organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[4-(Di­methyl­amino)­benzyl­­idene]-2-(4-methyl­phen­­oxy)acetohydrazide

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: dr@physics.uni-mysore.ac.in

(Received 9 December 2013; accepted 30 December 2013; online 15 January 2014)

In the title compound, C18H21N3O2, the dihedral angle between the benzene rings is 68.85 (11)°. In the crystal, the mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, as well as weak C—H⋯π contacts, forming a three-dimensional supra­molecular architecture.

Related literature

For biological background to hydrazone derivatives, see: Nithinchandra et al. (2012[Nithinchandra, Kalluraya, B., Aamir, S. & Shabaraya, A. R. (2012). Eur. J. Med. Chem. 54, 597-604.], 2013[Nithinchandra, Kalluraya, B., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307-313.]); Holla et al. (1992[Holla, B. S., D'Souza, A. & Kalluraya, B. (1992). Chim. Acta Turc. 20, 281-285.]); Kalluraya et al. (1995[Kalluraya, B., Chimbalkar, R. & Holla, B. S. (1995). Indian J. Heterocycl. Chem. 5, 37-40.]). For related structures, see: Sarfraz et al. (2010[Sarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.]); Fun et al. (2011[Fun, H.-K., Quah, C. K., Malladi, S. M. V. A. & Isloor, A. M. (2011). Acta Cryst. E67, o165.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O2

  • Mr = 311.38

  • Monoclinic, P 21 /c

  • a = 11.2237 (6) Å

  • b = 9.4471 (5) Å

  • c = 15.8785 (9) Å

  • β = 100.868 (3)°

  • V = 1653.42 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.862, Tmax = 0.873

  • 13214 measured reflections

  • 2725 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.211

  • S = 1.05

  • 2725 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.12 2.952 (2) 163
C8—H8B⋯O2i 0.97 2.43 3.303 (2) 149
C8—H8ACg2ii 0.97 2.65 3.442 (2) 139
C16—H16⋯Cg1i 0.93 2.71 3.394 (2) 131
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazone derivatives possessing an azomethine –NHN=CH– moiety constitute an important class of compounds for new drug development (Nithinchandra et al., 2012). A large number of hydrazone derivatives have been reported to have bactericidal (Holla et al., 1992), fungicidal (Kalluraya et al., 1995) and anticancer (Nithinchandra et al., 2013) activities. As part of our studies in this area, herewith we report the structure of the title compound.

The ORTEP of the title compound is shown (Fig. 1) and the dihedral angle between the two phenyl rings is 68.85 (11)°. The overall geometry of the title compound are similar to related structures N-{(E)-[4-Dimethylamino)phenyl]-methylidene}-2,3-dimethylaniline (Sarfraz et al., 2010) and 2-(4-Methylphenoxy)acetohydrazide (Fun et al., 2011). In the crystal structure, the molecules are connected with intermolecular hydrogen bonds C8—H8B···O2 and N1—H1···O2. They form infinite chains along b-axis (Fig. 2 and Table. 1). In addition, short contacts C8—H(8 A)···Cg(2) with distance 3.442 (2) Å (angle 139°) [x, y - 1/2, z + 1/2] and C16—H16···Cg1 with distance 3.394 (2) Å (angle 131°) [x - 1, y + 1/2, z - 1/2] are observed where Cg(1): C2—C7 and Cg(2): C11—C16.

Related literature top

For biological background to hydrazone derivatives, see: Nithinchandra et al. (2012, 2013); Holla et al. (1992); Kalluraya et al. (1995). For related structures, see: Sarfraz et al. (2010); Fun et al. (2011).

Experimental top

To a solution of 2-(4-methylphenoxy)acethydrazide (0.01 mol) in a mixture of DMF and ethanol (10 ml), 4-(dimethylamino)benzaldehyde (0.01 mol) was added. Concentrated sulfuric acid (0.5 ml) was added to this reaction mixture. The contents were refluxed for about 1 h. The solid product separated was collected by filtration. It was dried and recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement top

H atoms were placed in calculated positions with C–H = 0.93–0.97 Å and N–H = 0.86 Å, and refined as riding on their parent C and N atoms with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Structure description top

Hydrazone derivatives possessing an azomethine –NHN=CH– moiety constitute an important class of compounds for new drug development (Nithinchandra et al., 2012). A large number of hydrazone derivatives have been reported to have bactericidal (Holla et al., 1992), fungicidal (Kalluraya et al., 1995) and anticancer (Nithinchandra et al., 2013) activities. As part of our studies in this area, herewith we report the structure of the title compound.

The ORTEP of the title compound is shown (Fig. 1) and the dihedral angle between the two phenyl rings is 68.85 (11)°. The overall geometry of the title compound are similar to related structures N-{(E)-[4-Dimethylamino)phenyl]-methylidene}-2,3-dimethylaniline (Sarfraz et al., 2010) and 2-(4-Methylphenoxy)acetohydrazide (Fun et al., 2011). In the crystal structure, the molecules are connected with intermolecular hydrogen bonds C8—H8B···O2 and N1—H1···O2. They form infinite chains along b-axis (Fig. 2 and Table. 1). In addition, short contacts C8—H(8 A)···Cg(2) with distance 3.442 (2) Å (angle 139°) [x, y - 1/2, z + 1/2] and C16—H16···Cg1 with distance 3.394 (2) Å (angle 131°) [x - 1, y + 1/2, z - 1/2] are observed where Cg(1): C2—C7 and Cg(2): C11—C16.

For biological background to hydrazone derivatives, see: Nithinchandra et al. (2012, 2013); Holla et al. (1992); Kalluraya et al. (1995). For related structures, see: Sarfraz et al. (2010); Fun et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along b axis.
(E)-N'-[4-(Dimethylamino)benzylidene]-2-(4-methylphenoxy)acetohydrazide top
Crystal data top
C18H21N3O2F(000) = 664
Mr = 311.38Dx = 1.251 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2725 reflections
a = 11.2237 (6) Åθ = 4.0–64.7°
b = 9.4471 (5) ŵ = 0.67 mm1
c = 15.8785 (9) ÅT = 296 K
β = 100.868 (3)°Block, red
V = 1653.42 (16) Å30.23 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2725 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2318 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.069
Detector resolution: 10.7 pixels mm-1θmax = 64.7°, θmin = 4.0°
φ and ω scansh = 1213
Absorption correction: multi-scan
SADABS (Bruker, 2013)
k = 115
Tmin = 0.862, Tmax = 0.873l = 1818
13214 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1529P)2 + 0.2569P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2725 reflectionsΔρmax = 0.43 e Å3
211 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (18)
Crystal data top
C18H21N3O2V = 1653.42 (16) Å3
Mr = 311.38Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2237 (6) ŵ = 0.67 mm1
b = 9.4471 (5) ÅT = 296 K
c = 15.8785 (9) Å0.23 × 0.22 × 0.21 mm
β = 100.868 (3)°
Data collection top
Bruker X8 Proteum
diffractometer
2725 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2013)
2318 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.873Rint = 0.069
13214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
2725 reflectionsΔρmin = 0.43 e Å3
211 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69278 (13)0.22073 (19)0.19031 (9)0.0526 (6)
O20.53999 (16)0.07569 (16)0.28054 (9)0.0536 (6)
N10.47999 (15)0.29874 (18)0.30708 (10)0.0404 (5)
N20.43122 (16)0.25856 (19)0.37754 (10)0.0411 (6)
N30.19247 (18)0.2905 (2)0.71623 (11)0.0513 (7)
C10.9297 (3)0.2897 (4)0.0930 (2)0.0937 (14)
C20.8634 (2)0.2746 (3)0.01891 (16)0.0601 (9)
C30.9184 (2)0.2062 (4)0.05636 (18)0.0714 (10)
C40.8604 (2)0.1913 (3)0.12481 (16)0.0622 (9)
C50.74458 (19)0.2438 (2)0.11927 (12)0.0438 (7)
C60.6868 (2)0.3118 (2)0.04553 (13)0.0453 (7)
C70.7476 (2)0.3253 (2)0.02276 (15)0.0527 (8)
C80.56985 (18)0.2615 (2)0.18410 (12)0.0414 (6)
C90.52905 (19)0.2017 (2)0.26216 (12)0.0392 (6)
C100.39327 (18)0.3609 (2)0.41754 (12)0.0399 (6)
C110.33822 (18)0.3394 (2)0.49233 (12)0.0384 (6)
C120.3056 (2)0.2065 (2)0.51882 (14)0.0456 (7)
C130.2569 (2)0.1908 (2)0.59149 (14)0.0474 (7)
C140.23959 (18)0.3070 (2)0.64313 (13)0.0409 (6)
C150.2715 (2)0.4407 (2)0.61621 (13)0.0434 (6)
C160.31855 (19)0.4555 (2)0.54258 (13)0.0428 (7)
C170.1550 (3)0.1517 (3)0.74088 (16)0.0636 (9)
C180.1782 (2)0.4102 (3)0.76985 (15)0.0612 (9)
H10.478800.386300.292100.0490*
H1A1.008300.246500.078200.1410*
H1B0.938900.388300.105100.1410*
H1C0.884100.244000.142800.1410*
H30.996200.169700.060300.0860*
H40.899100.146100.174500.0740*
H60.608800.347600.041700.0540*
H70.708700.370100.072600.0630*
H8A0.520700.223700.132100.0500*
H8B0.562600.363800.183100.0500*
H100.401100.452700.398200.0480*
H120.316900.127100.486700.0550*
H130.234900.100900.606900.0570*
H150.260800.520400.648400.0520*
H160.337900.545600.525800.0510*
H17A0.085900.120400.700000.0950*
H17B0.134000.157200.796700.0950*
H17C0.220400.085700.742300.0950*
H18A0.255200.455700.788000.0920*
H18B0.147900.378400.819200.0920*
H18C0.121900.476100.738000.0920*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0494 (9)0.0749 (12)0.0419 (8)0.0043 (8)0.0300 (7)0.0077 (7)
O20.0804 (11)0.0332 (9)0.0576 (9)0.0002 (7)0.0400 (8)0.0008 (6)
N10.0560 (10)0.0323 (9)0.0426 (9)0.0035 (7)0.0339 (8)0.0003 (7)
N20.0524 (10)0.0392 (10)0.0400 (9)0.0055 (8)0.0303 (8)0.0012 (7)
N30.0648 (12)0.0524 (12)0.0479 (10)0.0071 (9)0.0394 (9)0.0023 (8)
C10.096 (2)0.122 (3)0.083 (2)0.018 (2)0.0681 (18)0.0022 (18)
C20.0650 (15)0.0688 (17)0.0579 (14)0.0183 (13)0.0411 (12)0.0044 (12)
C30.0470 (13)0.103 (2)0.0736 (17)0.0075 (14)0.0351 (12)0.0028 (15)
C40.0482 (13)0.089 (2)0.0539 (13)0.0008 (12)0.0214 (10)0.0062 (12)
C50.0489 (12)0.0480 (13)0.0423 (11)0.0087 (9)0.0284 (9)0.0037 (9)
C60.0566 (12)0.0370 (12)0.0496 (12)0.0001 (9)0.0287 (10)0.0008 (9)
C70.0727 (15)0.0441 (13)0.0498 (12)0.0088 (11)0.0330 (11)0.0017 (9)
C80.0499 (11)0.0375 (11)0.0446 (10)0.0009 (9)0.0289 (9)0.0020 (8)
C90.0489 (11)0.0335 (11)0.0416 (10)0.0040 (8)0.0252 (9)0.0030 (8)
C100.0509 (11)0.0345 (11)0.0411 (10)0.0030 (9)0.0261 (9)0.0005 (8)
C110.0457 (10)0.0365 (11)0.0388 (10)0.0001 (8)0.0230 (8)0.0019 (8)
C120.0626 (13)0.0343 (12)0.0484 (11)0.0039 (10)0.0324 (10)0.0052 (9)
C130.0646 (13)0.0340 (12)0.0532 (12)0.0086 (10)0.0357 (10)0.0012 (9)
C140.0434 (10)0.0454 (13)0.0403 (10)0.0020 (9)0.0245 (8)0.0003 (8)
C150.0535 (11)0.0364 (11)0.0476 (11)0.0019 (9)0.0286 (9)0.0043 (9)
C160.0563 (12)0.0314 (11)0.0479 (11)0.0008 (9)0.0285 (9)0.0024 (8)
C170.0766 (16)0.0648 (17)0.0608 (14)0.0097 (13)0.0422 (12)0.0107 (12)
C180.0734 (16)0.0681 (17)0.0530 (13)0.0017 (13)0.0397 (11)0.0070 (11)
Geometric parameters (Å, º) top
O1—C51.380 (2)C14—C151.402 (3)
O1—C81.418 (3)C15—C161.378 (3)
O2—C91.226 (2)C1—H1A0.9600
N1—N21.388 (2)C1—H1B0.9600
N1—C91.342 (3)C1—H1C0.9600
N2—C101.273 (3)C3—H30.9300
N3—C141.372 (3)C4—H40.9300
N3—C171.453 (3)C6—H60.9300
N3—C181.443 (3)C7—H70.9300
N1—H10.8600C8—H8A0.9700
C1—C21.513 (4)C8—H8B0.9700
C2—C71.376 (3)C10—H100.9300
C2—C31.396 (4)C12—H120.9300
C3—C41.375 (4)C13—H130.9300
C4—C51.379 (3)C15—H150.9300
C5—C61.385 (3)C16—H160.9300
C6—C71.392 (3)C17—H17A0.9600
C8—C91.510 (3)C17—H17B0.9600
C10—C111.453 (3)C17—H17C0.9600
C11—C161.398 (3)C18—H18A0.9600
C11—C121.395 (3)C18—H18B0.9600
C12—C131.375 (3)C18—H18C0.9600
C13—C141.405 (3)
C5—O1—C8117.04 (15)H1A—C1—H1C109.00
N2—N1—C9120.36 (17)H1B—C1—H1C109.00
N1—N2—C10114.47 (17)C2—C3—H3119.00
C14—N3—C17120.51 (19)C4—C3—H3119.00
C14—N3—C18120.91 (19)C3—C4—H4120.00
C17—N3—C18118.58 (19)C5—C4—H4120.00
N2—N1—H1120.00C5—C6—H6121.00
C9—N1—H1120.00C7—C6—H6121.00
C3—C2—C7117.4 (2)C2—C7—H7119.00
C1—C2—C3120.4 (2)C6—C7—H7119.00
C1—C2—C7122.1 (2)O1—C8—H8A110.00
C2—C3—C4121.7 (2)O1—C8—H8B110.00
C3—C4—C5119.6 (2)C9—C8—H8A110.00
O1—C5—C6124.19 (19)C9—C8—H8B110.00
O1—C5—C4115.37 (18)H8A—C8—H8B109.00
C4—C5—C6120.4 (2)N2—C10—H10119.00
C5—C6—C7118.8 (2)C11—C10—H10119.00
C2—C7—C6122.1 (2)C11—C12—H12119.00
O1—C8—C9106.44 (16)C13—C12—H12119.00
N1—C9—C8113.53 (16)C12—C13—H13119.00
O2—C9—C8121.76 (18)C14—C13—H13119.00
O2—C9—N1124.71 (18)C14—C15—H15120.00
N2—C10—C11122.37 (18)C16—C15—H15120.00
C12—C11—C16117.09 (18)C11—C16—H16119.00
C10—C11—C12123.28 (18)C15—C16—H16119.00
C10—C11—C16119.61 (17)N3—C17—H17A110.00
C11—C12—C13121.25 (18)N3—C17—H17B109.00
C12—C13—C14121.74 (18)N3—C17—H17C109.00
N3—C14—C15121.45 (18)H17A—C17—H17B109.00
N3—C14—C13121.50 (18)H17A—C17—H17C109.00
C13—C14—C15117.04 (19)H17B—C17—H17C109.00
C14—C15—C16120.74 (18)N3—C18—H18A110.00
C11—C16—C15122.12 (18)N3—C18—H18B109.00
C2—C1—H1A109.00N3—C18—H18C109.00
C2—C1—H1B110.00H18A—C18—H18B109.00
C2—C1—H1C110.00H18A—C18—H18C109.00
H1A—C1—H1B109.00H18B—C18—H18C109.00
C8—O1—C5—C4174.36 (19)O1—C5—C6—C7178.31 (18)
C8—O1—C5—C64.4 (3)C4—C5—C6—C70.3 (3)
C5—O1—C8—C9169.91 (16)C5—C6—C7—C20.7 (3)
C9—N1—N2—C10176.45 (19)O1—C8—C9—O253.8 (2)
N2—N1—C9—O23.4 (3)O1—C8—C9—N1126.83 (18)
N2—N1—C9—C8175.95 (16)N2—C10—C11—C1210.0 (3)
N1—N2—C10—C11179.34 (17)N2—C10—C11—C16168.4 (2)
C17—N3—C14—C132.1 (3)C10—C11—C12—C13178.1 (2)
C17—N3—C14—C15177.3 (2)C16—C11—C12—C130.4 (3)
C18—N3—C14—C13178.3 (2)C10—C11—C16—C15177.2 (2)
C18—N3—C14—C152.3 (3)C12—C11—C16—C151.4 (3)
C1—C2—C3—C4179.8 (3)C11—C12—C13—C141.1 (3)
C7—C2—C3—C40.9 (5)C12—C13—C14—N3179.1 (2)
C1—C2—C7—C6179.8 (2)C12—C13—C14—C151.5 (3)
C3—C2—C7—C60.9 (4)N3—C14—C15—C16179.9 (2)
C2—C3—C4—C50.6 (5)C13—C14—C15—C160.5 (3)
C3—C4—C5—O1178.5 (2)C14—C15—C16—C110.9 (3)
C3—C4—C5—C60.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.122.952 (2)163
C8—H8B···O2i0.972.433.303 (2)149
C8—H8A···Cg2ii0.972.653.442 (2)139
C16—H16···Cg1i0.932.713.394 (2)131
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.122.952 (2)163
C8—H8B···O2i0.972.433.303 (2)149
C8—H8A···Cg2ii0.972.653.442 (2)139
C16—H16···Cg1i0.932.713.394 (2)131
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. MKU is grateful to the DST, New Delhi, for the award of an INSPIRE Fellowship. DR acknowledges the UGC, New Delhi, for financial support under the Major Research Project Scheme [No. F.41–882/2012 (SR)].

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S. M. V. A. & Isloor, A. M. (2011). Acta Cryst. E67, o165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., D'Souza, A. & Kalluraya, B. (1992). Chim. Acta Turc. 20, 281–285.  CAS Google Scholar
First citationKalluraya, B., Chimbalkar, R. & Holla, B. S. (1995). Indian J. Heterocycl. Chem. 5, 37–40.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNithinchandra, Kalluraya, B., Aamir, S. & Shabaraya, A. R. (2012). Eur. J. Med. Chem. 54, 597–604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNithinchandra, Kalluraya, B., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307–313.  CAS Google Scholar
First citationSarfraz, M., Tariq, M. I. & Tahir, M. N. (2010). Acta Cryst. E66, o2055.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds