metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(thio­cyanato-κN)[tris­(pyridin-2-yl­meth­yl)amine-κ4N]­iron(II)

aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp

(Received 26 December 2013; accepted 29 December 2013; online 8 January 2014)

In the title complex, [Fe(NCS)2(C18H18N4)], the FeII cation is chelated by a tris­(2-pyridyl­meth­yl)amine ligand and coordin­ated by two thio­cyanate anions in a distorted N6 octa­hedral geometry. In the crystal, weak C—H⋯S hydrogen bonds and ππ stacking inter­actions between parallel pyridine rings of adjacent mol­ecules [centroid–centroid distance = 3.653 (3) Å] link the mol­ecules into a two-dimensional supra­molecular architecture. The structure contains voids of 124 (9) Å3, which are free of solvent molecules.

Related literature

For the magnetic properties of metal complexes with tris­(2-pyridyl­meth­yl)amine and thio­cyanate ligands, see: Boldog et al. (2009[Boldog, I., Munoz-Lara, F. J., Gaspar, A. B., Munoz, M. C., Seredyuk, M. & Real, J. A. (2009). Inorg. Chem. 48, 3710-3719.]); Li et al. (2010[Li, B., Wei, R. J., Tao, J., Huang, R. B., Zheng, L. S. & Zheng, Z. P. (2010). J. Am. Chem. Soc. 132, 1558-1566.]). For related complexes, see: Benhamou et al. (2008[Benhamou, L., Lachkar, M., Mandon, D. & Welter, R. (2008). Dalton Trans. pp. 6996-7003.]); Min et al. (2008[Min, K. S., Swierczek, K., DiPasquale, A. G., Rheingold, A. L., Reiff, W. M., Arif, A. M. & Miller, J. S. (2008). Chem. Commun. pp. 317-319.]); Phan et al. (2012[Phan, H. V., Chakraborty, P., Chen, M. M., Calm, Y. M., Kovnir, K., Keniley, L. K., Hoyt, J. M., Knowles, E. S., Besnard, C., Meisel, M. W., Hauser, A., Achim, C. & Shatruk, M. (2012). Chem. Eur. J. 18, 15805-15815.]); Wei et al. (2011[Wei, R.-J., Tao, J., Huang, R.-B. & Zheng, L.-S. (2011). Inorg. Chem. 50, 8553-8564.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(NCS)2(C18H18N4)]

  • Mr = 462.37

  • Monoclinic, C 2/c

  • a = 23.714 (5) Å

  • b = 11.827 (2) Å

  • c = 17.580 (3) Å

  • β = 112.87 (3)°

  • V = 4543.0 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 123 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.84, Tmax = 0.92

  • 10256 measured reflections

  • 4456 independent reflections

  • 3275 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.203

  • S = 1.11

  • 4456 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 2.185 (4)
Fe1—N2 2.197 (4)
Fe1—N3 2.199 (4)
Fe1—N4 2.241 (4)
Fe1—N5 2.054 (5)
Fe1—N6 2.089 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S2i 0.95 2.98 3.725 (6) 136
C12—H12B⋯S2ii 0.99 2.89 3.850 (5) 164
C18—H18B⋯S1ii 0.99 2.97 3.635 (5) 126
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A series of iron complexes with the tris(2-pyridylmethyl)amine (tpa) ligands (Benhamou et al., 2008; Boldog et al., 2009; Li et al., 2010; Min et al., 2008; Phan et al., 2012; Wei et al., 2011) that exhibit interesting magnetic properties have been synthesized and structurally characterized. In these complexes, the tpa ligands coordinate to the metal centers through its pyridyl nitrogen atoms and arylamine nitrogen atom. It should be noted that the magnetic behavior of the Fe(II) spin crossover complex with the ligand tpa and thiocyanato has already been reported (Boldog et al., 2009; Li et al., 2010).

In the title compound, Fe(C18H18N4)(NCS)2, the Fe(II) atom is coordinated by six nitrogen atoms (Fig. 1). The Fe-N distances range from 2.054 (5) to 2.241 (4) Å. In the crystal, π-π stacking 3.653 (3) Å between parallel pyridine rings and weak C—H···S hydrogen bonds link the molecules into the two dimensional supramolecular structure (Fig. 2).

Related literature top

For the magnetic properties of metal complexes with tris(2-pyridylmethyl)amine and thiocyanate ligands, see: Boldog et al. (2009); Li et al. (2010). For related complexes, see: Benhamou et al. (2008); Min et al. (2008); Phan et al. (2012); Wei et al. (2011).

Experimental top

A mixture of FeSO4.7H2O (0.0281 g, 0.1 mmol), tris(2-pyridylmethyl)amine (tpa, 0.0291 g, 0.1 mmol), KSCN (0.0194 g, 0.2 mmol) and MeOH (5 mL) were sealed in a 25 mL Teflon reactor and heated at 160oC for 48 h, and then cooled to ambient temperature at a rate of ca. 10 oC h-1 to give yellow block crystals (yield: 21%, based on tpa).

Refinement top

H2, H7, H8, H14, H16, H16A and H16B atoms were located in a difference Fourier map and refined isotropicaly with Uiso(H) = 0.026 Å2. Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C).

Structure description top

A series of iron complexes with the tris(2-pyridylmethyl)amine (tpa) ligands (Benhamou et al., 2008; Boldog et al., 2009; Li et al., 2010; Min et al., 2008; Phan et al., 2012; Wei et al., 2011) that exhibit interesting magnetic properties have been synthesized and structurally characterized. In these complexes, the tpa ligands coordinate to the metal centers through its pyridyl nitrogen atoms and arylamine nitrogen atom. It should be noted that the magnetic behavior of the Fe(II) spin crossover complex with the ligand tpa and thiocyanato has already been reported (Boldog et al., 2009; Li et al., 2010).

In the title compound, Fe(C18H18N4)(NCS)2, the Fe(II) atom is coordinated by six nitrogen atoms (Fig. 1). The Fe-N distances range from 2.054 (5) to 2.241 (4) Å. In the crystal, π-π stacking 3.653 (3) Å between parallel pyridine rings and weak C—H···S hydrogen bonds link the molecules into the two dimensional supramolecular structure (Fig. 2).

For the magnetic properties of metal complexes with tris(2-pyridylmethyl)amine and thiocyanate ligands, see: Boldog et al. (2009); Li et al. (2010). For related complexes, see: Benhamou et al. (2008); Min et al. (2008); Phan et al. (2012); Wei et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title complex. Intermolecular C—H···S hydrogen bonds are shown as red dashed lines, and ππ stacking interactions between pyridine rings are shown as blue dashed lines.
Bis(thiocyanato-κN)[tris(pyridin-2-ylmethyl)amine-κ4N]iron(II) top
Crystal data top
[Fe(NCS)2(C18H18N4)]F(000) = 1904
Mr = 462.37Dx = 1.352 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5300 reflections
a = 23.714 (5) Åθ = 3.1–27.5°
b = 11.827 (2) ŵ = 0.87 mm1
c = 17.580 (3) ÅT = 123 K
β = 112.87 (3)°Block, yellow
V = 4543.0 (18) Å30.20 × 0.20 × 0.10 mm
Z = 8
Data collection top
Rigaku Saturn70
diffractometer
4456 independent reflections
Radiation source: Rotating Anode3275 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.059
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 3.1°
dtprofit.ref scansh = 2928
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1314
Tmin = 0.84, Tmax = 0.92l = 2115
10256 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0906P)2 + 9.7621P]
where P = (Fo2 + 2Fc2)/3
4456 reflections(Δ/σ)max < 0.001
283 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Fe(NCS)2(C18H18N4)]V = 4543.0 (18) Å3
Mr = 462.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.714 (5) ŵ = 0.87 mm1
b = 11.827 (2) ÅT = 123 K
c = 17.580 (3) Å0.20 × 0.20 × 0.10 mm
β = 112.87 (3)°
Data collection top
Rigaku Saturn70
diffractometer
4456 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3275 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.92Rint = 0.059
10256 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.42 e Å3
4456 reflectionsΔρmin = 0.47 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4648 (2)0.4925 (4)0.3477 (3)0.0314 (12)
H10.45270.54810.30530.038*
C20.5264 (3)0.4840 (6)0.3995 (4)0.0453 (16)
C30.5440 (3)0.4028 (6)0.4600 (4)0.0500 (18)
H30.58580.39570.49600.060*
C40.5011 (3)0.3321 (5)0.4683 (4)0.0442 (15)
H40.51260.27490.50950.053*
C50.4394 (2)0.3459 (4)0.4144 (3)0.0291 (11)
C60.3910 (3)0.2752 (5)0.4272 (3)0.0308 (12)
C70.3845 (3)0.2760 (5)0.1662 (4)0.0365 (13)
C80.4054 (3)0.1794 (5)0.1395 (4)0.0515 (18)
C90.3991 (3)0.0772 (5)0.1708 (4)0.0537 (19)
H90.41290.01040.15340.064*
C100.3727 (3)0.0710 (4)0.2277 (4)0.0394 (14)
H100.36840.00030.25070.047*
C110.3524 (2)0.1698 (4)0.2509 (3)0.0269 (11)
C120.3195 (2)0.1693 (4)0.3090 (3)0.0301 (12)
H12A0.27500.16040.27700.036*
H12B0.33370.10430.34730.036*
C130.3010 (2)0.6046 (4)0.3840 (3)0.0268 (11)
H130.31350.65740.35280.032*
C140.2846 (3)0.6447 (4)0.4460 (4)0.0334 (13)
C150.2664 (3)0.5696 (4)0.4917 (4)0.0368 (13)
H150.25500.59500.53490.044*
C160.2654 (3)0.4564 (5)0.4731 (4)0.0374 (14)
C170.2822 (2)0.4211 (4)0.4102 (3)0.0239 (10)
C180.2812 (3)0.2989 (4)0.3860 (4)0.0322 (12)
H18A0.28620.25010.43400.039*
H18B0.24120.28090.34140.039*
C190.3519 (2)0.6301 (4)0.1751 (3)0.0280 (11)
C200.1843 (2)0.3861 (4)0.1455 (3)0.0283 (11)
Fe10.32597 (3)0.41694 (5)0.26973 (4)0.0221 (2)
H20.550 (2)0.542 (4)0.396 (3)0.026*
H70.391 (2)0.349 (5)0.147 (3)0.026*
H80.416 (2)0.182 (4)0.092 (3)0.026*
H140.287 (2)0.726 (4)0.459 (3)0.026*
H160.248 (2)0.408 (4)0.495 (3)0.026*
H6A0.405 (2)0.203 (5)0.442 (3)0.026*
H6B0.382 (2)0.298 (4)0.469 (3)0.026*
N10.42170 (18)0.4244 (3)0.3555 (3)0.0259 (9)
N20.35696 (18)0.2708 (3)0.2191 (3)0.0256 (9)
N30.30029 (17)0.4938 (3)0.3656 (2)0.0201 (8)
N40.33090 (18)0.2760 (3)0.3573 (3)0.0240 (9)
N50.3355 (2)0.5542 (4)0.2041 (3)0.0376 (11)
N60.23443 (19)0.3841 (3)0.1954 (3)0.0303 (10)
S10.37451 (7)0.73656 (12)0.13592 (10)0.0415 (4)
S20.11437 (7)0.39138 (13)0.07738 (11)0.0517 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (3)0.035 (3)0.030 (3)0.009 (2)0.012 (2)0.006 (2)
C20.026 (3)0.060 (4)0.048 (4)0.013 (3)0.013 (3)0.030 (3)
C30.023 (3)0.081 (5)0.042 (4)0.005 (3)0.008 (3)0.028 (4)
C40.032 (3)0.060 (4)0.034 (3)0.021 (3)0.007 (3)0.008 (3)
C50.029 (3)0.032 (3)0.023 (3)0.010 (2)0.007 (2)0.004 (2)
C60.040 (3)0.028 (3)0.022 (3)0.010 (2)0.010 (2)0.007 (2)
C70.049 (3)0.031 (3)0.033 (3)0.000 (2)0.021 (3)0.002 (2)
C80.084 (5)0.038 (3)0.054 (4)0.001 (3)0.050 (4)0.003 (3)
C90.090 (5)0.030 (3)0.063 (5)0.015 (3)0.053 (4)0.003 (3)
C100.060 (4)0.025 (3)0.044 (4)0.002 (3)0.033 (3)0.003 (2)
C110.034 (3)0.021 (2)0.026 (3)0.001 (2)0.011 (2)0.002 (2)
C120.043 (3)0.020 (2)0.032 (3)0.002 (2)0.019 (3)0.002 (2)
C130.033 (3)0.021 (2)0.025 (3)0.002 (2)0.009 (2)0.006 (2)
C140.042 (3)0.019 (3)0.042 (3)0.009 (2)0.019 (3)0.001 (2)
C150.053 (4)0.027 (3)0.038 (3)0.008 (2)0.026 (3)0.002 (2)
C160.053 (4)0.025 (3)0.046 (4)0.005 (2)0.032 (3)0.008 (3)
C170.026 (3)0.019 (2)0.025 (3)0.0048 (19)0.008 (2)0.003 (2)
C180.048 (3)0.020 (2)0.042 (3)0.006 (2)0.032 (3)0.001 (2)
C190.032 (3)0.031 (3)0.018 (3)0.003 (2)0.005 (2)0.001 (2)
C200.034 (3)0.018 (2)0.032 (3)0.001 (2)0.012 (3)0.006 (2)
Fe10.0252 (4)0.0184 (4)0.0213 (4)0.0012 (3)0.0075 (3)0.0002 (3)
N10.024 (2)0.027 (2)0.024 (2)0.0009 (17)0.0062 (18)0.0084 (18)
N20.034 (2)0.0190 (19)0.023 (2)0.0005 (17)0.0102 (19)0.0027 (17)
N30.0198 (19)0.0190 (19)0.018 (2)0.0029 (15)0.0035 (16)0.0009 (16)
N40.029 (2)0.0165 (19)0.028 (2)0.0000 (16)0.0131 (19)0.0017 (17)
N50.044 (3)0.033 (2)0.038 (3)0.002 (2)0.017 (2)0.004 (2)
N60.028 (2)0.022 (2)0.032 (3)0.0008 (17)0.002 (2)0.0096 (18)
S10.0507 (9)0.0343 (8)0.0475 (9)0.0017 (6)0.0279 (8)0.0099 (7)
S20.0352 (9)0.0469 (9)0.0526 (11)0.0060 (7)0.0051 (8)0.0199 (8)
Geometric parameters (Å, º) top
C1—N11.350 (6)C12—H12A0.9900
C1—C21.393 (8)C12—H12B0.9900
C1—H10.9500C13—N31.349 (6)
C2—C31.372 (10)C13—C141.377 (7)
C2—H20.91 (5)C13—H130.9500
C3—C41.367 (9)C14—C151.373 (8)
C3—H30.9500C14—H140.98 (5)
C4—C51.409 (7)C15—C161.376 (7)
C4—H40.9500C15—H150.9500
C5—N11.332 (7)C16—C171.378 (7)
C5—C61.506 (7)C16—H160.87 (5)
C6—N41.476 (6)C17—N31.341 (6)
C6—H6A0.91 (5)C17—C181.504 (6)
C6—H6B0.88 (5)C18—N41.477 (6)
C7—N21.330 (7)C18—H18A0.9900
C7—C81.396 (8)C18—H18B0.9900
C7—H70.96 (5)C19—N51.172 (7)
C8—C91.361 (9)C19—S11.623 (5)
C8—H80.97 (5)C20—N61.172 (7)
C9—C101.373 (8)C20—S21.626 (6)
C9—H90.9500Fe1—N12.185 (4)
C10—C111.385 (7)Fe1—N22.197 (4)
C10—H100.9500Fe1—N32.199 (4)
C11—N21.341 (6)Fe1—N42.241 (4)
C11—C121.509 (7)Fe1—N52.054 (5)
C12—N41.485 (6)Fe1—N62.089 (4)
N1—C1—C2122.2 (5)C14—C15—H15120.9
N1—C1—H1118.9C16—C15—H15120.9
C2—C1—H1118.9C15—C16—C17120.0 (5)
C3—C2—C1118.8 (6)C15—C16—H16120 (3)
C3—C2—H2125 (4)C17—C16—H16119 (3)
C1—C2—H2115 (4)N3—C17—C16122.3 (4)
C4—C3—C2119.8 (6)N3—C17—C18115.1 (4)
C4—C3—H3120.1C16—C17—C18122.6 (4)
C2—C3—H3120.1N4—C18—C17110.2 (4)
C3—C4—C5118.6 (6)N4—C18—H18A109.6
C3—C4—H4120.7C17—C18—H18A109.6
C5—C4—H4120.7N4—C18—H18B109.6
N1—C5—C4122.3 (5)C17—C18—H18B109.6
N1—C5—C6118.3 (4)H18A—C18—H18B108.1
C4—C5—C6119.2 (5)N5—C19—S1179.1 (5)
N4—C6—C5114.7 (4)N6—C20—S2178.7 (5)
N4—C6—H6A111 (3)N5—Fe1—N696.34 (18)
C5—C6—H6A111 (3)N5—Fe1—N192.51 (18)
N4—C6—H6B103 (3)N6—Fe1—N1170.87 (16)
C5—C6—H6B113 (3)N5—Fe1—N2105.47 (17)
H6A—C6—H6B102 (5)N6—Fe1—N291.73 (15)
N2—C7—C8122.2 (5)N1—Fe1—N283.71 (15)
N2—C7—H7119 (3)N5—Fe1—N3103.16 (16)
C8—C7—H7119 (3)N6—Fe1—N391.49 (15)
C9—C8—C7118.8 (6)N1—Fe1—N388.68 (14)
C9—C8—H8119 (3)N2—Fe1—N3150.64 (14)
C7—C8—H8121 (3)N5—Fe1—N4170.32 (17)
C8—C9—C10119.7 (5)N6—Fe1—N493.18 (16)
C8—C9—H9120.2N1—Fe1—N478.06 (15)
C10—C9—H9120.2N2—Fe1—N475.94 (14)
C9—C10—C11118.6 (5)N3—Fe1—N474.74 (14)
C9—C10—H10120.7C5—N1—C1118.2 (5)
C11—C10—H10120.7C5—N1—Fe1116.0 (3)
N2—C11—C10122.4 (5)C1—N1—Fe1125.3 (4)
N2—C11—C12115.6 (4)C7—N2—C11118.3 (4)
C10—C11—C12121.8 (4)C7—N2—Fe1125.5 (3)
N4—C12—C11110.9 (4)C11—N2—Fe1116.0 (3)
N4—C12—H12A109.5C17—N3—C13117.3 (4)
C11—C12—H12A109.5C17—N3—Fe1115.5 (3)
N4—C12—H12B109.5C13—N3—Fe1127.2 (3)
C11—C12—H12B109.5C6—N4—C18111.0 (4)
H12A—C12—H12B108.1C6—N4—C12111.9 (4)
N3—C13—C14122.9 (4)C18—N4—C12111.0 (4)
N3—C13—H13118.5C6—N4—Fe1110.6 (3)
C14—C13—H13118.5C18—N4—Fe1105.3 (3)
C15—C14—C13119.3 (5)C12—N4—Fe1106.9 (3)
C15—C14—H14120 (3)C19—N5—Fe1168.1 (4)
C13—C14—H14121 (3)C20—N6—Fe1165.9 (4)
C14—C15—C16118.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S2i0.952.983.725 (6)136
C12—H12B···S2ii0.992.893.850 (5)164
C18—H18B···S1ii0.992.973.635 (5)126
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Selected bond lengths (Å) top
Fe1—N12.185 (4)Fe1—N42.241 (4)
Fe1—N22.197 (4)Fe1—N52.054 (5)
Fe1—N32.199 (4)Fe1—N62.089 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S2i0.952.983.725 (6)136.4
C12—H12B···S2ii0.992.893.850 (5)163.8
C18—H18B···S1ii0.992.973.635 (5)125.6
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors would like to thank the China Scholarship Council (CSC).

References

First citationBenhamou, L., Lachkar, M., Mandon, D. & Welter, R. (2008). Dalton Trans. pp. 6996–7003.  Web of Science CSD CrossRef Google Scholar
First citationBoldog, I., Munoz-Lara, F. J., Gaspar, A. B., Munoz, M. C., Seredyuk, M. & Real, J. A. (2009). Inorg. Chem. 48, 3710–3719.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, B., Wei, R. J., Tao, J., Huang, R. B., Zheng, L. S. & Zheng, Z. P. (2010). J. Am. Chem. Soc. 132, 1558–1566.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMin, K. S., Swierczek, K., DiPasquale, A. G., Rheingold, A. L., Reiff, W. M., Arif, A. M. & Miller, J. S. (2008). Chem. Commun. pp. 317–319.  Web of Science CSD CrossRef Google Scholar
First citationPhan, H. V., Chakraborty, P., Chen, M. M., Calm, Y. M., Kovnir, K., Keniley, L. K., Hoyt, J. M., Knowles, E. S., Besnard, C., Meisel, M. W., Hauser, A., Achim, C. & Shatruk, M. (2012). Chem. Eur. J. 18, 15805–15815.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, R.-J., Tao, J., Huang, R.-B. & Zheng, L.-S. (2011). Inorg. Chem. 50, 8553–8564.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds