055 (10)0.76099 (19)0.5905 (3)0.0514 (6)
H12A0.41740.68820.62730.062*
H12B0.41850.81340.66130.062*
C130.48157 (10)0.7724 (2)0.5283 (2)0.0544 (6)
H13A0.48600.71350.46610.065*
H13B0.48240.84100.48080.065*
C140.53415 (10)0.7694 (2)0.6305 (2)0.0519 (6)
H14A0.53190.83240.68760.062*
H14B0.53110.70410.68360.062*
C150.64681 (10)0.7750 (2)0.6672 (2)0.0548 (6)
H15A0.64670.71050.72250.066*
H15B0.64250.83850.72260.066*
C160.70733 (10)0.7816 (2)0.6030 (3)0.0602 (7)
H16A0.71390.71520.55390.072*
H16B0.70680.84280.54260.072*
C170.75800 (10)0.7962 (2)0.7074 (2)0.0518 (6)
C180.77208 (10)0.9006 (2)0.7562 (2)0.0516 (6)
H18A0.75130.96090.72050.062*
C190.81614 (10)0.91564 (18)0.8559 (2)0.0502 (6)
C200.84737 (10)0.82529 (19)0.9117 (2)0.0491 (6)
C210.83303 (11)0.72290 (19)0.8639 (3)0.0604 (7)
H21A0.85320.66210.89990.072*
C220.78904 (11)0.7091 (2)0.7631 (3)0.0621 (7)
H22A0.78030.63900.73210.074*
C230.79880 (15)1.1081 (2)0.8642 (3)0.0781 (9)
H23A0.81491.17230.90790.117*
H23B0.75701.09840.88380.117*
H23C0.80131.11630.77130.117*
C240.91979 (13)0.7568 (2)1.0737 (3)0.0776 (9)
H24A0.94870.78261.14080.116*
H24B0.94060.71501.01060.116*
H24C0.89000.71161.11230.116*
O1W0.46801 (16)0.5117 (2)0.3085 (3)0.0915 (7)
O2W0.40073 (12)1.04928 (17)0.5826 (3)0.0892 (8)
H1W20.3843 (19)0.987 (4)0.537 (4)0.159 (17)*
H2W20.4236 (18)1.034 (3)0.644 (4)0.116 (15)*
H1W10.448 (2)0.495 (4)0.376 (5)0.16 (2)*
H2W10.509 (2)0.513 (4)0.330 (4)0.16 (2)*
H10.3518 (11)0.629 (2)0.476 (2)0.058 (7)*
H20.5971 (11)0.707 (2)0.520 (3)0.071 (8)*
H30.5953 (10)0.834 (2)0.511 (2)0.062 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0868 (5)0.0462 (3)0.0703 (4)0.0017 (3)0.0030 (3)0.0004 (3)
O10.0576 (11)0.0906 (14)0.0628 (11)0.0020 (10)0.0185 (9)0.0016 (10)
O20.0452 (10)0.0919 (14)0.0668 (12)0.0045 (9)0.0015 (8)0.0032 (10)
O30.0586 (11)0.0429 (10)0.1020 (15)0.0001 (8)0.0209 (10)0.0039 (9)
O40.0856 (13)0.0493 (10)0.0745 (12)0.0019 (9)0.0230 (10)0.0066 (9)
O50.0515 (10)0.0699 (11)0.0673 (11)0.0008 (8)0.0153 (8)0.0052 (9)
N10.0438 (11)0.0415 (11)0.0781 (15)0.0004 (9)0.0155 (10)0.0037 (11)
N20.0391 (11)0.0452 (11)0.0529 (12)0.0006 (8)0.0044 (9)0.0062 (10)
C10.0465 (13)0.0435 (12)0.0599 (15)0.0000 (10)0.0047 (11)0.0039 (11)
C20.0507 (14)0.0662 (16)0.0585 (16)0.0026 (12)0.0052 (12)0.0041 (13)
C30.0652 (17)0.0707 (16)0.0451 (14)0.0081 (14)0.0002 (12)0.0010 (12)
C40.0505 (14)0.0507 (14)0.0535 (15)0.0061 (11)0.0074 (11)0.0030 (11)
C50.0455 (13)0.0496 (13)0.0537 (14)0.0012 (10)0.0018 (11)0.0045 (11)
C60.0498 (13)0.0551 (14)0.0456 (13)0.0004 (11)0.0031 (11)0.0037 (11)
C70.092 (2)0.104 (2)0.0616 (19)0.0084 (19)0.0325 (17)0.0010 (17)
C80.0722 (19)0.095 (2)0.072 (2)0.0049 (16)0.0203 (15)0.0011 (17)
C90.0493 (14)0.0501 (13)0.0713 (17)0.0025 (11)0.0085 (12)0.0103 (13)
C100.0440 (13)0.0493 (14)0.0720 (17)0.0024 (11)0.0109 (12)0.0022 (12)
C110.0389 (12)0.0466 (14)0.0648 (16)0.0013 (10)0.0008 (11)0.0000 (11)
C120.0421 (13)0.0456 (13)0.0652 (16)0.0010 (10)0.0056 (11)0.0037 (11)
C130.0417 (13)0.0599 (15)0.0606 (15)0.0026 (11)0.0051 (11)0.0062 (12)
C140.0386 (12)0.0548 (14)0.0615 (15)0.0028 (10)0.0023 (11)0.0094 (11)
C150.0411 (13)0.0677 (16)0.0540 (14)0.0034 (11)0.0093 (11)0.0035 (12)
C160.0453 (14)0.0749 (18)0.0596 (15)0.0038 (12)0.0036 (12)0.0055 (13)
C170.0370 (12)0.0616 (15)0.0564 (15)0.0028 (11)0.0010 (11)0.0014 (12)
C180.0451 (13)0.0548 (14)0.0541 (14)0.0052 (11)0.0032 (11)0.0044 (11)
C190.0481 (13)0.0471 (13)0.0549 (14)0.0011 (11)0.0006 (11)0.0005 (11)
C200.0364 (12)0.0562 (14)0.0544 (14)0.0015 (10)0.0005 (11)0.0044 (11)
C210.0458 (14)0.0509 (15)0.0831 (19)0.0057 (11)0.0064 (13)0.0089 (13)
C220.0499 (14)0.0490 (14)0.086 (2)0.0052 (12)0.0043 (14)0.0047 (13)
C230.122 (3)0.0499 (16)0.0619 (18)0.0174 (16)0.0018 (17)0.0008 (13)
C240.0581 (17)0.097 (2)0.076 (2)0.0129 (15)0.0156 (15)0.0192 (17)
O1W0.104 (2)0.0987 (17)0.0698 (15)0.0214 (15)0.0146 (14)0.0143 (12)
O2W0.1143 (19)0.0535 (12)0.0948 (18)0.0154 (12)0.0341 (15)0.0146 (12)
Geometric parameters (Å, º) top
O1—C41.366 (3)C10—H10B0.9700
O1—C71.431 (3)C11—C121.503 (3)
O2—C51.365 (3)C12—C131.525 (3)
O2—C81.423 (3)C12—H12A0.9700
O3—C111.233 (3)C12—H12B0.9700
O4—C191.374 (3)C13—C141.510 (3)
O4—C231.419 (3)C13—H13A0.9700
O5—C201.363 (3)C13—H13B0.9700
O5—C241.427 (3)C14—H14A0.9700
N1—C111.334 (3)C14—H14B0.9700
N1—C101.449 (3)C15—C161.521 (3)
N1—H10.86 (2)C15—H15A0.9700
N2—C151.488 (3)C15—H15B0.9700
N2—C141.490 (3)C16—C171.505 (3)
N2—H20.92 (3)C16—H16A0.9700
N2—H30.99 (3)C16—H16B0.9700
C1—C21.377 (3)C17—C221.369 (3)
C1—C61.392 (3)C17—C181.398 (3)
C1—C91.512 (3)C18—C191.375 (3)
C2—C31.392 (3)C18—H18A0.9300
C2—H2A0.9300C19—C201.404 (3)
C3—C41.368 (3)C20—C211.374 (3)
C3—H3A0.9300C21—C221.380 (3)
C4—C51.405 (3)C21—H21A0.9300
C5—C61.373 (3)C22—H22A0.9300
C6—H6A0.9300C23—H23A0.9600
C7—H7A0.9600C23—H23B0.9600
C7—H7B0.9600C23—H23C0.9600
C7—H7C0.9600C24—H24A0.9600
C8—H8A0.9600C24—H24B0.9600
C8—H8B0.9600C24—H24C0.9600
C8—H8C0.9600O1W—H1W10.86 (5)
C9—C101.517 (3)O1W—H2W10.91 (5)
C9—H9A0.9700O2W—H1W20.96 (4)
C9—H9B0.9700O2W—H2W20.80 (4)
C10—H10A0.9700
C4—O1—C7117.0 (2)C13—C12—H12A109.4
C5—O2—C8117.19 (19)C11—C12—H12B109.4
C19—O4—C23117.45 (19)C13—C12—H12B109.4
C20—O5—C24116.9 (2)H12A—C12—H12B108.0
C11—N1—C10122.6 (2)C14—C13—C12111.4 (2)
C11—N1—H1116.1 (16)C14—C13—H13A109.3
C10—N1—H1121.2 (16)C12—C13—H13A109.3
C15—N2—C14112.89 (19)C14—C13—H13B109.3
C15—N2—H2108.8 (16)C12—C13—H13B109.3
C14—N2—H2108.9 (16)H13A—C13—H13B108.0
C15—N2—H3108.8 (13)N2—C14—C13111.5 (2)
C14—N2—H3108.5 (14)N2—C14—H14A109.3
H2—N2—H3109 (2)C13—C14—H14A109.3
C2—C1—C6118.3 (2)N2—C14—H14B109.3
C2—C1—C9121.6 (2)C13—C14—H14B109.3
C6—C1—C9120.1 (2)H14A—C14—H14B108.0
C1—C2—C3120.0 (2)N2—C15—C16112.3 (2)
C1—C2—H2A120.0N2—C15—H15A109.2
C3—C2—H2A120.0C16—C15—H15A109.2
C4—C3—C2121.6 (2)N2—C15—H15B109.2
C4—C3—H3A119.2C16—C15—H15B109.2
C2—C3—H3A119.2H15A—C15—H15B107.9
O1—C4—C3125.7 (2)C17—C16—C15109.2 (2)
O1—C4—C5115.6 (2)C17—C16—H16A109.8
C3—C4—C5118.7 (2)C15—C16—H16A109.8
O2—C5—C6125.1 (2)C17—C16—H16B109.8
O2—C5—C4115.5 (2)C15—C16—H16B109.8
C6—C5—C4119.3 (2)H16A—C16—H16B108.3
C5—C6—C1122.0 (2)C22—C17—C18117.9 (2)
C5—C6—H6A119.0C22—C17—C16122.1 (2)
C1—C6—H6A119.0C18—C17—C16119.9 (2)
O1—C7—H7A109.5C19—C18—C17121.1 (2)
O1—C7—H7B109.5C19—C18—H18A119.4
H7A—C7—H7B109.5C17—C18—H18A119.4
O1—C7—H7C109.5O4—C19—C18124.6 (2)
H7A—C7—H7C109.5O4—C19—C20115.3 (2)
H7B—C7—H7C109.5C18—C19—C20120.1 (2)
O2—C8—H8A109.5O5—C20—C21125.5 (2)
O2—C8—H8B109.5O5—C20—C19116.0 (2)
H8A—C8—H8B109.5C21—C20—C19118.5 (2)
O2—C8—H8C109.5C20—C21—C22120.8 (2)
H8A—C8—H8C109.5C20—C21—H21A119.6
H8B—C8—H8C109.5C22—C21—H21A119.6
C1—C9—C10111.61 (19)C17—C22—C21121.6 (2)
C1—C9—H9A109.3C17—C22—H22A119.2
C10—C9—H9A109.3C21—C22—H22A119.2
C1—C9—H9B109.3O4—C23—H23A109.5
C10—C9—H9B109.3O4—C23—H23B109.5
H9A—C9—H9B108.0H23A—C23—H23B109.5
N1—C10—C9111.15 (19)O4—C23—H23C109.5
N1—C10—H10A109.4H23A—C23—H23C109.5
C9—C10—H10A109.4H23B—C23—H23C109.5
N1—C10—H10B109.4O5—C24—H24A109.5
C9—C10—H10B109.4O5—C24—H24B109.5
H10A—C10—H10B108.0H24A—C24—H24B109.5
O3—C11—N1121.3 (2)O5—C24—H24C109.5
O3—C11—C12122.0 (2)H24A—C24—H24C109.5
N1—C11—C12116.7 (2)H24B—C24—H24C109.5
C11—C12—C13111.3 (2)H1W1—O1W—H2W1111 (4)
C11—C12—H12A109.4H1W2—O2W—H2W2113 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.87 (2)2.44 (2)3.300 (2)173 (2)
O2W—H1W2···O30.95 (5)1.75 (5)2.704 (3)179 (6)
N2—H2···Cl10.92 (3)2.22 (3)3.127 (2)169 (3)
O2W—H2W2···O1Wii0.80 (4)1.97 (4)2.767 (4)171 (4)
N2—H3···O2Wiii0.99 (2)1.72 (2)2.709 (3)177 (2)
O1W—H1W1···Cl1i0.87 (5)2.31 (5)3.177 (3)177 (6)
O1W—H2W1···Cl10.91 (4)2.31 (4)3.194 (4)164 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.87 (2)2.44 (2)3.300 (2)173 (2)
O2W—H1W2···O30.95 (5)1.75 (5)2.704 (3)179 (6)
N2—H2···Cl10.92 (3)2.22 (3)3.127 (2)169 (3)
O2W—H2W2···O1Wii0.80 (4)1.97 (4)2.767 (4)171 (4)
N2—H3···O2Wiii0.99 (2)1.72 (2)2.709 (3)177 (2)
O1W—H1W1···Cl1i0.87 (5)2.31 (5)3.177 (3)177 (6)
O1W—H2W1···Cl10.91 (4)2.31 (4)3.194 (4)164 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F7–T185).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBentley, K. W. (2006). Nat. Prod. Rep. 23, 444–463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPeters, K., Peters, E.-M., Schnering, H. G., Bringmann, G. & Gassen, M. (1994). Z. Kristallogr. 209, 667–668.  CrossRef CAS Web of Science Google Scholar
First citationSaidov, A. Sh., Alimova, M., Levkovich, M. G. & Vinogradova, V. I. (2013). Chem. Nat. Compd, 49, 302–304.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds