organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o112-o113

(E)-2-(4-Benz­yl­oxy-2-hy­dr­oxy­benzyl­­idene)-N-methyl­hydrazinecarbo­thio­amide

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 11 December 2013; accepted 30 December 2013; online 8 January 2014)

The mol­ecule of the title compound, C16H17N3O2S, adopts an E conformation with respect to the azomethine C=N bond. The hydrazinecarbo­thio­amide fragment is close to planar, with a largest deviation from the least-squares plane of 0.079 (2) Å for the hydrazide N atom. This fragment forms a dihedral angle of 9.43 (9)° with the central benzene ring. The benzene rings are inclined to one another by 67.55 (12)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond involving the azomethine N atom. In the crystal, mol­ecules are linked through weak N—H⋯S and N—H⋯O hydrogen bonds into double ribbons along [010]. The crystal packing also features C—H⋯π inter­actions.

Related literature

For catalytic properties of complexes containing thio­semicarbazone ligands, see: Moradi-Shoeili et al. (2013[Moradi-Shoeili, Z., Boghaei, D. M., Amini, M. & Notash, B. (2013). Inorg. Chem. Commun. 27, 26-30.]) and for the use of such complexes in imaging and therapy, see: Dilworth & Hueting (2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]). For the synthesis and structure of a closely related compound, see: Nisha et al. (2011[Nisha, K., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3420.]). For related structures, see: Seena et al. (2006[Seena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189-193.], 2008[Seena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93-96.]); Jacob & Kurup (2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]); Tarafder et al. (2008[Tarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988-o989.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O2S

  • Mr = 315.39

  • Monoclinic, P 21 /n

  • a = 17.013 (2) Å

  • b = 5.9474 (10) Å

  • c = 17.542 (4) Å

  • β = 117.565 (7)°

  • V = 1573.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Bruker KAPPA APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.928

  • 10845 measured reflections

  • 3827 independent reflections

  • 2577 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.02

  • 3827 reflections

  • 212 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯S1i 0.87 (1) 2.84 (2) 3.4382 (17) 127 (2)
N2—H2′⋯O2ii 0.88 (1) 2.48 (2) 3.094 (2) 127 (2)
N2—H2′⋯S1iii 0.88 (1) 2.77 (2) 3.4850 (17) 139 (2)
O2—H2A⋯N1 0.84 (1) 2.00 (2) 2.690 (2) 140 (3)
C2—H2⋯Cg2iv 0.93 2.93 3.6451 (15) 135
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+2, -y+2, -z+2; (iv) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazinecarbothioamides are important class of multidentate ligands owing to their application in various fields of medicine and industry. The complexes of these compounds find application as catalysts in organic syntheses (Moradi-Shoeili et al., 2013) and in imaging and therapy in medicine (Dilworth & Hueting, 2012).

The title compound adopts E configuration with respect to C14—N1 bond (Fig.1), with C14/N1/N2/C15 torsion angle of 175.19 (17)°. The N1/N2/C15/S1 torsion angle of 170.34 (14)° suggests that the thionyl atom S1 is located trans to azomethine nitrogen N1. The C14—N1 bond distance [1.283 (2) Å] is close to that of formal double CN bond [1.284 (3) Å] (Seena et al., 2006). Similarly the C15—S1 bond distance [1.6837 (18) Å] is also close to that of formal CS bond [1.685 (3) Å] (Jacob & Kurup, 2012).

The molecule as a whole is non-planar, the two benzene rings are twisted by a dihedral angle of 67.55 (12)°. The hydrazinecarbothiamide fragment N1/N3/C15/S1/C16 is planar with maximum deviation of 0.020 (2) Å for N3, similar to that of salicylaldehyde-N(4)-phenylthiosemicarbazone (Seena et al., 2008).

An intramolecular O2—H2A···N1 hydrogen bond found in the molecule with a D···A distance of 2.690 (2) Å forms a six membered ring strengthening the rigidity of the molecule. The molecules are held together through three N—H···S and N—H···O classical intermolecular hydrogen bonds (Fig. 2) with D···A distances of 3.4382 (17), 3.094 (2) and 3.4850 (17) Å. Only one C—H···π interaction (Fig. 3) is present in the molecule with C···Cg distance of 3.645 (4) Å (Table 1), which also contributes to the arrangement of molecules in the crystal. The molecules are stacked along the b axis as shown in Fig. 4.

Related literature top

For catalytic properties of complexes containing thiosemicarbazone ligands, see: Moradi-Shoeili et al. (2013) and for the use of such complexes in imaging and therapy, see: Dilworth & Hueting (2012). For the synthesis and structure of a closely related compound, see: Nisha et al. (2011). For related structures, see: Seena et al. (2006, 2008); Jacob & Kurup (2012); Tarafder et al. (2008).

Experimental top

The title compound was prepared by adapting a reported procedure (Nisha et al., 2011). 4-Methylthiosemicarbazone (0.1050 g, 1 mmol) in 20 ml acetonitrile was acidified with glacial acetic acid and refluxed with 4-benzyloxy-2-hydroxybenzaldehyde (0.2181 g, 1 mmol) in acetonitrile. The resulting solution was kept for one week and the yellow block shaped crystals obtained in 60% yield were separated and analysed.

IR (KBr, \v in cm-1): 3344, 3205, 2945, 1555, 1337, 1263, 1222. 1H NMR (400 MHz, DMSO-d6, δ in p.p.m.): 11.26 (s, 1H), 9.96 (s, 1H), 8.28 (s, 1H), 8.33–8.31 (m, 1H), 7.83–7.81 (m, 1H), 7.46–7.40 (m,5H), 7.38–7.32 (m,2H), 5.09 (s,2H), 3.00–3.01 (d,3H).

Refinement top

All H atoms on C were placed in calculated positions, guided by difference map, with C—H bond distances of 0.93 Å. H atoms were assigned Uiso(H) values of 1.2Ueq (carrier). H atoms of N2—H2' and N3—H3' bonds were located from difference maps and the bond distances are restrained to 0.88±0.01 Å. Omitted owing to bad disagreement was (-1 0 1). H atom of O2—H2A bond was located from difference maps and the bond distance is restrained to 0.84±0.01 Å.

Structure description top

Hydrazinecarbothioamides are important class of multidentate ligands owing to their application in various fields of medicine and industry. The complexes of these compounds find application as catalysts in organic syntheses (Moradi-Shoeili et al., 2013) and in imaging and therapy in medicine (Dilworth & Hueting, 2012).

The title compound adopts E configuration with respect to C14—N1 bond (Fig.1), with C14/N1/N2/C15 torsion angle of 175.19 (17)°. The N1/N2/C15/S1 torsion angle of 170.34 (14)° suggests that the thionyl atom S1 is located trans to azomethine nitrogen N1. The C14—N1 bond distance [1.283 (2) Å] is close to that of formal double CN bond [1.284 (3) Å] (Seena et al., 2006). Similarly the C15—S1 bond distance [1.6837 (18) Å] is also close to that of formal CS bond [1.685 (3) Å] (Jacob & Kurup, 2012).

The molecule as a whole is non-planar, the two benzene rings are twisted by a dihedral angle of 67.55 (12)°. The hydrazinecarbothiamide fragment N1/N3/C15/S1/C16 is planar with maximum deviation of 0.020 (2) Å for N3, similar to that of salicylaldehyde-N(4)-phenylthiosemicarbazone (Seena et al., 2008).

An intramolecular O2—H2A···N1 hydrogen bond found in the molecule with a D···A distance of 2.690 (2) Å forms a six membered ring strengthening the rigidity of the molecule. The molecules are held together through three N—H···S and N—H···O classical intermolecular hydrogen bonds (Fig. 2) with D···A distances of 3.4382 (17), 3.094 (2) and 3.4850 (17) Å. Only one C—H···π interaction (Fig. 3) is present in the molecule with C···Cg distance of 3.645 (4) Å (Table 1), which also contributes to the arrangement of molecules in the crystal. The molecules are stacked along the b axis as shown in Fig. 4.

For catalytic properties of complexes containing thiosemicarbazone ligands, see: Moradi-Shoeili et al. (2013) and for the use of such complexes in imaging and therapy, see: Dilworth & Hueting (2012). For the synthesis and structure of a closely related compound, see: Nisha et al. (2011). For related structures, see: Seena et al. (2006, 2008); Jacob & Kurup (2012); Tarafder et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability thermal ellipsoids and atom labelling scheme.
[Figure 2] Fig. 2. Hydrogen-bond interactions in the title compound.
[Figure 3] Fig. 3. C—H···π interaction in the title compound.
[Figure 4] Fig. 4. Packing diagram of the title compound along the b axis direction.
(E)-2-(4-Benzyloxy-2-hydroxybenzylidene)-N-methylhydrazinecarbothioamide top
Crystal data top
C16H17N3O2SF(000) = 664
Mr = 315.39Dx = 1.331 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 740 reflections
a = 17.013 (2) Åθ = 3.7–28.0°
b = 5.9474 (10) ŵ = 0.22 mm1
c = 17.542 (4) ÅT = 296 K
β = 117.565 (7)°Block, yellow
V = 1573.4 (5) Å30.50 × 0.40 × 0.35 mm
Z = 4
Data collection top
Bruker KAPPA APEXII CCD area-detector
diffractometer
3827 independent reflections
Radiation source: fine-focus sealed tube2577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scanθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2222
Tmin = 0.900, Tmax = 0.928k = 74
10845 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.5741P]
where P = (Fo2 + 2Fc2)/3
3827 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H17N3O2SV = 1573.4 (5) Å3
Mr = 315.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.013 (2) ŵ = 0.22 mm1
b = 5.9474 (10) ÅT = 296 K
c = 17.542 (4) Å0.50 × 0.40 × 0.35 mm
β = 117.565 (7)°
Data collection top
Bruker KAPPA APEXII CCD area-detector
diffractometer
3827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2577 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.928Rint = 0.023
10845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
3827 reflectionsΔρmin = 0.24 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.13656 (4)0.95873 (8)1.10134 (3)0.05333 (18)
O10.90536 (10)0.0765 (2)0.57207 (9)0.0527 (4)
O21.06521 (10)0.1191 (2)0.86083 (9)0.0519 (4)
N11.04073 (10)0.5297 (2)0.91066 (9)0.0370 (3)
N21.05299 (11)0.7111 (3)0.96424 (10)0.0440 (4)
N31.16019 (10)0.5258 (2)1.07980 (10)0.0396 (4)
C10.9035 (2)0.2867 (5)0.41772 (19)0.0874 (10)
H10.95440.19860.44240.105*
C20.8998 (2)0.4661 (6)0.3667 (2)0.0962 (11)
H20.94810.49920.35740.115*
C30.8253 (2)0.5953 (4)0.32960 (16)0.0735 (8)
H30.82260.71560.29460.088*
C40.75516 (18)0.5479 (4)0.34383 (16)0.0676 (7)
H40.70440.63650.31870.081*
C50.75889 (16)0.3694 (4)0.39528 (14)0.0588 (6)
H50.71060.33840.40490.071*
C60.83341 (15)0.2365 (4)0.43258 (13)0.0511 (5)
C70.83740 (16)0.0377 (4)0.48654 (14)0.0583 (6)
H7A0.85040.09730.46350.070*
H7B0.78080.01760.48650.070*
C80.92092 (13)0.0866 (3)0.63194 (11)0.0398 (4)
C90.87738 (13)0.2932 (3)0.61485 (12)0.0435 (4)
H90.83470.32990.55950.052*
C100.89893 (13)0.4411 (3)0.68168 (12)0.0411 (4)
H100.87040.57980.67030.049*
C110.96147 (12)0.3927 (3)0.76555 (11)0.0348 (4)
C121.00432 (12)0.1827 (3)0.78095 (11)0.0367 (4)
C130.98461 (13)0.0341 (3)0.71415 (12)0.0409 (4)
H131.01450.10250.72460.049*
C140.98145 (12)0.5582 (3)0.83231 (11)0.0368 (4)
H140.94980.69240.81780.044*
C151.11670 (12)0.7152 (3)1.04658 (11)0.0353 (4)
C161.22781 (13)0.5050 (3)1.16849 (12)0.0447 (5)
H16A1.27590.60531.17880.067*
H16B1.24930.35311.17930.067*
H16C1.20290.54281.20600.067*
H3'1.1452 (13)0.405 (2)1.0482 (11)0.044 (6)*
H2'1.0253 (14)0.838 (3)0.9419 (14)0.073 (8)*
H2A1.0769 (19)0.218 (4)0.8988 (14)0.098 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0635 (4)0.0282 (2)0.0462 (3)0.0024 (2)0.0066 (2)0.0091 (2)
O10.0752 (10)0.0424 (8)0.0337 (7)0.0006 (7)0.0193 (7)0.0072 (6)
O20.0643 (10)0.0430 (8)0.0345 (8)0.0158 (7)0.0110 (7)0.0000 (6)
N10.0466 (9)0.0283 (7)0.0334 (8)0.0010 (6)0.0161 (7)0.0033 (6)
N20.0573 (10)0.0268 (8)0.0358 (9)0.0080 (7)0.0111 (8)0.0034 (6)
N30.0471 (9)0.0278 (8)0.0353 (8)0.0027 (6)0.0119 (7)0.0034 (6)
C10.090 (2)0.096 (2)0.100 (2)0.0458 (17)0.0645 (19)0.0536 (18)
C20.108 (2)0.107 (2)0.108 (3)0.0363 (19)0.079 (2)0.052 (2)
C30.110 (2)0.0591 (15)0.0524 (15)0.0159 (14)0.0386 (15)0.0195 (12)
C40.0705 (16)0.0540 (14)0.0583 (15)0.0166 (12)0.0129 (13)0.0088 (11)
C50.0554 (13)0.0597 (14)0.0501 (13)0.0030 (11)0.0149 (11)0.0017 (11)
C60.0635 (14)0.0533 (12)0.0346 (11)0.0098 (10)0.0211 (10)0.0077 (9)
C70.0695 (15)0.0569 (13)0.0398 (12)0.0025 (11)0.0179 (11)0.0092 (10)
C80.0516 (11)0.0378 (10)0.0325 (9)0.0053 (8)0.0215 (9)0.0030 (7)
C90.0510 (12)0.0397 (10)0.0307 (9)0.0012 (8)0.0114 (9)0.0021 (8)
C100.0474 (11)0.0326 (9)0.0386 (10)0.0050 (8)0.0159 (9)0.0027 (7)
C110.0401 (10)0.0309 (8)0.0333 (9)0.0003 (7)0.0169 (8)0.0006 (7)
C120.0429 (10)0.0350 (9)0.0320 (9)0.0031 (7)0.0172 (8)0.0021 (7)
C130.0523 (11)0.0326 (9)0.0390 (10)0.0051 (8)0.0220 (9)0.0003 (7)
C140.0427 (10)0.0299 (9)0.0348 (9)0.0033 (7)0.0154 (8)0.0003 (7)
C150.0394 (10)0.0276 (8)0.0356 (9)0.0003 (7)0.0146 (8)0.0018 (7)
C160.0441 (10)0.0370 (10)0.0411 (11)0.0046 (8)0.0096 (9)0.0009 (8)
Geometric parameters (Å, º) top
S1—C151.6837 (18)C4—H40.9300
O1—C81.362 (2)C5—C61.376 (3)
O1—C71.427 (3)C5—H50.9300
O2—C121.355 (2)C6—C71.496 (3)
O2—H2A0.840 (10)C7—H7A0.9700
N1—C141.285 (2)C7—H7B0.9700
N1—N21.382 (2)C8—C131.380 (3)
N2—C151.346 (2)C8—C91.394 (3)
N2—H2'0.879 (10)C9—C101.373 (3)
N3—C151.325 (2)C9—H90.9300
N3—C161.450 (2)C10—C111.390 (2)
N3—H3'0.871 (9)C10—H100.9300
C1—C61.367 (3)C11—C121.408 (2)
C1—C21.375 (4)C11—C141.445 (2)
C1—H10.9300C12—C131.380 (2)
C2—C31.362 (4)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.357 (4)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.376 (3)C16—H16C0.9600
C8—O1—C7117.99 (16)H7A—C7—H7B108.4
C12—O2—H2A114 (2)O1—C8—C13115.02 (16)
C14—N1—N2114.92 (14)O1—C8—C9124.57 (17)
C15—N2—N1122.48 (14)C13—C8—C9120.41 (17)
C15—N2—H2'117.6 (17)C10—C9—C8118.43 (17)
N1—N2—H2'119.0 (16)C10—C9—H9120.8
C15—N3—C16123.28 (15)C8—C9—H9120.8
C15—N3—H3'118.8 (14)C9—C10—C11122.83 (17)
C16—N3—H3'117.7 (14)C9—C10—H10118.6
C6—C1—C2120.8 (2)C11—C10—H10118.6
C6—C1—H1119.6C10—C11—C12117.51 (16)
C2—C1—H1119.6C10—C11—C14119.64 (16)
C3—C2—C1120.1 (3)C12—C11—C14122.83 (16)
C3—C2—H2120.0O2—C12—C13117.94 (16)
C1—C2—H2120.0O2—C12—C11121.75 (16)
C4—C3—C2119.9 (2)C13—C12—C11120.31 (17)
C4—C3—H3120.1C12—C13—C8120.48 (17)
C2—C3—H3120.1C12—C13—H13119.8
C3—C4—C5120.2 (2)C8—C13—H13119.8
C3—C4—H4119.9N1—C14—C11123.42 (16)
C5—C4—H4119.9N1—C14—H14118.3
C4—C5—C6120.5 (2)C11—C14—H14118.3
C4—C5—H5119.7N3—C15—N2117.71 (15)
C6—C5—H5119.7N3—C15—S1123.80 (14)
C1—C6—C5118.5 (2)N2—C15—S1118.49 (13)
C1—C6—C7120.3 (2)N3—C16—H16A109.5
C5—C6—C7121.1 (2)N3—C16—H16B109.5
O1—C7—C6108.36 (18)H16A—C16—H16B109.5
O1—C7—H7A110.0N3—C16—H16C109.5
C6—C7—H7A110.0H16A—C16—H16C109.5
O1—C7—H7B110.0H16B—C16—H16C109.5
C6—C7—H7B110.0
C14—N1—N2—C15175.19 (17)C9—C10—C11—C120.6 (3)
C6—C1—C2—C30.5 (5)C9—C10—C11—C14179.20 (17)
C1—C2—C3—C40.6 (5)C10—C11—C12—O2178.94 (17)
C2—C3—C4—C50.3 (4)C14—C11—C12—O22.5 (3)
C3—C4—C5—C60.3 (4)C10—C11—C12—C130.7 (3)
C2—C1—C6—C50.0 (5)C14—C11—C12—C13177.86 (16)
C2—C1—C6—C7178.5 (3)O2—C12—C13—C8177.77 (17)
C4—C5—C6—C10.4 (4)C11—C12—C13—C81.9 (3)
C4—C5—C6—C7178.2 (2)O1—C8—C13—C12177.96 (16)
C8—O1—C7—C6179.20 (17)C9—C8—C13—C121.8 (3)
C1—C6—C7—O164.9 (3)N2—N1—C14—C11177.22 (16)
C5—C6—C7—O1116.6 (2)C10—C11—C14—N1177.27 (18)
C7—O1—C8—C13177.13 (18)C12—C11—C14—N11.2 (3)
C7—O1—C8—C92.6 (3)C16—N3—C15—N2177.52 (17)
O1—C8—C9—C10179.22 (17)C16—N3—C15—S12.4 (3)
C13—C8—C9—C100.5 (3)N1—N2—C15—N39.7 (3)
C8—C9—C10—C110.7 (3)N1—N2—C15—S1170.34 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.87 (1)2.84 (2)3.4382 (17)127 (2)
N2—H2···O2ii0.88 (1)2.48 (2)3.094 (2)127 (2)
N2—H2···S1iii0.88 (1)2.77 (2)3.4850 (17)139 (2)
O2—H2A···N10.84 (1)2.00 (2)2.690 (2)140 (3)
C2—H2···Cg2iv0.932.933.6451 (15)135
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y+2, z+2; (iv) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3'···S1i0.871 (9)2.839 (17)3.4382 (17)127.4 (16)
N2—H2'···O2ii0.879 (10)2.48 (2)3.094 (2)127.0 (19)
N2—H2'···S1iii0.879 (10)2.774 (17)3.4850 (17)139 (2)
O2—H2A···N10.840 (10)2.00 (2)2.690 (2)140 (3)
C2—H2···Cg2iv0.932.933.6451 (15)135
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y+2, z+2; (iv) x+2, y, z+1.
 

Acknowledgements

NRS thanks the Council of Scientific and Industrial Research (India) for a Junior Research Fellowship. MRPK thanks the University Grants Commission, New Delhi, for a UGC–BSR one-time grant to faculty. The authors thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements and NMR data.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoradi-Shoeili, Z., Boghaei, D. M., Amini, M. & Notash, B. (2013). Inorg. Chem. Commun. 27, 26–30.  CAS Google Scholar
First citationNisha, K., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. A. A. A. A., Crouse, K. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o988–o989.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o112-o113
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds