organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-N-[(R)-2,2-Di­chloro-1-phenyl-2-(phenyl­sulfon­yl)eth­yl]-2-methyl­propane-2-sulfinamide

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn

(Received 9 December 2013; accepted 30 December 2013; online 8 January 2014)

The title mol­ecule, C18H21Cl2NO3S2, contains one chiral carbon center and the absolute sterochemistry has been confirmed as as R. An intra­molecular N—H⋯O hydrogen bond occurs and the dihedral angle between the benzene rings is 64.5 (1)°. In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a zigzag chain structure extending along the c-axis direction.

Related literature

For the use of β-amino sulfones as enzyme inhibitors, see: Tamamura et al. (2003[Tamamura, H., Koh, Y., Ueda, S., Sasaki, Y., Yamasaki, T., Aoki, M., Maeda, K., Watai, Y., Arikuni, Y., Otaka, A., Mitsuya, H. & Fujii, N. (2003). J. Med. Chem. 46, 1764-1768.]); Nakatani et al. (2008[Nakatani, S., Hidaka, K., Ami, E., Nakahara, K., Sato, A., Nguyen, J.-T., Hamada, Y., Hori, Y., Ohnishi, N., Nagai, A., Kimura, T., Hayashi, Y. & Kiso, Y. (2008). J. Med. Chem. 51, 2992-3004.]); Raja et al. (2009[Raja, S. N., Surber, B. W., Du, J. & Cross, J. L. (2009). J. Labelled Compd. Radiopharm. 52, 98-102.]). For their use as synthetic inter­mediates, see: Pauly et al. (1994[Pauly, R., Sasaki, A. & Portier, P. (1994). Tetrahedron Lett. 35, 237-240.]); de Blas et al. (1994[Blas, J. de, Carretero, J. C. & Dominguez, E. (1994). Tetrahedron Lett. 35, 4603-4606.]); Carretero et al. (1997[Carretero, J. C., Arrayas, R. G. & Storch de Garcia, J. (1997). Tetrahedron Lett. 38, 8537-8540.]); Alonso et al. (1997[Alonso, D. A., Costa, A., Mancheno, B. & Najera, C. (1997). Tetrahedron, 53, 4791-4814.]). For their synthesis, see: Zhang et al. (2011[Zhang, H., Li, Y., Xu, W., Zheng, W., Zhou, P. & Sun, Z. (2011). Org. Biomol. Chem. 9, 6502-6505.]). For the fluorinated analogue, see: Li & Hu (2005[Li, Y. & Hu, J. (2005). Angew. Chem. Int. Ed. 44, 5882-5886.]); Liu & Hu (2010[Liu, J. & Hu, J. (2010). Chem.-Eur. J. 16, 11443-11454.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21Cl2NO3S2

  • Mr = 434.38

  • Orthorhombic, P 21 21 21

  • a = 7.924 (2) Å

  • b = 14.772 (4) Å

  • c = 18.151 (5) Å

  • V = 2124.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.39 × 0.30 × 0.26 mm

Data collection
  • Bruker CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.743, Tmax = 1.000

  • 11625 measured reflections

  • 4174 independent reflections

  • 3834 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 0.99

  • 4174 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]: 1786 Friedel pairs

  • Absolute structure parameter: −0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.44 3.236 (4) 144
N1—H1⋯O2 0.81 (3) 2.19 (3) 2.889 (3) 145 (3)
Symmetry code: (i) [-x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The β-amino sulfone motif is of significant importance because it was found to play important roles in a variety of bioactive compounds (Tamamura et al., 2003; Nakatani et al., 2008). Besides, β-amino sulfones are valuable intermediates in the preparation of a wide variety of interesting compounds (Pauly et al., 1994; Zhang et al., 2011). Herein, we report the crystal structure of a α,α-dichloro-β-amino sulfone, the title compound, C18H21Cl2NO3S2, which may find potential use in the synthesis of bioactive compounds.

In this compound (Fig. 1), the benzene rings A (C3–C8) and B (C13-C18) are planar with r. m. s. deviations of 0.0053 Å and 0.0050 Å, respectively. The dihedral angle between A and B is 64.5 (1)°. An intramolecular N1—H···O2 hydrogen-bonding interaction is present while a weak intermolecular C17—H···O1i hydrogen bond (Table 1, Figs. 2,3) results in a one-dimensional zigzag chain structure extending along c. Present also are 40 Å3 solvent accessible voids. The absolute configuration at the chiral centre [C2(R)] has been confirmed [absolute structure parameter = -0.04 (6) for 1786 Friedel pairs] (Flack, 1983).

Related literature top

For the use of β-amino sulfones as enzyme inhibitors, see: Tamamura et al. (2003); Nakatani et al. (2008); Raja et al. (2009). For their use as synthetic intermediates, see: Pauly et al. (1994); de Blas et al. (1994); Carretero et al. (1997); Alonso et al. (1997). For their synthesis, see: Zhang et al. (2011). For the fluorinated analogue, see: Li & Hu (2005); Liu & Hu (2010).

Experimental top

Sodium bis(trimethylsilyl)amide (1.2 mmol, 1M in THF) was added slowly to a reaction mixture of (Rs)-N-benzylidene-2-methylpropane-2-sulfinamide (209 mg, 1.0 mmol) and (dichloromethylsulfonyl)benzene (225 mg, 1.0 mmol) in THF at 203 K. The mixture was stirred for 1 h at this temperature and then quenched with 1M HCl. The quenched mixture was extracted with EtOAc. After removal of the solvent, the residue was subjected to flash colume chromatography to give the title compound (226 mg: yield, 52%). The obtained compound was recrystallized from ethyl acetate/hexane (1:1) to give colorless crystals.

Refinement top

All the H atoms of the phenyl groups were placed at calculated positions and treated as riding on the parent atoms, with Uiso(H) = 1.2Ueq(C). The methyl H atoms were placed at calculated positions and allowed to rotate, with Uiso(H) = 1.5Ueq(C). The H atoms of the amide group were located in a difference-Fourier map and refined isotropically. The absolute structure parameter [-0.04 (6); Flack, 1983) at the chiral center (C2) has been confirmed as R (1786 Friedel pairs).

Structure description top

The β-amino sulfone motif is of significant importance because it was found to play important roles in a variety of bioactive compounds (Tamamura et al., 2003; Nakatani et al., 2008). Besides, β-amino sulfones are valuable intermediates in the preparation of a wide variety of interesting compounds (Pauly et al., 1994; Zhang et al., 2011). Herein, we report the crystal structure of a α,α-dichloro-β-amino sulfone, the title compound, C18H21Cl2NO3S2, which may find potential use in the synthesis of bioactive compounds.

In this compound (Fig. 1), the benzene rings A (C3–C8) and B (C13-C18) are planar with r. m. s. deviations of 0.0053 Å and 0.0050 Å, respectively. The dihedral angle between A and B is 64.5 (1)°. An intramolecular N1—H···O2 hydrogen-bonding interaction is present while a weak intermolecular C17—H···O1i hydrogen bond (Table 1, Figs. 2,3) results in a one-dimensional zigzag chain structure extending along c. Present also are 40 Å3 solvent accessible voids. The absolute configuration at the chiral centre [C2(R)] has been confirmed [absolute structure parameter = -0.04 (6) for 1786 Friedel pairs] (Flack, 1983).

For the use of β-amino sulfones as enzyme inhibitors, see: Tamamura et al. (2003); Nakatani et al. (2008); Raja et al. (2009). For their use as synthetic intermediates, see: Pauly et al. (1994); de Blas et al. (1994); Carretero et al. (1997); Alonso et al. (1997). For their synthesis, see: Zhang et al. (2011). For the fluorinated analogue, see: Li & Hu (2005); Liu & Hu (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. Intramolecular N—H···O and intermolecular C—H···O interactions in the title compound, shown as dashed lines. For symmetry code a: -x - 1/2, -y, z - 1/2.
[Figure 3] Fig. 3. The zigzag chain formed via intermolecular C—H···O interactions, viewed along the b axis. The intramolecular hydrogen bonds are omitted for clarity.
(R)-N-[(R)-2,2-Dichloro-1-phenyl-2-(phenylsulfonyl)ethyl]-2-methylpropane-2-sulfinamide top
Crystal data top
C18H21Cl2NO3S2F(000) = 904
Mr = 434.38Dx = 1.358 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4807 reflections
a = 7.924 (2) Åθ = 5.3–51.2°
b = 14.772 (4) ŵ = 0.52 mm1
c = 18.151 (5) ÅT = 293 K
V = 2124.6 (10) Å3Prismatic, colorless
Z = 40.39 × 0.30 × 0.26 mm
Data collection top
Bruker CCD area-detector
diffractometer
4174 independent reflections
Radiation source: fine-focus sealed tube3834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.743, Tmax = 1.000k = 1812
11625 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4174 reflectionsΔρmax = 0.28 e Å3
242 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack, 1983: 1786 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C18H21Cl2NO3S2V = 2124.6 (10) Å3
Mr = 434.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.924 (2) ŵ = 0.52 mm1
b = 14.772 (4) ÅT = 293 K
c = 18.151 (5) Å0.39 × 0.30 × 0.26 mm
Data collection top
Bruker CCD area-detector
diffractometer
4174 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3834 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 1.000Rint = 0.075
11625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.28 e Å3
S = 0.99Δρmin = 0.20 e Å3
4174 reflectionsAbsolute structure: Flack, 1983: 1786 Friedel pairs
242 parametersAbsolute structure parameter: 0.04 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31897 (9)0.05580 (5)0.41327 (3)0.04581 (18)
S20.02571 (8)0.04757 (4)0.21496 (3)0.03700 (15)
Cl10.30446 (8)0.00843 (5)0.15767 (3)0.04829 (18)
Cl20.05808 (9)0.14312 (4)0.19785 (4)0.05009 (18)
N10.2849 (3)0.04579 (15)0.32217 (10)0.0382 (5)
O10.1580 (3)0.0660 (2)0.45195 (11)0.0862 (8)
O20.0522 (2)0.13428 (12)0.22302 (11)0.0505 (5)
O30.1488 (2)0.01835 (13)0.26710 (9)0.0501 (5)
C10.1468 (3)0.03735 (16)0.22190 (13)0.0356 (5)
C20.2123 (3)0.04217 (15)0.30187 (12)0.0350 (5)
H20.11560.05370.33420.042*
C30.3408 (3)0.11663 (16)0.31436 (12)0.0350 (5)
C40.5097 (3)0.10324 (17)0.29887 (13)0.0392 (6)
H40.54580.04770.28050.047*
C50.6241 (4)0.17113 (19)0.31038 (14)0.0481 (7)
H50.73730.16160.29930.058*
C60.5737 (4)0.2531 (2)0.33810 (17)0.0584 (8)
H60.65220.29900.34560.070*
C70.4087 (5)0.2670 (2)0.3544 (2)0.0658 (9)
H70.37420.32250.37320.079*
C80.2916 (4)0.19900 (19)0.34330 (16)0.0534 (7)
H80.17900.20880.35540.064*
C90.4166 (4)0.16808 (18)0.41012 (14)0.0459 (7)
C100.5815 (4)0.1612 (2)0.3691 (2)0.0754 (10)
H10A0.56000.14510.31880.113*
H10B0.65090.11570.39160.113*
H10C0.63860.21850.37080.113*
C110.4464 (5)0.1909 (2)0.49142 (18)0.0764 (10)
H11A0.50330.24810.49510.115*
H11B0.51460.14460.51360.115*
H11C0.33990.19430.51650.115*
C120.2961 (5)0.2359 (2)0.37614 (17)0.0702 (10)
H12A0.33460.29620.38650.105*
H12B0.18550.22760.39660.105*
H12C0.29200.22700.32380.105*
C130.1098 (3)0.04079 (18)0.12566 (13)0.0391 (6)
C140.0407 (4)0.0949 (2)0.07116 (15)0.0514 (7)
H140.05390.13050.08030.062*
C150.1168 (4)0.0943 (3)0.00274 (17)0.0673 (9)
H150.07240.12920.03520.081*
C160.2563 (4)0.0429 (2)0.00949 (16)0.0656 (9)
H160.30570.04320.05600.079*
C170.3265 (4)0.0098 (2)0.04547 (17)0.0581 (8)
H170.42270.04410.03640.070*
C180.2513 (3)0.01063 (19)0.11397 (15)0.0463 (6)
H180.29610.04560.15180.056*
H10.237 (3)0.0892 (18)0.3050 (14)0.041 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0602 (4)0.0465 (4)0.0308 (3)0.0052 (3)0.0030 (3)0.0027 (3)
S20.0334 (3)0.0386 (3)0.0389 (3)0.0012 (3)0.0006 (2)0.0038 (3)
Cl10.0409 (3)0.0641 (4)0.0399 (3)0.0035 (3)0.0099 (3)0.0063 (3)
Cl20.0535 (4)0.0381 (3)0.0587 (4)0.0048 (3)0.0079 (3)0.0113 (3)
N10.0503 (13)0.0327 (11)0.0316 (10)0.0010 (11)0.0046 (9)0.0017 (9)
O10.0792 (15)0.126 (2)0.0538 (12)0.0324 (16)0.0265 (12)0.0116 (13)
O20.0522 (11)0.0372 (10)0.0621 (12)0.0006 (9)0.0135 (10)0.0033 (8)
O30.0396 (9)0.0694 (13)0.0412 (9)0.0064 (9)0.0068 (8)0.0025 (9)
C10.0339 (12)0.0355 (13)0.0375 (12)0.0035 (10)0.0007 (10)0.0024 (10)
C20.0373 (12)0.0343 (12)0.0334 (11)0.0039 (11)0.0056 (10)0.0023 (10)
C30.0373 (13)0.0325 (13)0.0352 (12)0.0022 (10)0.0024 (10)0.0008 (10)
C40.0414 (14)0.0402 (14)0.0360 (13)0.0010 (11)0.0054 (11)0.0002 (11)
C50.0435 (15)0.0576 (18)0.0433 (14)0.0084 (13)0.0014 (12)0.0091 (13)
C60.063 (2)0.0442 (17)0.0677 (19)0.0158 (15)0.0101 (16)0.0060 (15)
C70.073 (2)0.0365 (16)0.088 (2)0.0026 (15)0.0091 (19)0.0145 (15)
C80.0458 (16)0.0450 (16)0.0693 (18)0.0078 (14)0.0022 (15)0.0114 (14)
C90.0569 (17)0.0404 (15)0.0403 (14)0.0007 (13)0.0041 (12)0.0078 (11)
C100.064 (2)0.077 (2)0.085 (2)0.024 (2)0.0075 (18)0.0120 (19)
C110.103 (3)0.071 (2)0.0547 (18)0.001 (2)0.025 (2)0.0192 (17)
C120.112 (3)0.0453 (17)0.0533 (17)0.0220 (19)0.0169 (19)0.0043 (14)
C130.0370 (13)0.0429 (14)0.0373 (12)0.0088 (12)0.0010 (10)0.0008 (11)
C140.0466 (15)0.0557 (17)0.0520 (17)0.0031 (15)0.0024 (13)0.0057 (13)
C150.071 (2)0.087 (2)0.0443 (17)0.017 (2)0.0021 (16)0.0115 (16)
C160.073 (2)0.080 (2)0.0440 (15)0.022 (2)0.0168 (15)0.0116 (17)
C170.0516 (16)0.0634 (19)0.0594 (17)0.0085 (16)0.0146 (15)0.0173 (15)
C180.0428 (14)0.0472 (15)0.0489 (15)0.0021 (13)0.0045 (12)0.0064 (12)
Geometric parameters (Å, º) top
S1—O11.464 (2)C8—H80.9300
S1—N11.682 (2)C9—C101.507 (4)
S1—C91.831 (3)C9—C121.516 (4)
S2—O31.4258 (18)C9—C111.532 (4)
S2—O21.4296 (19)C10—H10A0.9600
S2—C131.755 (2)C10—H10B0.9600
S2—C11.860 (3)C10—H10C0.9600
Cl1—C11.761 (2)C11—H11A0.9600
Cl2—C11.768 (2)C11—H11B0.9600
N1—C21.468 (3)C11—H11C0.9600
N1—H10.81 (3)C12—H12A0.9600
C1—C21.543 (3)C12—H12B0.9600
C2—C31.516 (3)C12—H12C0.9600
C2—H20.9800C13—C181.371 (4)
C3—C81.381 (4)C13—C141.385 (4)
C3—C41.382 (3)C14—C151.381 (4)
C4—C51.368 (4)C14—H140.9300
C4—H40.9300C15—C161.359 (5)
C5—C61.371 (4)C15—H150.9300
C5—H50.9300C16—C171.382 (5)
C6—C71.356 (5)C16—H160.9300
C6—H60.9300C17—C181.379 (4)
C7—C81.382 (4)C17—H170.9300
C7—H70.9300C18—H180.9300
O1—S1—N1109.91 (13)C10—C9—C12112.9 (3)
O1—S1—C9106.88 (15)C10—C9—C11110.9 (3)
N1—S1—C996.71 (11)C12—C9—C11110.1 (3)
O3—S2—O2119.92 (12)C10—C9—S1108.7 (2)
O3—S2—C13109.64 (12)C12—C9—S1110.2 (2)
O2—S2—C13108.03 (12)C11—C9—S1103.6 (2)
O3—S2—C1104.70 (11)C9—C10—H10A109.5
O2—S2—C1106.24 (11)C9—C10—H10B109.5
C13—S2—C1107.65 (11)H10A—C10—H10B109.5
C2—N1—S1112.80 (16)C9—C10—H10C109.5
C2—N1—H1115.1 (19)H10A—C10—H10C109.5
S1—N1—H1112.7 (19)H10B—C10—H10C109.5
C2—C1—Cl1113.30 (16)C9—C11—H11A109.5
C2—C1—Cl2108.97 (16)C9—C11—H11B109.5
Cl1—C1—Cl2109.45 (13)H11A—C11—H11B109.5
C2—C1—S2110.00 (16)C9—C11—H11C109.5
Cl1—C1—S2108.24 (12)H11A—C11—H11C109.5
Cl2—C1—S2106.66 (12)H11B—C11—H11C109.5
N1—C2—C3110.0 (2)C9—C12—H12A109.5
N1—C2—C1109.09 (18)C9—C12—H12B109.5
C3—C2—C1113.58 (19)H12A—C12—H12B109.5
N1—C2—H2108.0C9—C12—H12C109.5
C3—C2—H2108.0H12A—C12—H12C109.5
C1—C2—H2108.0H12B—C12—H12C109.5
C8—C3—C4118.5 (2)C18—C13—C14122.2 (2)
C8—C3—C2120.5 (2)C18—C13—S2119.0 (2)
C4—C3—C2121.1 (2)C14—C13—S2118.5 (2)
C5—C4—C3120.4 (2)C15—C14—C13117.7 (3)
C5—C4—H4119.8C15—C14—H14121.1
C3—C4—H4119.8C13—C14—H14121.1
C4—C5—C6120.7 (3)C16—C15—C14120.4 (3)
C4—C5—H5119.6C16—C15—H15119.8
C6—C5—H5119.6C14—C15—H15119.8
C7—C6—C5119.6 (3)C15—C16—C17121.6 (3)
C7—C6—H6120.2C15—C16—H16119.2
C5—C6—H6120.2C17—C16—H16119.2
C6—C7—C8120.4 (3)C18—C17—C16118.8 (3)
C6—C7—H7119.8C18—C17—H17120.6
C8—C7—H7119.8C16—C17—H17120.6
C3—C8—C7120.4 (3)C13—C18—C17119.2 (3)
C3—C8—H8119.8C13—C18—H18120.4
C7—C8—H8119.8C17—C18—H18120.4
O1—S1—N1—C272.4 (2)C4—C5—C6—C70.2 (4)
C9—S1—N1—C2176.92 (18)C5—C6—C7—C80.0 (5)
O3—S2—C1—C256.98 (18)C4—C3—C8—C71.8 (4)
O2—S2—C1—C270.87 (18)C2—C3—C8—C7179.8 (3)
C13—S2—C1—C2173.60 (16)C6—C7—C8—C31.0 (5)
O3—S2—C1—Cl1178.74 (12)O1—S1—C9—C10178.7 (2)
O2—S2—C1—Cl153.41 (15)N1—S1—C9—C1065.5 (2)
C13—S2—C1—Cl162.12 (15)O1—S1—C9—C1254.5 (2)
O3—S2—C1—Cl261.06 (14)N1—S1—C9—C1258.8 (2)
O2—S2—C1—Cl2171.09 (12)O1—S1—C9—C1163.3 (2)
C13—S2—C1—Cl255.56 (15)N1—S1—C9—C11176.5 (2)
S1—N1—C2—C368.1 (2)O3—S2—C13—C1817.1 (2)
S1—N1—C2—C1166.75 (16)O2—S2—C13—C18149.4 (2)
Cl1—C1—C2—N158.3 (2)C1—S2—C13—C1896.3 (2)
Cl2—C1—C2—N1179.58 (16)O3—S2—C13—C14156.5 (2)
S2—C1—C2—N163.0 (2)O2—S2—C13—C1424.2 (2)
Cl1—C1—C2—C364.7 (2)C1—S2—C13—C1490.2 (2)
Cl2—C1—C2—C357.4 (2)C18—C13—C14—C151.6 (4)
S2—C1—C2—C3173.99 (16)S2—C13—C14—C15174.9 (2)
N1—C2—C3—C8140.1 (2)C13—C14—C15—C160.9 (4)
C1—C2—C3—C897.3 (3)C14—C15—C16—C170.2 (5)
N1—C2—C3—C438.3 (3)C15—C16—C17—C180.7 (5)
C1—C2—C3—C484.2 (3)C14—C13—C18—C171.0 (4)
C8—C3—C4—C51.6 (4)S2—C13—C18—C17174.3 (2)
C2—C3—C4—C5179.9 (2)C16—C17—C18—C130.1 (4)
C3—C4—C5—C60.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.443.236 (4)144
N1—H1···O20.81 (3)2.19 (3)2.889 (3)145 (3)
N1—H1···S20.81 (3)2.72 (3)3.138 (2)114 (2)
Symmetry code: (i) x1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.443.236 (4)144.2
N1—H1···O20.81 (3)2.19 (3)2.889 (3)145 (3)
Symmetry code: (i) x1/2, y, z1/2.
 

Acknowledgements

The Innovation Program of Shanghai Municipal Education Commission (12YZ155) and the Innovation Program of National University Students (201310856014) are gratefully acknowledged.

References

First citationAlonso, D. A., Costa, A., Mancheno, B. & Najera, C. (1997). Tetrahedron, 53, 4791–4814.  CrossRef CAS Web of Science Google Scholar
First citationBlas, J. de, Carretero, J. C. & Dominguez, E. (1994). Tetrahedron Lett. 35, 4603–4606.  CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarretero, J. C., Arrayas, R. G. & Storch de Garcia, J. (1997). Tetrahedron Lett. 38, 8537–8540.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Y. & Hu, J. (2005). Angew. Chem. Int. Ed. 44, 5882–5886.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J. & Hu, J. (2010). Chem.-Eur. J. 16, 11443–11454.  CAS Google Scholar
First citationNakatani, S., Hidaka, K., Ami, E., Nakahara, K., Sato, A., Nguyen, J.-T., Hamada, Y., Hori, Y., Ohnishi, N., Nagai, A., Kimura, T., Hayashi, Y. & Kiso, Y. (2008). J. Med. Chem. 51, 2992–3004.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPauly, R., Sasaki, A. & Portier, P. (1994). Tetrahedron Lett. 35, 237–240.  CrossRef CAS Web of Science Google Scholar
First citationRaja, S. N., Surber, B. W., Du, J. & Cross, J. L. (2009). J. Labelled Compd. Radiopharm. 52, 98–102.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamamura, H., Koh, Y., Ueda, S., Sasaki, Y., Yamasaki, T., Aoki, M., Maeda, K., Watai, Y., Arikuni, Y., Otaka, A., Mitsuya, H. & Fujii, N. (2003). J. Med. Chem. 46, 1764–1768.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, H., Li, Y., Xu, W., Zheng, W., Zhou, P. & Sun, Z. (2011). Org. Biomol. Chem. 9, 6502–6505.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds