metal-organic compounds
Bis(thiocyanato-κN)[tris(pyridin-2-ylmethyl)amine-κ4N]iron(II)
aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp
In the title complex, [Fe(NCS)2(C18H18N4)], the FeII cation is chelated by a tris(2-pyridylmethyl)amine ligand and coordinated by two thiocyanate anions in a distorted N6 octahedral geometry. In the crystal, weak C—H⋯S hydrogen bonds and π–π stacking interactions between parallel pyridine rings of adjacent molecules [centroid–centroid distance = 3.653 (3) Å] link the molecules into a two-dimensional supramolecular architecture. The structure contains voids of 124 (9) Å3, which are free of solvent molecules.
CCDC reference: 979003
Related literature
For the magnetic properties of metal complexes with tris(2-pyridylmethyl)amine and thiocyanate ligands, see: Boldog et al. (2009); Li et al. (2010). For related complexes, see: Benhamou et al. (2008); Min et al. (2008); Phan et al. (2012); Wei et al. (2011).
Experimental
Crystal data
|
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 979003
10.1107/S1600536813034818/xu5762sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813034818/xu5762Isup2.hkl
A mixture of FeSO4.7H2O (0.0281 g, 0.1 mmol), tris(2-pyridylmethyl)amine (tpa, 0.0291 g, 0.1 mmol), KSCN (0.0194 g, 0.2 mmol) and MeOH (5 mL) were sealed in a 25 mL Teflon reactor and heated at 160oC for 48 h, and then cooled to ambient temperature at a rate of ca. 10 oC h-1 to give yellow block crystals (yield: 21%, based on tpa).
H2, H7, H8, H14, H16, H16A and H16B atoms were located in a difference Fourier map and refined isotropicaly with Uiso(H) = 0.026 Å2. Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C).
A series of iron complexes with the tris(2-pyridylmethyl)amine (tpa) ligands (Benhamou et al., 2008; Boldog et al., 2009; Li et al., 2010; Min et al., 2008; Phan et al., 2012; Wei et al., 2011) that exhibit interesting magnetic properties have been synthesized and structurally characterized. In these complexes, the tpa ligands coordinate to the metal centers through its pyridyl nitrogen atoms and arylamine nitrogen atom. It should be noted that the magnetic behavior of the Fe(II) spin crossover complex with the ligand tpa and thiocyanato has already been reported (Boldog et al., 2009; Li et al., 2010).
In the title compound, Fe(C18H18N4)(NCS)2, the Fe(II) atom is coordinated by six nitrogen atoms (Fig. 1). The Fe-N distances range from 2.054 (5) to 2.241 (4) Å. In the crystal, π-π stacking 3.653 (3) Å between parallel pyridine rings and weak C—H···S hydrogen bonds link the molecules into the two dimensional supramolecular structure (Fig. 2).
For the magnetic properties of metal complexes with tris(2-pyridylmethyl)amine and thiocyanate ligands, see: Boldog et al. (2009); Li et al. (2010). For related complexes, see: Benhamou et al. (2008); Min et al. (2008); Phan et al. (2012); Wei et al. (2011).
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Fe(NCS)2(C18H18N4)] | F(000) = 1904 |
Mr = 462.37 | Dx = 1.352 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5300 reflections |
a = 23.714 (5) Å | θ = 3.1–27.5° |
b = 11.827 (2) Å | µ = 0.87 mm−1 |
c = 17.580 (3) Å | T = 123 K |
β = 112.87 (3)° | Block, yellow |
V = 4543.0 (18) Å3 | 0.20 × 0.20 × 0.10 mm |
Z = 8 |
Rigaku Saturn70 diffractometer | 4456 independent reflections |
Radiation source: Rotating Anode | 3275 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.059 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 26.0°, θmin = 3.1° |
dtprofit.ref scans | h = −29→28 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | k = −13→14 |
Tmin = 0.84, Tmax = 0.92 | l = −21→15 |
10256 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0906P)2 + 9.7621P] where P = (Fo2 + 2Fc2)/3 |
4456 reflections | (Δ/σ)max < 0.001 |
283 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Fe(NCS)2(C18H18N4)] | V = 4543.0 (18) Å3 |
Mr = 462.37 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.714 (5) Å | µ = 0.87 mm−1 |
b = 11.827 (2) Å | T = 123 K |
c = 17.580 (3) Å | 0.20 × 0.20 × 0.10 mm |
β = 112.87 (3)° |
Rigaku Saturn70 diffractometer | 4456 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | 3275 reflections with I > 2σ(I) |
Tmin = 0.84, Tmax = 0.92 | Rint = 0.059 |
10256 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.203 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.42 e Å−3 |
4456 reflections | Δρmin = −0.47 e Å−3 |
283 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4648 (2) | 0.4925 (4) | 0.3477 (3) | 0.0314 (12) | |
H1 | 0.4527 | 0.5481 | 0.3053 | 0.038* | |
C2 | 0.5264 (3) | 0.4840 (6) | 0.3995 (4) | 0.0453 (16) | |
C3 | 0.5440 (3) | 0.4028 (6) | 0.4600 (4) | 0.0500 (18) | |
H3 | 0.5858 | 0.3957 | 0.4960 | 0.060* | |
C4 | 0.5011 (3) | 0.3321 (5) | 0.4683 (4) | 0.0442 (15) | |
H4 | 0.5126 | 0.2749 | 0.5095 | 0.053* | |
C5 | 0.4394 (2) | 0.3459 (4) | 0.4144 (3) | 0.0291 (11) | |
C6 | 0.3910 (3) | 0.2752 (5) | 0.4272 (3) | 0.0308 (12) | |
C7 | 0.3845 (3) | 0.2760 (5) | 0.1662 (4) | 0.0365 (13) | |
C8 | 0.4054 (3) | 0.1794 (5) | 0.1395 (4) | 0.0515 (18) | |
C9 | 0.3991 (3) | 0.0772 (5) | 0.1708 (4) | 0.0537 (19) | |
H9 | 0.4129 | 0.0104 | 0.1534 | 0.064* | |
C10 | 0.3727 (3) | 0.0710 (4) | 0.2277 (4) | 0.0394 (14) | |
H10 | 0.3684 | 0.0003 | 0.2507 | 0.047* | |
C11 | 0.3524 (2) | 0.1698 (4) | 0.2509 (3) | 0.0269 (11) | |
C12 | 0.3195 (2) | 0.1693 (4) | 0.3090 (3) | 0.0301 (12) | |
H12A | 0.2750 | 0.1604 | 0.2770 | 0.036* | |
H12B | 0.3337 | 0.1043 | 0.3473 | 0.036* | |
C13 | 0.3010 (2) | 0.6046 (4) | 0.3840 (3) | 0.0268 (11) | |
H13 | 0.3135 | 0.6574 | 0.3528 | 0.032* | |
C14 | 0.2846 (3) | 0.6447 (4) | 0.4460 (4) | 0.0334 (13) | |
C15 | 0.2664 (3) | 0.5696 (4) | 0.4917 (4) | 0.0368 (13) | |
H15 | 0.2550 | 0.5950 | 0.5349 | 0.044* | |
C16 | 0.2654 (3) | 0.4564 (5) | 0.4731 (4) | 0.0374 (14) | |
C17 | 0.2822 (2) | 0.4211 (4) | 0.4102 (3) | 0.0239 (10) | |
C18 | 0.2812 (3) | 0.2989 (4) | 0.3860 (4) | 0.0322 (12) | |
H18A | 0.2862 | 0.2501 | 0.4340 | 0.039* | |
H18B | 0.2412 | 0.2809 | 0.3414 | 0.039* | |
C19 | 0.3519 (2) | 0.6301 (4) | 0.1751 (3) | 0.0280 (11) | |
C20 | 0.1843 (2) | 0.3861 (4) | 0.1455 (3) | 0.0283 (11) | |
Fe1 | 0.32597 (3) | 0.41694 (5) | 0.26973 (4) | 0.0221 (2) | |
H2 | 0.550 (2) | 0.542 (4) | 0.396 (3) | 0.026* | |
H7 | 0.391 (2) | 0.349 (5) | 0.147 (3) | 0.026* | |
H8 | 0.416 (2) | 0.182 (4) | 0.092 (3) | 0.026* | |
H14 | 0.287 (2) | 0.726 (4) | 0.459 (3) | 0.026* | |
H16 | 0.248 (2) | 0.408 (4) | 0.495 (3) | 0.026* | |
H6A | 0.405 (2) | 0.203 (5) | 0.442 (3) | 0.026* | |
H6B | 0.382 (2) | 0.298 (4) | 0.469 (3) | 0.026* | |
N1 | 0.42170 (18) | 0.4244 (3) | 0.3555 (3) | 0.0259 (9) | |
N2 | 0.35696 (18) | 0.2708 (3) | 0.2191 (3) | 0.0256 (9) | |
N3 | 0.30029 (17) | 0.4938 (3) | 0.3656 (2) | 0.0201 (8) | |
N4 | 0.33090 (18) | 0.2760 (3) | 0.3573 (3) | 0.0240 (9) | |
N5 | 0.3355 (2) | 0.5542 (4) | 0.2041 (3) | 0.0376 (11) | |
N6 | 0.23443 (19) | 0.3841 (3) | 0.1954 (3) | 0.0303 (10) | |
S1 | 0.37451 (7) | 0.73656 (12) | 0.13592 (10) | 0.0415 (4) | |
S2 | 0.11437 (7) | 0.39138 (13) | 0.07738 (11) | 0.0517 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.029 (3) | 0.035 (3) | 0.030 (3) | −0.009 (2) | 0.012 (2) | −0.006 (2) |
C2 | 0.026 (3) | 0.060 (4) | 0.048 (4) | −0.013 (3) | 0.013 (3) | −0.030 (3) |
C3 | 0.023 (3) | 0.081 (5) | 0.042 (4) | 0.005 (3) | 0.008 (3) | −0.028 (4) |
C4 | 0.032 (3) | 0.060 (4) | 0.034 (3) | 0.021 (3) | 0.007 (3) | −0.008 (3) |
C5 | 0.029 (3) | 0.032 (3) | 0.023 (3) | 0.010 (2) | 0.007 (2) | −0.004 (2) |
C6 | 0.040 (3) | 0.028 (3) | 0.022 (3) | 0.010 (2) | 0.010 (2) | 0.007 (2) |
C7 | 0.049 (3) | 0.031 (3) | 0.033 (3) | 0.000 (2) | 0.021 (3) | 0.002 (2) |
C8 | 0.084 (5) | 0.038 (3) | 0.054 (4) | 0.001 (3) | 0.050 (4) | −0.003 (3) |
C9 | 0.090 (5) | 0.030 (3) | 0.063 (5) | 0.015 (3) | 0.053 (4) | 0.003 (3) |
C10 | 0.060 (4) | 0.025 (3) | 0.044 (4) | 0.002 (3) | 0.033 (3) | −0.003 (2) |
C11 | 0.034 (3) | 0.021 (2) | 0.026 (3) | 0.001 (2) | 0.011 (2) | −0.002 (2) |
C12 | 0.043 (3) | 0.020 (2) | 0.032 (3) | −0.002 (2) | 0.019 (3) | 0.002 (2) |
C13 | 0.033 (3) | 0.021 (2) | 0.025 (3) | −0.002 (2) | 0.009 (2) | 0.006 (2) |
C14 | 0.042 (3) | 0.019 (3) | 0.042 (3) | 0.009 (2) | 0.019 (3) | −0.001 (2) |
C15 | 0.053 (4) | 0.027 (3) | 0.038 (3) | 0.008 (2) | 0.026 (3) | 0.002 (2) |
C16 | 0.053 (4) | 0.025 (3) | 0.046 (4) | 0.005 (2) | 0.032 (3) | 0.008 (3) |
C17 | 0.026 (3) | 0.019 (2) | 0.025 (3) | 0.0048 (19) | 0.008 (2) | 0.003 (2) |
C18 | 0.048 (3) | 0.020 (2) | 0.042 (3) | −0.006 (2) | 0.032 (3) | 0.001 (2) |
C19 | 0.032 (3) | 0.031 (3) | 0.018 (3) | 0.003 (2) | 0.005 (2) | −0.001 (2) |
C20 | 0.034 (3) | 0.018 (2) | 0.032 (3) | −0.001 (2) | 0.012 (3) | −0.006 (2) |
Fe1 | 0.0252 (4) | 0.0184 (4) | 0.0213 (4) | −0.0012 (3) | 0.0075 (3) | 0.0002 (3) |
N1 | 0.024 (2) | 0.027 (2) | 0.024 (2) | −0.0009 (17) | 0.0062 (18) | −0.0084 (18) |
N2 | 0.034 (2) | 0.0190 (19) | 0.023 (2) | −0.0005 (17) | 0.0102 (19) | 0.0027 (17) |
N3 | 0.0198 (19) | 0.0190 (19) | 0.018 (2) | −0.0029 (15) | 0.0035 (16) | 0.0009 (16) |
N4 | 0.029 (2) | 0.0165 (19) | 0.028 (2) | 0.0000 (16) | 0.0131 (19) | 0.0017 (17) |
N5 | 0.044 (3) | 0.033 (2) | 0.038 (3) | 0.002 (2) | 0.017 (2) | 0.004 (2) |
N6 | 0.028 (2) | 0.022 (2) | 0.032 (3) | −0.0008 (17) | 0.002 (2) | −0.0096 (18) |
S1 | 0.0507 (9) | 0.0343 (8) | 0.0475 (9) | −0.0017 (6) | 0.0279 (8) | 0.0099 (7) |
S2 | 0.0352 (9) | 0.0469 (9) | 0.0526 (11) | 0.0060 (7) | −0.0051 (8) | −0.0199 (8) |
C1—N1 | 1.350 (6) | C12—H12A | 0.9900 |
C1—C2 | 1.393 (8) | C12—H12B | 0.9900 |
C1—H1 | 0.9500 | C13—N3 | 1.349 (6) |
C2—C3 | 1.372 (10) | C13—C14 | 1.377 (7) |
C2—H2 | 0.91 (5) | C13—H13 | 0.9500 |
C3—C4 | 1.367 (9) | C14—C15 | 1.373 (8) |
C3—H3 | 0.9500 | C14—H14 | 0.98 (5) |
C4—C5 | 1.409 (7) | C15—C16 | 1.376 (7) |
C4—H4 | 0.9500 | C15—H15 | 0.9500 |
C5—N1 | 1.332 (7) | C16—C17 | 1.378 (7) |
C5—C6 | 1.506 (7) | C16—H16 | 0.87 (5) |
C6—N4 | 1.476 (6) | C17—N3 | 1.341 (6) |
C6—H6A | 0.91 (5) | C17—C18 | 1.504 (6) |
C6—H6B | 0.88 (5) | C18—N4 | 1.477 (6) |
C7—N2 | 1.330 (7) | C18—H18A | 0.9900 |
C7—C8 | 1.396 (8) | C18—H18B | 0.9900 |
C7—H7 | 0.96 (5) | C19—N5 | 1.172 (7) |
C8—C9 | 1.361 (9) | C19—S1 | 1.623 (5) |
C8—H8 | 0.97 (5) | C20—N6 | 1.172 (7) |
C9—C10 | 1.373 (8) | C20—S2 | 1.626 (6) |
C9—H9 | 0.9500 | Fe1—N1 | 2.185 (4) |
C10—C11 | 1.385 (7) | Fe1—N2 | 2.197 (4) |
C10—H10 | 0.9500 | Fe1—N3 | 2.199 (4) |
C11—N2 | 1.341 (6) | Fe1—N4 | 2.241 (4) |
C11—C12 | 1.509 (7) | Fe1—N5 | 2.054 (5) |
C12—N4 | 1.485 (6) | Fe1—N6 | 2.089 (4) |
N1—C1—C2 | 122.2 (5) | C14—C15—H15 | 120.9 |
N1—C1—H1 | 118.9 | C16—C15—H15 | 120.9 |
C2—C1—H1 | 118.9 | C15—C16—C17 | 120.0 (5) |
C3—C2—C1 | 118.8 (6) | C15—C16—H16 | 120 (3) |
C3—C2—H2 | 125 (4) | C17—C16—H16 | 119 (3) |
C1—C2—H2 | 115 (4) | N3—C17—C16 | 122.3 (4) |
C4—C3—C2 | 119.8 (6) | N3—C17—C18 | 115.1 (4) |
C4—C3—H3 | 120.1 | C16—C17—C18 | 122.6 (4) |
C2—C3—H3 | 120.1 | N4—C18—C17 | 110.2 (4) |
C3—C4—C5 | 118.6 (6) | N4—C18—H18A | 109.6 |
C3—C4—H4 | 120.7 | C17—C18—H18A | 109.6 |
C5—C4—H4 | 120.7 | N4—C18—H18B | 109.6 |
N1—C5—C4 | 122.3 (5) | C17—C18—H18B | 109.6 |
N1—C5—C6 | 118.3 (4) | H18A—C18—H18B | 108.1 |
C4—C5—C6 | 119.2 (5) | N5—C19—S1 | 179.1 (5) |
N4—C6—C5 | 114.7 (4) | N6—C20—S2 | 178.7 (5) |
N4—C6—H6A | 111 (3) | N5—Fe1—N6 | 96.34 (18) |
C5—C6—H6A | 111 (3) | N5—Fe1—N1 | 92.51 (18) |
N4—C6—H6B | 103 (3) | N6—Fe1—N1 | 170.87 (16) |
C5—C6—H6B | 113 (3) | N5—Fe1—N2 | 105.47 (17) |
H6A—C6—H6B | 102 (5) | N6—Fe1—N2 | 91.73 (15) |
N2—C7—C8 | 122.2 (5) | N1—Fe1—N2 | 83.71 (15) |
N2—C7—H7 | 119 (3) | N5—Fe1—N3 | 103.16 (16) |
C8—C7—H7 | 119 (3) | N6—Fe1—N3 | 91.49 (15) |
C9—C8—C7 | 118.8 (6) | N1—Fe1—N3 | 88.68 (14) |
C9—C8—H8 | 119 (3) | N2—Fe1—N3 | 150.64 (14) |
C7—C8—H8 | 121 (3) | N5—Fe1—N4 | 170.32 (17) |
C8—C9—C10 | 119.7 (5) | N6—Fe1—N4 | 93.18 (16) |
C8—C9—H9 | 120.2 | N1—Fe1—N4 | 78.06 (15) |
C10—C9—H9 | 120.2 | N2—Fe1—N4 | 75.94 (14) |
C9—C10—C11 | 118.6 (5) | N3—Fe1—N4 | 74.74 (14) |
C9—C10—H10 | 120.7 | C5—N1—C1 | 118.2 (5) |
C11—C10—H10 | 120.7 | C5—N1—Fe1 | 116.0 (3) |
N2—C11—C10 | 122.4 (5) | C1—N1—Fe1 | 125.3 (4) |
N2—C11—C12 | 115.6 (4) | C7—N2—C11 | 118.3 (4) |
C10—C11—C12 | 121.8 (4) | C7—N2—Fe1 | 125.5 (3) |
N4—C12—C11 | 110.9 (4) | C11—N2—Fe1 | 116.0 (3) |
N4—C12—H12A | 109.5 | C17—N3—C13 | 117.3 (4) |
C11—C12—H12A | 109.5 | C17—N3—Fe1 | 115.5 (3) |
N4—C12—H12B | 109.5 | C13—N3—Fe1 | 127.2 (3) |
C11—C12—H12B | 109.5 | C6—N4—C18 | 111.0 (4) |
H12A—C12—H12B | 108.1 | C6—N4—C12 | 111.9 (4) |
N3—C13—C14 | 122.9 (4) | C18—N4—C12 | 111.0 (4) |
N3—C13—H13 | 118.5 | C6—N4—Fe1 | 110.6 (3) |
C14—C13—H13 | 118.5 | C18—N4—Fe1 | 105.3 (3) |
C15—C14—C13 | 119.3 (5) | C12—N4—Fe1 | 106.9 (3) |
C15—C14—H14 | 120 (3) | C19—N5—Fe1 | 168.1 (4) |
C13—C14—H14 | 121 (3) | C20—N6—Fe1 | 165.9 (4) |
C14—C15—C16 | 118.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···S2i | 0.95 | 2.98 | 3.725 (6) | 136 |
C12—H12B···S2ii | 0.99 | 2.89 | 3.850 (5) | 164 |
C18—H18B···S1ii | 0.99 | 2.97 | 3.635 (5) | 126 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2. |
Fe1—N1 | 2.185 (4) | Fe1—N4 | 2.241 (4) |
Fe1—N2 | 2.197 (4) | Fe1—N5 | 2.054 (5) |
Fe1—N3 | 2.199 (4) | Fe1—N6 | 2.089 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···S2i | 0.95 | 2.98 | 3.725 (6) | 136.4 |
C12—H12B···S2ii | 0.99 | 2.89 | 3.850 (5) | 163.8 |
C18—H18B···S1ii | 0.99 | 2.97 | 3.635 (5) | 125.6 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
The authors would like to thank the China Scholarship Council (CSC).
References
Benhamou, L., Lachkar, M., Mandon, D. & Welter, R. (2008). Dalton Trans. pp. 6996–7003. Web of Science CSD CrossRef Google Scholar
Boldog, I., Munoz-Lara, F. J., Gaspar, A. B., Munoz, M. C., Seredyuk, M. & Real, J. A. (2009). Inorg. Chem. 48, 3710–3719. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, B., Wei, R. J., Tao, J., Huang, R. B., Zheng, L. S. & Zheng, Z. P. (2010). J. Am. Chem. Soc. 132, 1558–1566. Web of Science CSD CrossRef CAS PubMed Google Scholar
Min, K. S., Swierczek, K., DiPasquale, A. G., Rheingold, A. L., Reiff, W. M., Arif, A. M. & Miller, J. S. (2008). Chem. Commun. pp. 317–319. Web of Science CSD CrossRef Google Scholar
Phan, H. V., Chakraborty, P., Chen, M. M., Calm, Y. M., Kovnir, K., Keniley, L. K., Hoyt, J. M., Knowles, E. S., Besnard, C., Meisel, M. W., Hauser, A., Achim, C. & Shatruk, M. (2012). Chem. Eur. J. 18, 15805–15815. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wei, R.-J., Tao, J., Huang, R.-B. & Zheng, L.-S. (2011). Inorg. Chem. 50, 8553–8564. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A series of iron complexes with the tris(2-pyridylmethyl)amine (tpa) ligands (Benhamou et al., 2008; Boldog et al., 2009; Li et al., 2010; Min et al., 2008; Phan et al., 2012; Wei et al., 2011) that exhibit interesting magnetic properties have been synthesized and structurally characterized. In these complexes, the tpa ligands coordinate to the metal centers through its pyridyl nitrogen atoms and arylamine nitrogen atom. It should be noted that the magnetic behavior of the Fe(II) spin crossover complex with the ligand tpa and thiocyanato has already been reported (Boldog et al., 2009; Li et al., 2010).
In the title compound, Fe(C18H18N4)(NCS)2, the Fe(II) atom is coordinated by six nitrogen atoms (Fig. 1). The Fe-N distances range from 2.054 (5) to 2.241 (4) Å. In the crystal, π-π stacking 3.653 (3) Å between parallel pyridine rings and weak C—H···S hydrogen bonds link the molecules into the two dimensional supramolecular structure (Fig. 2).