organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o127-o128

Bis[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide methanol hemisolvate

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bFaculty of Chemistry, University of Wroclaw, 14, F. Joliot–Curie Str., 50383, Wroclaw, Poland
*Correspondence e-mail: nsharkina@ukr.net

(Received 1 November 2013; accepted 25 December 2013; online 11 January 2014)

The asymmetric unit of the title compound, C18H16N6Se·0.5CH3OH, contains two independent mol­ecules of bis­[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide with similar C—Se—C bond angles [99.30 (14) and 98.26 (13)°], and a methanol molecule of solvation. In one mol­ecule, the dihedral angles between pyrazole and neighbouring pyridine rings are 18.3 (2) and 15.8 (2)°, and the corresponding angles in the other mol­ecule are 13.5 (2) and 8.3 (2)°. In the crystal, the selenide and solvent mol­ecules are linked by classical O—H⋯N and N—H⋯N hydrogen bonds, as well as by weak C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional supra­molecular architecture.

Related literature

For structural studies of related pyrazol-4-ylselenides, see: Seredyuk et al. (2010[Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772-8777.]) and for structural studies of d-metal complexes of pyrazol-4-ylselenide, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.], 2013[Seredyuk, M., Pavlenko, V. A., Znovjyak, K. O., Gumienna-Kontecka, E. & Iskenderov, T. S. (2013). Acta Cryst. E69, m314-m315.]). For related structures, see: Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). Dalton Trans. pp. 1307-1314.]); Penkova et al. (2008[Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428-2436.], 2009[Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.], 2010[Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036-3040.]).

[Scheme 1]

Experimental

Crystal data
  • 2C18H16N6Se·CH4O

  • Mr = 822.70

  • Monoclinic, C c

  • a = 24.386 (5) Å

  • b = 10.784 (2) Å

  • c = 15.139 (3) Å

  • β = 118.59 (3)°

  • V = 3495.8 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 120 K

  • 0.36 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]) Tmin = 0.545, Tmax = 0.767

  • 11797 measured reflections

  • 7632 independent reflections

  • 6581 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 0.97

  • 7632 reflections

  • 494 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.81 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3629 Friedel pairs

  • Absolute structure parameter: −0.018 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the N21A-containing pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N4A 0.91 (5) 2.03 (5) 2.839 (5) 148 (5)
N1A—H1A⋯N21Ai 0.78 (4) 2.33 (4) 3.040 (4) 151 (4)
N1B—H1B⋯N21Bii 0.73 (4) 2.32 (4) 2.988 (5) 153 (4)
N3A—H3A⋯N2Aiii 0.83 (4) 2.06 (4) 2.863 (4) 165 (4)
N3B—H3B⋯N2Biv 0.77 (3) 2.01 (4) 2.770 (4) 170 (3)
C27B—H27F⋯O1v 0.96 2.32 3.273 (5) 171
C14B—H14BCg7v 0.93 2.61 3.315 (4) 133
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker-Nonius BV, Delft, The Netherlands.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole–derived ligands are widely used in molecular magnetism, bioinspired catalysis and supramolecular chemistry due to their bridging nature and possibility for facile functionalization with various chelating groups (Krämer et al., 2002; Penkova et al., 2009). As a part of our synthetic and structural study of bis(1H–pyrazol–4–yl)selenides (Seredyuk et al., 2010) and their complexes with d–metals (Seredyuk et al., 2007, 2009, 2013), we report here the molecular and crystal structures of the title compound (Fig. 1).

The molecule of the title compound is a symmetric organic selenide. The asymmetric unit of the title compound contains two independent molecules with the angles of C—Se—C fragments equal to 99.30 (14) and 98.26 (13)°. Additionally there is one molecule of methanol forming hydrogen bond with one of the selenide molecules [d(O1···N4A) = 2.839 (5) Å]. In one molecule, the dihedral angles between pyrazole and neighboring pyridine rings are 18.3 (2) and 15.8 (2)°, and the corresponding angles in another molecule are 13.5 (2) and 8.3 (2)°. The C—C, C—N, N—N bond lengths in the pyrazole ring exhibit normal values (Penkova et al., 2008, 2010). The selenide molecules are united through hydrogen bonds between pyrazoles [d(N1A···N21A) = 2.863 (4) Å; d(N1B···N21B) = 2.988 (5) Å] and pyrazole and pyridine moieties [d(N3A···N2A) = 2.863 (4) Å; d(N3B···N2B) = 2.770 (4) Å] with neighboring molecules forming two different zigzag chains running along [001] (Fig. 2). Also, there are weak C—H···O and C—H···π interactions, forming the three dimensional supramolecular architecture. No π-π stacking interactions are observed between the neighboring molecules, however, there are two intermolecular contacts between pyrazole and pyridine moieties of neighbouring chains [d(C14B···N1A) = 3.197 (6) and d(C14B···C1A) = 3.393 (5) Å].

Related literature top

For structural studies of related pyrazol-4-ylselenides, see: Seredyuk et al. (2010) and for structural studies of d-metal complexes of pyrazol-4-ylselenide, see: Seredyuk et al. (2007, 2009, 2013). For related structures, see: Krämer et al. (2002); Penkova et al. (2008, 2009, 2010).

Experimental top

A concentrated hot solution of bis(5-methyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl)selenide (Seredyuk et al., 2010) in methanol was cooled on air and kept overnight at ambient temperature in a sealed vial. Obtained well formed colourless crystals were filtered off and air dried. C18.5H18N6O0.5Se requires: C, 54.02; H, 4.41; N, 20.43. Found: C, 54.05; H, 4.37; N, 20.93.

Refinement top

The H atoms from NH and OH were located from the difference Fourier map but were constrained to ride on their parent atom, with Uiso = 1.2Ueq(parent atom) for the N—H atoms and Uis = 1.5Ueq(parent atom) for the O—H atoms. The methyl and aromatic H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso = 1.5Ueq(C) for the methyl H atoms and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the aromatic H atoms.

Structure description top

Pyrazole–derived ligands are widely used in molecular magnetism, bioinspired catalysis and supramolecular chemistry due to their bridging nature and possibility for facile functionalization with various chelating groups (Krämer et al., 2002; Penkova et al., 2009). As a part of our synthetic and structural study of bis(1H–pyrazol–4–yl)selenides (Seredyuk et al., 2010) and their complexes with d–metals (Seredyuk et al., 2007, 2009, 2013), we report here the molecular and crystal structures of the title compound (Fig. 1).

The molecule of the title compound is a symmetric organic selenide. The asymmetric unit of the title compound contains two independent molecules with the angles of C—Se—C fragments equal to 99.30 (14) and 98.26 (13)°. Additionally there is one molecule of methanol forming hydrogen bond with one of the selenide molecules [d(O1···N4A) = 2.839 (5) Å]. In one molecule, the dihedral angles between pyrazole and neighboring pyridine rings are 18.3 (2) and 15.8 (2)°, and the corresponding angles in another molecule are 13.5 (2) and 8.3 (2)°. The C—C, C—N, N—N bond lengths in the pyrazole ring exhibit normal values (Penkova et al., 2008, 2010). The selenide molecules are united through hydrogen bonds between pyrazoles [d(N1A···N21A) = 2.863 (4) Å; d(N1B···N21B) = 2.988 (5) Å] and pyrazole and pyridine moieties [d(N3A···N2A) = 2.863 (4) Å; d(N3B···N2B) = 2.770 (4) Å] with neighboring molecules forming two different zigzag chains running along [001] (Fig. 2). Also, there are weak C—H···O and C—H···π interactions, forming the three dimensional supramolecular architecture. No π-π stacking interactions are observed between the neighboring molecules, however, there are two intermolecular contacts between pyrazole and pyridine moieties of neighbouring chains [d(C14B···N1A) = 3.197 (6) and d(C14B···C1A) = 3.393 (5) Å].

For structural studies of related pyrazol-4-ylselenides, see: Seredyuk et al. (2010) and for structural studies of d-metal complexes of pyrazol-4-ylselenide, see: Seredyuk et al. (2007, 2009, 2013). For related structures, see: Krämer et al. (2002); Penkova et al. (2008, 2009, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound showing the labeling scheme and 50% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines. H atoms are omitted for clarity [symmetry code: (i) x, 1 - y, 0.5 + z; (ii) x, 2 - y, 0.5 + z].
[Figure 2] Fig. 2. A fragment of the crystal packing showing a zigzag chain along [001] formed due to hydrogen bonding NH···N (dashed lines). Only one of the two selenide molecules is shown.
Bis[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide methanol hemisolvate top
Crystal data top
2C18H16N6Se·CH4OF(000) = 1672
Mr = 822.70Dx = 1.563 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3138 reflections
a = 24.386 (5) Åθ = 3.6–27.6°
b = 10.784 (2) ŵ = 2.17 mm1
c = 15.139 (3) ÅT = 120 K
β = 118.59 (3)°Block, colorless
V = 3495.8 (16) Å30.36 × 0.24 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7632 independent reflections
Radiation source: fine-focus sealed tube6581 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.054
Detector resolution: 9 pixels mm-1θmax = 28.5°, θmin = 3.6°
φ scans and ω scans with κ offseth = 3232
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 814
Tmin = 0.545, Tmax = 0.767l = 1919
11797 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0407P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
7632 reflectionsΔρmax = 0.62 e Å3
494 parametersΔρmin = 0.81 e Å3
2 restraintsAbsolute structure: Flack (1983), 3629 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (6)
Crystal data top
2C18H16N6Se·CH4OV = 3495.8 (16) Å3
Mr = 822.70Z = 4
Monoclinic, CcMo Kα radiation
a = 24.386 (5) ŵ = 2.17 mm1
b = 10.784 (2) ÅT = 120 K
c = 15.139 (3) Å0.36 × 0.24 × 0.13 mm
β = 118.59 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7632 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6581 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.767Rint = 0.054
11797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.62 e Å3
S = 0.97Δρmin = 0.81 e Å3
7632 reflectionsAbsolute structure: Flack (1983), 3629 Friedel pairs
494 parametersAbsolute structure parameter: 0.018 (6)
2 restraints
Special details top

Experimental. The H atoms from NH and OH were located from the difference Fourier map but were constrained to ride on their parent atom, with Uiso = 1.2Ueq(parent atom) for the N—H atoms and Uis = 1.5Ueq(parent atom) for the O—H atoms. The methyl and aromatic H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso = 1.5Ueq(C) for the methyl H atoms and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the aromatic H atoms.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.355504 (12)0.63083 (3)0.018781 (17)0.01693 (11)
Se20.429962 (12)0.13792 (3)0.106831 (16)0.01682 (11)
O10.54984 (14)0.9478 (3)0.4101 (2)0.0366 (7)
N1A0.29572 (16)0.8389 (3)0.2336 (3)0.0171 (7)
N1B0.36479 (18)0.3522 (3)0.1434 (3)0.0219 (9)
N2A0.35458 (15)0.8832 (3)0.1848 (3)0.0175 (7)
N2B0.42002 (16)0.4077 (3)0.0902 (3)0.0208 (7)
N3A0.37107 (15)0.9089 (3)0.2126 (2)0.0168 (7)
N3B0.43950 (16)0.4036 (3)0.3037 (3)0.0185 (7)
N4A0.43116 (16)0.8668 (3)0.2581 (3)0.0199 (8)
N4B0.50018 (16)0.3670 (3)0.3518 (3)0.0200 (8)
N11A0.17652 (13)0.7566 (3)0.3020 (2)0.0240 (6)
N11B0.25090 (12)0.2489 (3)0.2249 (2)0.0216 (6)
N21A0.24727 (12)0.9800 (2)0.09135 (19)0.0177 (5)
N21B0.31604 (12)0.4718 (2)0.18315 (19)0.0158 (5)
C1A0.28369 (17)0.7508 (3)0.1820 (3)0.0154 (7)
C1B0.35530 (18)0.2556 (3)0.0949 (3)0.0168 (7)
C2A0.33882 (17)0.7373 (3)0.0920 (3)0.0166 (8)
C2B0.40936 (18)0.2493 (3)0.0023 (3)0.0169 (8)
C3A0.38170 (18)0.8204 (3)0.0981 (3)0.0155 (7)
C3B0.4480 (2)0.3469 (4)0.0026 (3)0.0193 (9)
C4A0.33359 (19)0.8424 (4)0.1301 (3)0.0136 (7)
C4B0.40427 (18)0.3416 (3)0.2179 (3)0.0146 (7)
C5A0.37217 (17)0.7535 (3)0.1200 (3)0.0162 (7)
C5B0.44480 (17)0.2577 (3)0.2088 (3)0.0154 (7)
C6A0.43134 (18)0.7730 (3)0.2017 (3)0.0189 (8)
C6B0.50331 (17)0.2784 (3)0.2931 (3)0.0200 (8)
C70.55599 (18)0.8730 (3)0.4891 (3)0.0303 (8)
H7A0.59750.88080.54440.045*
H7B0.54840.78820.46730.045*
H7C0.52630.89830.51020.045*
C12A0.22154 (16)0.6938 (3)0.2267 (3)0.0184 (7)
C12B0.29543 (16)0.1904 (3)0.1438 (3)0.0181 (7)
C13A0.21192 (17)0.5802 (3)0.1921 (3)0.0245 (7)
H13A0.24480.53690.14110.029*
C13B0.28421 (15)0.0781 (3)0.1087 (2)0.0174 (6)
H13B0.31590.03890.05290.021*
C14A0.15067 (17)0.5340 (3)0.2372 (3)0.0303 (8)
H14A0.14200.45950.21540.036*
C14B0.22572 (15)0.0272 (3)0.1579 (2)0.0195 (7)
H14B0.21730.04680.13530.023*
C15A0.10368 (18)0.5995 (4)0.3138 (3)0.0344 (9)
H15A0.06260.57150.34380.041*
C15B0.17929 (16)0.0859 (3)0.2412 (3)0.0232 (7)
H15B0.13920.05300.27540.028*
C16A0.11907 (17)0.7087 (3)0.3452 (3)0.0326 (9)
H16A0.08760.75080.39930.039*
C16B0.19462 (16)0.1959 (3)0.2721 (3)0.0256 (7)
H16B0.16380.23490.32900.031*
C17A0.4486 (2)0.8426 (4)0.0230 (4)0.0239 (9)
H17A0.46620.90250.04920.036*
H17B0.47140.76620.00990.036*
H17C0.45120.87330.03840.036*
C17B0.51041 (19)0.3890 (4)0.0777 (3)0.0267 (9)
H17D0.52780.44700.04980.040*
H17E0.53770.31880.10420.040*
H17F0.50580.42830.13070.040*
C22A0.26647 (16)0.8694 (3)0.0726 (3)0.0146 (7)
C22B0.33795 (19)0.3707 (3)0.1561 (3)0.0137 (8)
C23A0.22481 (15)0.7835 (3)0.0046 (2)0.0182 (6)
H23A0.23930.70770.00540.022*
C23B0.29889 (14)0.2977 (3)0.0742 (2)0.0179 (6)
H23B0.31450.22730.05850.021*
C24A0.16218 (15)0.8117 (3)0.0476 (3)0.0226 (7)
H24A0.13400.75580.09370.027*
C24B0.23644 (16)0.3303 (3)0.0160 (3)0.0215 (7)
H24B0.21020.28320.03990.026*
C25A0.14153 (15)0.9257 (3)0.0306 (2)0.0231 (7)
H25A0.09960.94760.06500.028*
C25B0.21373 (14)0.4343 (3)0.0424 (2)0.0188 (7)
H25B0.17230.45890.00490.023*
C26A0.18575 (15)1.0048 (3)0.0394 (2)0.0208 (7)
H26A0.17201.08020.05130.025*
C26B0.25535 (14)0.4998 (3)0.1269 (2)0.0188 (6)
H26B0.24010.56800.14590.023*
C27A0.49055 (17)0.7012 (3)0.2310 (3)0.0237 (8)
H27A0.52590.75350.26970.036*
H27B0.49160.67400.17140.036*
H27C0.49190.63050.27040.036*
C27B0.56453 (17)0.2152 (4)0.3213 (3)0.0256 (9)
H27D0.59820.26500.36960.038*
H27E0.56930.20490.26240.038*
H27F0.56520.13540.35000.038*
H1A0.2724 (18)0.868 (3)0.285 (3)0.018 (10)*
H1B0.3444 (19)0.377 (3)0.193 (3)0.021 (11)*
H3A0.3594 (18)0.969 (4)0.234 (3)0.032 (11)*
H3B0.4296 (14)0.455 (3)0.329 (2)0.007 (8)*
H1O10.508 (2)0.943 (5)0.375 (4)0.068 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0222 (2)0.01311 (19)0.0151 (2)0.00129 (14)0.0086 (2)0.00062 (14)
Se20.0222 (2)0.01314 (19)0.0158 (2)0.00342 (15)0.0097 (2)0.00146 (15)
O10.0315 (15)0.0364 (15)0.0316 (14)0.0089 (12)0.0068 (13)0.0070 (12)
N1A0.0182 (15)0.0185 (15)0.0125 (14)0.0000 (12)0.0058 (13)0.0008 (12)
N1B0.0228 (19)0.0223 (17)0.0177 (18)0.0013 (13)0.0073 (16)0.0057 (13)
N2A0.0160 (15)0.0192 (15)0.0149 (15)0.0034 (11)0.0056 (13)0.0006 (12)
N2B0.0212 (17)0.0208 (17)0.0187 (17)0.0070 (14)0.0082 (15)0.0001 (14)
N3A0.0173 (16)0.0173 (15)0.0128 (15)0.0033 (13)0.0047 (14)0.0010 (13)
N3B0.0222 (16)0.0171 (15)0.0179 (15)0.0008 (13)0.0110 (14)0.0043 (13)
N4A0.0130 (15)0.0256 (17)0.0146 (15)0.0047 (12)0.0013 (13)0.0010 (12)
N4B0.0138 (15)0.0221 (16)0.0169 (16)0.0048 (12)0.0015 (13)0.0003 (12)
N11A0.0199 (14)0.0250 (15)0.0224 (15)0.0004 (11)0.0065 (13)0.0011 (12)
N11B0.0213 (15)0.0240 (15)0.0188 (14)0.0006 (11)0.0089 (13)0.0029 (12)
N21A0.0185 (13)0.0191 (13)0.0119 (12)0.0011 (10)0.0045 (11)0.0007 (10)
N21B0.0214 (13)0.0143 (12)0.0138 (12)0.0010 (10)0.0100 (12)0.0005 (10)
C1A0.0183 (16)0.0146 (15)0.0143 (15)0.0028 (12)0.0087 (14)0.0039 (13)
C1B0.0195 (17)0.0137 (15)0.0191 (17)0.0009 (12)0.0107 (15)0.0020 (13)
C2A0.024 (2)0.0120 (15)0.0171 (17)0.0008 (13)0.0131 (17)0.0005 (13)
C2B0.023 (2)0.0155 (17)0.0156 (18)0.0009 (14)0.0122 (17)0.0007 (14)
C3A0.0185 (19)0.0126 (16)0.0148 (17)0.0009 (14)0.0075 (16)0.0025 (14)
C3B0.020 (2)0.0191 (19)0.021 (2)0.0001 (16)0.0119 (19)0.0018 (16)
C4A0.0144 (18)0.0171 (16)0.0092 (17)0.0000 (14)0.0055 (16)0.0039 (14)
C4B0.0177 (18)0.0142 (16)0.0145 (17)0.0002 (13)0.0098 (16)0.0008 (13)
C5A0.0171 (18)0.0160 (16)0.0135 (16)0.0015 (14)0.0056 (16)0.0009 (14)
C5B0.0181 (17)0.0148 (16)0.0132 (15)0.0013 (13)0.0074 (15)0.0018 (13)
C6A0.0216 (18)0.0191 (17)0.0176 (17)0.0011 (13)0.0106 (15)0.0025 (13)
C6B0.0217 (18)0.0202 (17)0.0188 (17)0.0050 (14)0.0102 (16)0.0036 (14)
C70.033 (2)0.029 (2)0.0290 (18)0.0012 (16)0.0145 (18)0.0032 (16)
C12A0.0210 (17)0.0202 (17)0.0173 (17)0.0065 (13)0.0118 (15)0.0065 (14)
C12B0.0211 (17)0.0151 (15)0.0205 (17)0.0021 (13)0.0120 (15)0.0001 (14)
C13A0.0258 (17)0.0222 (18)0.0203 (16)0.0049 (15)0.0068 (15)0.0041 (15)
C13B0.0220 (16)0.0131 (15)0.0162 (15)0.0008 (13)0.0085 (14)0.0014 (12)
C14A0.0307 (19)0.0266 (19)0.033 (2)0.0112 (15)0.0143 (18)0.0045 (16)
C14B0.0250 (17)0.0160 (15)0.0219 (16)0.0015 (13)0.0147 (15)0.0020 (13)
C15A0.0237 (19)0.035 (2)0.040 (2)0.0127 (16)0.0119 (18)0.0100 (18)
C15B0.0199 (17)0.0254 (17)0.0223 (17)0.0027 (14)0.0084 (15)0.0047 (14)
C16A0.0221 (18)0.030 (2)0.033 (2)0.0001 (15)0.0029 (17)0.0064 (17)
C16B0.0227 (17)0.0296 (19)0.0188 (16)0.0022 (15)0.0053 (15)0.0038 (15)
C17A0.025 (2)0.0212 (19)0.023 (2)0.0025 (16)0.010 (2)0.0007 (16)
C17B0.027 (2)0.0283 (19)0.0236 (19)0.0030 (16)0.0115 (17)0.0012 (16)
C22A0.0142 (15)0.0148 (16)0.0120 (16)0.0015 (12)0.0042 (14)0.0012 (12)
C22B0.0130 (18)0.0184 (18)0.0117 (17)0.0012 (13)0.0075 (16)0.0041 (13)
C23A0.0212 (16)0.0156 (15)0.0162 (14)0.0019 (12)0.0076 (14)0.0031 (12)
C23B0.0230 (16)0.0156 (15)0.0208 (16)0.0011 (12)0.0152 (15)0.0022 (13)
C24A0.0212 (17)0.0233 (17)0.0212 (17)0.0073 (14)0.0085 (15)0.0009 (14)
C24B0.0214 (17)0.0221 (17)0.0192 (16)0.0039 (13)0.0082 (15)0.0027 (14)
C25A0.0164 (16)0.0296 (18)0.0206 (16)0.0041 (14)0.0066 (14)0.0037 (14)
C25B0.0127 (15)0.0224 (16)0.0200 (16)0.0006 (12)0.0068 (14)0.0004 (13)
C26A0.0224 (17)0.0191 (16)0.0227 (17)0.0038 (13)0.0122 (15)0.0013 (13)
C26B0.0210 (16)0.0177 (15)0.0178 (15)0.0033 (12)0.0095 (14)0.0036 (13)
C27A0.0207 (18)0.0246 (18)0.0220 (19)0.0055 (14)0.0072 (16)0.0035 (15)
C27B0.0188 (18)0.029 (2)0.023 (2)0.0044 (15)0.0054 (16)0.0000 (16)
Geometric parameters (Å, º) top
Se1—C2A1.908 (4)C7—H7B0.9600
Se1—C5A1.915 (4)C7—H7C0.9600
Se2—C2B1.905 (4)C12A—C13A1.396 (5)
Se2—C5B1.910 (4)C12B—C13B1.401 (5)
O1—C71.390 (4)C13A—C14A1.404 (5)
O1—H1O10.91 (5)C13A—H13A0.9300
N1A—C1A1.347 (5)C13B—C14B1.369 (4)
N1A—N2A1.349 (5)C13B—H13B0.9300
N1A—H1A0.78 (4)C14A—C15A1.373 (6)
N1B—N2B1.335 (5)C14A—H14A0.9300
N1B—C1B1.356 (5)C14B—C15B1.380 (5)
N1B—H1B0.73 (4)C14B—H14B0.9300
N2A—C3A1.337 (5)C15A—C16A1.387 (5)
N2B—C3B1.337 (5)C15A—H15A0.9300
N3A—C4A1.348 (5)C15B—C16B1.390 (5)
N3A—N4A1.365 (5)C15B—H15B0.9300
N3A—H3A0.83 (4)C16A—H16A0.9300
N3B—C4B1.343 (5)C16B—H16B0.9300
N3B—N4B1.358 (5)C17A—H17A0.9600
N3B—H3B0.77 (3)C17A—H17B0.9600
N4A—C6A1.325 (5)C17A—H17C0.9600
N4B—C6B1.332 (5)C17B—H17D0.9600
N11A—C12A1.328 (4)C17B—H17E0.9600
N11A—C16A1.334 (4)C17B—H17F0.9600
N11B—C16B1.335 (4)C22A—C23A1.397 (4)
N11B—C12B1.345 (4)C22B—C23B1.390 (5)
N21A—C26A1.346 (4)C23A—C24A1.377 (5)
N21A—C22A1.359 (4)C23A—H23A0.9300
N21B—C26B1.342 (4)C23B—C24B1.391 (5)
N21B—C22B1.361 (4)C23B—H23B0.9300
C1A—C2A1.391 (5)C24A—C25A1.398 (5)
C1A—C12A1.467 (5)C24A—H24A0.9300
C1B—C2B1.393 (5)C24B—C25B1.392 (4)
C1B—C12B1.462 (5)C24B—H24B0.9300
C2A—C3A1.413 (5)C25A—C26A1.386 (5)
C2B—C3B1.414 (5)C25A—H25A0.9300
C3A—C17A1.496 (6)C25B—C26B1.387 (4)
C3B—C17B1.494 (6)C25B—H25B0.9300
C4A—C5A1.402 (5)C26A—H26A0.9300
C4A—C22A1.469 (5)C26B—H26B0.9300
C4B—C5B1.395 (5)C27A—H27A0.9600
C4B—C22B1.464 (6)C27A—H27B0.9600
C5A—C6A1.396 (5)C27A—H27C0.9600
C5B—C6B1.404 (5)C27B—H27D0.9600
C6A—C27A1.506 (5)C27B—H27E0.9600
C6B—C27B1.505 (5)C27B—H27F0.9600
C7—H7A0.9600
C2A—Se1—C5A99.30 (14)C14B—C13B—H13B120.6
C2B—Se2—C5B98.26 (13)C12B—C13B—H13B120.6
C7—O1—H1O196 (3)C15A—C14A—C13A119.5 (3)
C1A—N1A—N2A113.7 (3)C15A—C14A—H14A120.3
C1A—N1A—H1A128 (3)C13A—C14A—H14A120.3
N2A—N1A—H1A119 (3)C13B—C14B—C15B119.9 (3)
N2B—N1B—C1B113.7 (4)C13B—C14B—H14B120.0
N2B—N1B—H1B117 (3)C15B—C14B—H14B120.0
C1B—N1B—H1B130 (3)C14A—C15A—C16A118.2 (3)
C3A—N2A—N1A104.8 (3)C14A—C15A—H15A120.9
N1B—N2B—C3B105.5 (3)C16A—C15A—H15A120.9
C4A—N3A—N4A112.2 (3)C14B—C15B—C16B117.6 (3)
C4A—N3A—H3A124 (3)C14B—C15B—H15B121.2
N4A—N3A—H3A123 (3)C16B—C15B—H15B121.2
C4B—N3B—N4B113.7 (3)N11A—C16A—C15A123.6 (3)
C4B—N3B—H3B129 (2)N11A—C16A—H16A118.2
N4B—N3B—H3B117 (2)C15A—C16A—H16A118.2
C6A—N4A—N3A105.2 (3)N11B—C16B—C15B124.0 (3)
C6B—N4B—N3B104.3 (3)N11B—C16B—H16B118.0
C12A—N11A—C16A117.8 (3)C15B—C16B—H16B118.0
C16B—N11B—C12B117.5 (3)C3A—C17A—H17A109.5
C26A—N21A—C22A116.8 (3)C3A—C17A—H17B109.5
C26B—N21B—C22B117.5 (3)H17A—C17A—H17B109.5
N1A—C1A—C2A105.4 (3)C3A—C17A—H17C109.5
N1A—C1A—C12A119.5 (3)H17A—C17A—H17C109.5
C2A—C1A—C12A135.2 (3)H17B—C17A—H17C109.5
N1B—C1B—C2B104.9 (3)C3B—C17B—H17D109.5
N1B—C1B—C12B118.9 (3)C3B—C17B—H17E109.5
C2B—C1B—C12B136.1 (3)H17D—C17B—H17E109.5
C1A—C2A—C3A105.5 (3)C3B—C17B—H17F109.5
C1A—C2A—Se1128.6 (3)H17D—C17B—H17F109.5
C3A—C2A—Se1125.8 (3)H17E—C17B—H17F109.5
C1B—C2B—C3B105.8 (3)N21A—C22A—C23A122.3 (3)
C1B—C2B—Se2129.3 (3)N21A—C22A—C4A116.6 (3)
C3B—C2B—Se2124.9 (3)C23A—C22A—C4A121.1 (3)
N2A—C3A—C2A110.6 (3)N21B—C22B—C23B121.5 (3)
N2A—C3A—C17A120.8 (4)N21B—C22B—C4B116.8 (3)
C2A—C3A—C17A128.6 (4)C23B—C22B—C4B121.7 (3)
N2B—C3B—C2B110.1 (4)C24A—C23A—C22A119.5 (3)
N2B—C3B—C17B119.7 (4)C24A—C23A—H23A120.3
C2B—C3B—C17B130.1 (4)C22A—C23A—H23A120.3
N3A—C4A—C5A105.8 (3)C22B—C23B—C24B119.8 (3)
N3A—C4A—C22A120.8 (4)C22B—C23B—H23B120.1
C5A—C4A—C22A133.3 (4)C24B—C23B—H23B120.1
N3B—C4B—C5B105.3 (3)C23A—C24A—C25A119.2 (3)
N3B—C4B—C22B120.8 (3)C23A—C24A—H24A120.4
C5B—C4B—C22B133.9 (4)C25A—C24A—H24A120.4
C6A—C5A—C4A105.3 (3)C23B—C24B—C25B119.1 (3)
C6A—C5A—Se1123.1 (3)C23B—C24B—H24B120.4
C4A—C5A—Se1131.5 (3)C25B—C24B—H24B120.4
C4B—C5B—C6B105.5 (3)C26A—C25A—C24A117.7 (3)
C4B—C5B—Se2130.5 (3)C26A—C25A—H25A121.1
C6B—C5B—Se2124.0 (3)C24A—C25A—H25A121.1
N4A—C6A—C5A111.4 (3)C26B—C25B—C24B117.4 (3)
N4A—C6A—C27A120.1 (3)C26B—C25B—H25B121.3
C5A—C6A—C27A128.5 (3)C24B—C25B—H25B121.3
N4B—C6B—C5B111.3 (3)N21A—C26A—C25A124.5 (3)
N4B—C6B—C27B120.1 (3)N21A—C26A—H26A117.8
C5B—C6B—C27B128.6 (3)C25A—C26A—H26A117.8
O1—C7—H7A109.5N21B—C26B—C25B124.7 (3)
O1—C7—H7B109.5N21B—C26B—H26B117.7
H7A—C7—H7B109.5C25B—C26B—H26B117.7
O1—C7—H7C109.5C6A—C27A—H27A109.5
H7A—C7—H7C109.5C6A—C27A—H27B109.5
H7B—C7—H7C109.5H27A—C27A—H27B109.5
N11A—C12A—C13A123.4 (3)C6A—C27A—H27C109.5
N11A—C12A—C1A115.4 (3)H27A—C27A—H27C109.5
C13A—C12A—C1A121.1 (3)H27B—C27A—H27C109.5
N11B—C12B—C13B122.2 (3)C6B—C27B—H27D109.5
N11B—C12B—C1B114.2 (3)C6B—C27B—H27E109.5
C13B—C12B—C1B123.5 (3)H27D—C27B—H27E109.5
C12A—C13A—C14A117.4 (3)C6B—C27B—H27F109.5
C12A—C13A—H13A121.3H27D—C27B—H27F109.5
C14A—C13A—H13A121.3H27E—C27B—H27F109.5
C14B—C13B—C12B118.8 (3)
C1A—N1A—N2A—C3A0.3 (4)N3B—N4B—C6B—C5B0.7 (4)
C1B—N1B—N2B—C3B0.9 (5)N3B—N4B—C6B—C27B179.1 (3)
C4A—N3A—N4A—C6A0.9 (4)C4B—C5B—C6B—N4B0.8 (4)
C4B—N3B—N4B—C6B0.5 (4)Se2—C5B—C6B—N4B179.9 (3)
N2A—N1A—C1A—C2A0.6 (4)C4B—C5B—C6B—C27B179.1 (4)
N2A—N1A—C1A—C12A179.6 (3)Se2—C5B—C6B—C27B0.2 (5)
N2B—N1B—C1B—C2B0.3 (5)C16A—N11A—C12A—C13A1.1 (5)
N2B—N1B—C1B—C12B177.5 (3)C16A—N11A—C12A—C1A180.0 (3)
N1A—C1A—C2A—C3A1.2 (4)N1A—C1A—C12A—N11A18.1 (5)
C12A—C1A—C2A—C3A179.0 (4)C2A—C1A—C12A—N11A161.6 (4)
N1A—C1A—C2A—Se1178.8 (3)N1A—C1A—C12A—C13A160.8 (3)
C12A—C1A—C2A—Se11.0 (6)C2A—C1A—C12A—C13A19.4 (6)
C5A—Se1—C2A—C1A116.8 (3)C16B—N11B—C12B—C13B0.1 (5)
C5A—Se1—C2A—C3A63.2 (3)C16B—N11B—C12B—C1B178.7 (3)
N1B—C1B—C2B—C3B0.4 (4)N1B—C1B—C12B—N11B12.2 (5)
C12B—C1B—C2B—C3B176.1 (4)C2B—C1B—C12B—N11B164.0 (4)
N1B—C1B—C2B—Se2179.3 (3)N1B—C1B—C12B—C13B169.3 (3)
C12B—C1B—C2B—Se22.8 (7)C2B—C1B—C12B—C13B14.5 (7)
C5B—Se2—C2B—C1B122.5 (4)N11A—C12A—C13A—C14A2.8 (5)
C5B—Se2—C2B—C3B56.2 (4)C1A—C12A—C13A—C14A178.3 (3)
N1A—N2A—C3A—C2A1.1 (4)N11B—C12B—C13B—C14B0.9 (5)
N1A—N2A—C3A—C17A179.1 (3)C1B—C12B—C13B—C14B177.6 (3)
C1A—C2A—C3A—N2A1.5 (4)C12A—C13A—C14A—C15A1.4 (5)
Se1—C2A—C3A—N2A178.5 (3)C12B—C13B—C14B—C15B0.7 (5)
C1A—C2A—C3A—C17A178.7 (4)C13A—C14A—C15A—C16A1.4 (6)
Se1—C2A—C3A—C17A1.3 (6)C13B—C14B—C15B—C16B0.4 (5)
N1B—N2B—C3B—C2B1.1 (5)C12A—N11A—C16A—C15A2.0 (5)
N1B—N2B—C3B—C17B177.3 (4)C14A—C15A—C16A—N11A3.3 (6)
C1B—C2B—C3B—N2B1.0 (5)C12B—N11B—C16B—C15B1.3 (5)
Se2—C2B—C3B—N2B180.0 (3)C14B—C15B—C16B—N11B1.4 (5)
C1B—C2B—C3B—C17B177.2 (4)C26A—N21A—C22A—C23A1.4 (5)
Se2—C2B—C3B—C17B1.8 (6)C26A—N21A—C22A—C4A179.5 (3)
N4A—N3A—C4A—C5A1.5 (4)N3A—C4A—C22A—N21A15.2 (5)
N4A—N3A—C4A—C22A177.4 (3)C5A—C4A—C22A—N21A166.2 (4)
N4B—N3B—C4B—C5B0.0 (4)N3A—C4A—C22A—C23A162.9 (3)
N4B—N3B—C4B—C22B179.2 (3)C5A—C4A—C22A—C23A15.6 (6)
N3A—C4A—C5A—C6A1.4 (4)C26B—N21B—C22B—C23B1.0 (5)
C22A—C4A—C5A—C6A177.3 (4)C26B—N21B—C22B—C4B179.8 (3)
N3A—C4A—C5A—Se1176.2 (3)N3B—C4B—C22B—N21B7.5 (5)
C22A—C4A—C5A—Se15.1 (7)C5B—C4B—C22B—N21B171.4 (4)
C2A—Se1—C5A—C6A110.9 (3)N3B—C4B—C22B—C23B171.6 (4)
C2A—Se1—C5A—C4A66.4 (4)C5B—C4B—C22B—C23B9.5 (7)
N3B—C4B—C5B—C6B0.4 (4)N21A—C22A—C23A—C24A1.6 (5)
C22B—C4B—C5B—C6B178.6 (4)C4A—C22A—C23A—C24A179.7 (3)
N3B—C4B—C5B—Se2179.7 (3)N21B—C22B—C23B—C24B2.4 (5)
C22B—C4B—C5B—Se20.7 (7)C4B—C22B—C23B—C24B178.5 (3)
C2B—Se2—C5B—C4B64.7 (4)C22A—C23A—C24A—C25A0.7 (5)
C2B—Se2—C5B—C6B114.4 (3)C22B—C23B—C24B—C25B1.6 (5)
N3A—N4A—C6A—C5A0.0 (4)C23A—C24A—C25A—C26A0.4 (5)
N3A—N4A—C6A—C27A178.6 (3)C23B—C24B—C25B—C26B0.3 (5)
C4A—C5A—C6A—N4A0.9 (4)C22A—N21A—C26A—C25A0.2 (5)
Se1—C5A—C6A—N4A177.0 (3)C24A—C25A—C26A—N21A0.7 (5)
C4A—C5A—C6A—C27A177.6 (4)C22B—N21B—C26B—C25B1.1 (5)
Se1—C5A—C6A—C27A4.5 (5)C24B—C25B—C26B—N21B1.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the N21A-containing pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N4A0.91 (5)2.03 (5)2.839 (5)148 (5)
N1A—H1A···N21Ai0.78 (4)2.33 (4)3.040 (4)151 (4)
N1B—H1B···N21Bii0.73 (4)2.32 (4)2.988 (5)153 (4)
N3A—H3A···N2Aiii0.83 (4)2.06 (4)2.863 (4)165 (4)
N3B—H3B···N2Biv0.77 (3)2.01 (4)2.770 (4)170 (3)
C27B—H27F···O1v0.962.323.273 (5)171
C14B—H14B···Cg7v0.932.613.315 (4)133
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z1/2; (iii) x, y+2, z+1/2; (iv) x, y+1, z+1/2; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the N21A-containing pyridine ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N4A0.91 (5)2.03 (5)2.839 (5)148 (5)
N1A—H1A···N21Ai0.78 (4)2.33 (4)3.040 (4)151 (4)
N1B—H1B···N21Bii0.73 (4)2.32 (4)2.988 (5)153 (4)
N3A—H3A···N2Aiii0.83 (4)2.06 (4)2.863 (4)165 (4)
N3B—H3B···N2Biv0.77 (3)2.01 (4)2.770 (4)170 (3)
C27B—H27F···O1v0.962.323.273 (5)171
C14B—H14B···Cg7v0.932.613.315 (4)133
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z1/2; (iii) x, y+2, z+1/2; (iv) x, y+1, z+1/2; (v) x, y1, z.
 

Acknowledgements

The financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged. MS thanks the EU for a Marie Curie fellowship (IIF-253254).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. (2002). Dalton Trans. pp. 1307–1314.  Google Scholar
First citationPenkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem. 634, 2428–2436.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.  Web of Science CSD CrossRef CAS Google Scholar
First citationPenkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozlowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772–8777.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Pavlenko, V. A., Znovjyak, K. O., Gumienna-Kontecka, E. & Iskenderov, T. S. (2013). Acta Cryst. E69, m314–m315.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o127-o128
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds