metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m88-m89

Bis(η5-penta­methyl­cyclo­penta­dien­yl)aluminium tetra­bromido­aluminate

aNaval Research Laboratory, Chemistry Division, Code 6100, 4555 Overlook Av, SW, Washington, DC 20375, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 25 November 2013; accepted 4 February 2014; online 8 February 2014)

The title compound, [Al(C10H15)2][AlBr4], was formed during the reduction of a mixture of Cp*AlBr2 and AlBr3. The AlIII atoms of the two crystallographically independent cations each lie on an inversion center, and the [AlBr4] anions are on general positions. At 123 K, the structure exhibits disorder in two of the Br atoms of the [AlBr4] ion, with a ratio occupancy of 0.733 (6): 0.267 (3). In the crystal, there is possible weak hydrogen bonding between some methyl groups and Br atoms. The interactions link the moieties in a three-dimensional array.

Related literature

For the tetra­chlorido­aluminate analog of the title compound, see: Macdonald et al. (2008[Macdonald, C. L. B., Gorden, J. D., Voigt, A., Filipponi, S. & Cowley, A. H. (2008). Dalton Trans. pp. 1161-1176.]); Schurko et al. (2002[Schurko, R. W., Hung, I., Macdonald, C. L. B. & Cowley, A. H. (2002). J. Am. Chem. Soc. 124, 13204-13214.]). For the formation of the Cp*2Al+ (deca­methyl­aluminocenium) cation starting from (AlCp*)4, see: Dohmeier et al. (1993[Dohmeier, C., Schnöckel, H., Schneider, U., Ahlrichs, R. & Robl, C. (1993). Angew. Chem. Int. Ed. Engl. 32, 1655-1657.]); Üffing et al. (1998[Üffing, C., Baum, E., Köppe, R. & Schnöckel, H. (1998). Angew. Chem. Int. Ed. 37, 2397-2400.]). For the formation of Cp*2Al+ starting from Cp*2AlX, see: Schurko et al. (2002[Schurko, R. W., Hung, I., Macdonald, C. L. B. & Cowley, A. H. (2002). J. Am. Chem. Soc. 124, 13204-13214.]). For other compounds containing this ion, see: Üffing et al. (1999[Üffing, C., Ecker, A., Baum, E. & Schnöckel, H. (1999). Z. Anorg. Allg. Chem. 625, 1354-1356.]); Kruczyński et al. (2012[Kruczyński, T., Pushkarevsky, N., Henke, P., Köppe, R., Baum, E., Konchenko, S., Pikies, J. & Schnöckel, H. (2012). Angew. Chem. Int. Ed. 51, 9025-9029.]); Vollet et al. (2006[Vollet, J., Hartig, J. R., Baranowska, K. & Schnöckel, H. (2006). Organometallics, 25, 2101-2103.]); Burns et al. (1999[Burns, C. T., Stelck, D. S., Shapiro, P. J., Vij, A., Kunz, K., Kehr, G., Concolino, T. & Rheingold, A. L. (1999). Organometallics, 18, 5432-5434.]). For the production of (Cp*Al)4 by alkali metal reduction of Cp*AlX2, see: Schormann et al. (2001[Schormann, M., Klimek, K. S., Hatop, H., Varkey, S. P., Roesky, H. W., Lehmann, C., Röpken, C., Herbst-Irmer, R. & Noltemeyer, M. (2001). J. Solid State Chem. 162, 225-236.]); Minasian & Arnold (2008[Minasian, S. G. & Arnold, J. (2008). Chem. Commun. pp. 4043-4045.]). For larger Al clusters containing the Cp* ligand, which have so far only been obtained from reactions between "AlX" and Cp* organometallics, see: Vollet et al. (2004[Vollet, J., Hartig, J. R. & Schnöckel, H. (2004). Angew. Chem. Int. Ed. 43, 3186-3189.], 2005[Vollet, J., Burgert, R. & Schnöckel, H. (2005). Angew. Chem. Int. Ed. 44, 6956-6960.]).

[Scheme 1]

Experimental

Crystal data
  • [Al(C10H15)2][AlBr4]

  • Mr = 644.04

  • Triclinic, [P \overline 1]

  • a = 7.8152 (4) Å

  • b = 9.2949 (4) Å

  • c = 17.5420 (8) Å

  • α = 85.394 (4)°

  • β = 85.107 (4)°

  • γ = 82.659 (4)°

  • V = 1256.12 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.48 mm−1

  • T = 123 K

  • 0.75 × 0.28 × 0.14 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.116, Tmax = 0.506

  • 19757 measured reflections

  • 9539 independent reflections

  • 5959 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.072

  • S = 0.91

  • 9539 reflections

  • 256 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7AA⋯Br3Bi 0.98 3.03 3.886 (4) 146
C9A—H9AC⋯Br3A 0.98 3.04 3.773 (8) 133
C10A—H10E⋯Br3A 0.98 3.05 4.007 (7) 165
C9B—H9BB⋯Br1 0.98 2.95 3.770 (3) 141
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Experimental top

Synthesis and crystallization top

The starting material Cp*AlBr2 was prepared as previously reported (Schormann et al., 2001), and all compounds were handled in an Ar filled dry box or Schlenk glassware. Aluminium tribromide (0.4367 g, 1.63 mmol) was combined with Cp*AlBr2 (0.1607 g, 0.50 mmol) in about 10 mL of dry toluene, and NaK2 eutectic (0.2002 g, 1.97 mmol) was added. The Kontes valve on the tube was closed and the tube sonicated for 1 day in an ordinary sonic cleaner. Inside the dry box, the mixture was filtered to afford a yellow solution, which was pumped to dryness, affording 0.0619 g of raw product. Recrystallization from heptane by slow evaporation produced crystals of the title compound. 27Al-NMR of product [reference: Al(NO3)3 in HNO3 acidified water = 0 ppm]: -114.4 (Cp*2Al+), 80.4 ppm (AlBr4-).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The bromine atoms Br3 and Br4 are disordered over two positions with occupancies of 0.733 (6) and 0.267 (6), respectively. These Br's along with Br1 and Br2 were restrained to be tetra­hedral, i.e. Br1/Br2/Br3a/Br4a as one tetra­hedral set and Br1/Br2/Br3b/Br4b as another tetra­hedral set. The H atoms were placed in idealized positions, with CH3 groups as rigid groups free to rotate and C—H bond lengths constrained to 0.98 Å.

Results and discussion top

The cluster compound (AlCp*)4 is easily made from alkali metal reduction of Cp*AlX2 (X=Cl, Br, I) compounds (Schormann et al., 2001; Minasian & Arnold, 2008), but larger Cp*Al clusters have only been reported from syntheses that start with Al(I) halide clusters, and that starting material requires a difficult and expensive apparatus to synthesize (Vollet et al., 2004, 2005). We attempted to prepare larger clusters by alkali reduction of mixtures of Cp*AlBr2 and AlBr3 in toluene. The soluble portion of the reaction mixture was recrystallized to afford the colorless title compound (Fig. 1). Other unidentified species with a broad 27Al-NMR peak at -20 ppm and a sharp peak at 97 ppm were also present, in addition to Cp*2Al + AlBr4-.

Deca­methyl­aluminocenium tetra­bromo­aluminate has 1/2 of two Cp*2Al+ cations in its asymmetric unit, as the two cations are crystallographically independent. As is normal for this cation, the Al atom is linear with the centroids of both rings, with the methyl groups staggered, and the linearity is in this case by symmetry. The two distinct deca­methyl­aluminocenium cations are tilted with respect to each other as the dihedral angle between the ring planes of the two cations is 47.51°. This is in contrast with the AlCl4- analog (Schurko et al., 2002; Macdonald et al., 2008), which has two whole molecules in its unit cell, dihedral angles of 43.45-43.98° between the various Cp* ring planes, and near, but not exact, linearity of the centroids of the Cp* rings and their sandwiched Al atoms. The Cp*2Al+ cation has also been reported in other compounds (Üffing et al., 1999; Kruczyński et al., 2012; Vollet et al., 2006; Burns et al., 1999). The AlBr4- anion shows disorder in two of the bromine atoms, and there appears to be weak hydrogen bonding inter­actions between some of the methyl protons and Br1 and Br3 (Fig. 2). While the angle between the undisordered Br atoms and Al3 (Br1—Al3—Br2) of 109.71 (4)° is close to the ideal tetra­hedral angle of 109.5°, not much can really be said about the angles to the disordered Br atoms except that the geometry is approximately tetra­hedral.

Based on other reports of Cp*2Al+ formation (Dohmeier et al., 1993; Üffing et al., 1998), we presume that inter­actions between (AlCp*)4 and AlBr3 is probably responsible for the formation of the title compound. A repeat of the same reduction reaction at 0 °C resulted in (AlCp*)4 as the only soluble Al-containing product, based on its 27Al-NMR peak at -80.7 ppm.

Related literature top

For the tetrachloridoaluminate analog of the title compound, see: Macdonald et al. (2008); Schurko et al. (2002). For the formation of the Cp*2Al+ (decamethylaluminocenium) cation starting from (AlCp*)4, see: Dohmeier et al. (1993); Üffing et al. (1998). For the formation of Cp*2Al+ starting from Cp*2AlX, see: Schurko et al. (2002). For other compounds containing this ion, see: Üffing et al. (1999); Kruczyński et al. (2012); Vollet et al. (2006); Burns et al. (1999). This ion appears to be a thermodynamic or kinetic sink in Cp*-aluminium chemistry. For the production of (Cp*Al)4 by alkali metal reduction of Cp*AlX2, see: Schormann et al. (2001); Minasian & Arnold (2008). For larger Al clusters containing the Cp* ligand, which have so far only been obtained from reactions between "AlX" and Cp* organometallics, see: Vollet et al. (2004, 2005).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title compound. Both nonequivalent decamethylaluminocenium cations placed on inversion centers are shown. Disordered atoms Br3b and Br4b have been omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing the crystal structure and the hydrogen bonding scheme (dashed lines).
Bis(η5-pentamethylcyclopentadienyl)aluminium tetrabromidoaluminate top
Crystal data top
[Al(C10H15)2][AlBr4]Z = 2
Mr = 644.04F(000) = 632
Triclinic, P1Dx = 1.703 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8152 (4) ÅCell parameters from 5355 reflections
b = 9.2949 (4) Åθ = 3.1–40.9°
c = 17.5420 (8) ŵ = 6.48 mm1
α = 85.394 (4)°T = 123 K
β = 85.107 (4)°Prism, colorless
γ = 82.659 (4)°0.75 × 0.28 × 0.14 mm
V = 1256.12 (10) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9539 independent reflections
Radiation source: Enhance (Mo) X-ray Source5959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.5081 pixels mm-1θmax = 33.1°, θmin = 3.1°
ω scansh = 129
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1414
Tmin = 0.116, Tmax = 0.506l = 2326
19757 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
9539 reflectionsΔρmax = 1.58 e Å3
256 parametersΔρmin = 1.29 e Å3
24 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00092 (12)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Al(C10H15)2][AlBr4]γ = 82.659 (4)°
Mr = 644.04V = 1256.12 (10) Å3
Triclinic, P1Z = 2
a = 7.8152 (4) ÅMo Kα radiation
b = 9.2949 (4) ŵ = 6.48 mm1
c = 17.5420 (8) ÅT = 123 K
α = 85.394 (4)°0.75 × 0.28 × 0.14 mm
β = 85.107 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
9539 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5959 reflections with I > 2σ(I)
Tmin = 0.116, Tmax = 0.506Rint = 0.038
19757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04324 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.91Δρmax = 1.58 e Å3
9539 reflectionsΔρmin = 1.29 e Å3
256 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.96698 (4)0.21881 (3)0.25435 (2)0.03406 (8)
Br20.65528 (4)0.55941 (4)0.27080 (2)0.03666 (9)
Br3A0.9871 (7)0.5256 (8)0.1151 (4)0.0541 (4)0.267 (6)
Br4A1.0853 (5)0.5280 (4)0.3398 (3)0.0544 (4)0.267 (6)
Br3B1.0273 (3)0.5371 (3)0.11613 (15)0.0541 (4)0.733 (6)
Br4B1.1204 (2)0.55802 (18)0.31528 (14)0.0544 (4)0.733 (6)
Al10.50001.00000.00000.0211 (2)
Al20.50000.00000.50000.0181 (2)
Al30.93792 (11)0.46832 (9)0.24082 (5)0.02554 (19)
C1A0.6158 (4)1.1583 (3)0.05506 (15)0.0267 (6)
C2A0.6105 (4)1.2014 (3)0.02423 (15)0.0251 (6)
C3A0.7084 (4)1.0894 (3)0.06667 (15)0.0243 (6)
C4A0.7753 (3)0.9763 (3)0.01345 (15)0.0247 (6)
C5A0.7184 (4)1.0177 (3)0.06290 (15)0.0248 (6)
C6A0.5357 (4)1.2443 (3)0.12124 (16)0.0364 (8)
H6AA0.61881.30540.13620.055*
H6AB0.50481.17740.16480.055*
H6AC0.43151.30610.10570.055*
C7A0.5193 (4)1.3404 (3)0.05916 (17)0.0338 (7)
H7AA0.60121.41220.06980.051*
H7AB0.42411.37810.02330.051*
H7AC0.47311.32130.10710.051*
C8A0.7364 (4)1.0949 (3)0.15239 (15)0.0311 (7)
H8AA0.82851.15510.16940.047*
H8AB0.62921.13680.17500.047*
H8AC0.77000.99620.16880.047*
C9A0.8866 (4)0.8369 (3)0.03221 (16)0.0298 (6)
H9AA1.00490.84110.01870.045*
H9AB0.88770.82440.08720.045*
H9AC0.83950.75470.00290.045*
C10A0.7629 (4)0.9341 (3)0.13688 (16)0.0320 (7)
H10D0.85950.97300.15700.048*
H10E0.79620.83130.12770.048*
H10F0.66210.94340.17420.048*
C1B0.6860 (3)0.0207 (3)0.58074 (15)0.0217 (5)
C2B0.6425 (3)0.1248 (3)0.58812 (15)0.0230 (6)
C3B0.6905 (3)0.1866 (3)0.51579 (15)0.0222 (5)
C4B0.7604 (3)0.0790 (3)0.46392 (15)0.0217 (5)
C5B0.7598 (3)0.0501 (3)0.50399 (15)0.0215 (5)
C6B0.6614 (4)0.1239 (3)0.64341 (16)0.0324 (7)
H6BA0.75710.10210.67680.049*
H6BB0.55180.11310.67360.049*
H6BC0.65930.22400.62080.049*
C7B0.5666 (4)0.1986 (3)0.65955 (16)0.0315 (7)
H7BA0.65850.23380.69350.047*
H7BB0.51100.28100.64620.047*
H7BC0.48050.12950.68570.047*
C8B0.6735 (4)0.3398 (3)0.49793 (18)0.0327 (7)
H8BA0.78240.40190.50610.049*
H8BB0.64700.34050.44440.049*
H8BC0.58000.37670.53170.049*
C9B0.8314 (3)0.0988 (3)0.38248 (15)0.0290 (6)
H9BA0.95740.12280.38090.043*
H9BB0.80250.00850.35090.043*
H9BC0.78040.17780.36260.043*
C10B0.8249 (4)0.1886 (3)0.47134 (17)0.0288 (6)
H10A0.95090.17210.46150.043*
H10B0.79440.26370.50800.043*
H10C0.77190.22050.42320.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0522 (2)0.02018 (14)0.02845 (16)0.00475 (13)0.00479 (14)0.00135 (11)
Br20.02744 (15)0.04200 (19)0.03929 (19)0.00291 (14)0.00066 (13)0.01010 (14)
Br3A0.0598 (9)0.0352 (4)0.0534 (3)0.0103 (6)0.0309 (7)0.0184 (3)
Br4A0.0404 (5)0.0323 (5)0.0970 (10)0.0003 (4)0.0318 (6)0.0236 (6)
Br3B0.0598 (9)0.0352 (4)0.0534 (3)0.0103 (6)0.0309 (7)0.0184 (3)
Br4B0.0404 (5)0.0323 (5)0.0970 (10)0.0003 (4)0.0318 (6)0.0236 (6)
Al10.0283 (6)0.0169 (5)0.0179 (6)0.0012 (5)0.0026 (4)0.0020 (4)
Al20.0161 (5)0.0206 (5)0.0172 (5)0.0002 (4)0.0017 (4)0.0013 (4)
Al30.0259 (4)0.0191 (4)0.0315 (5)0.0011 (3)0.0023 (3)0.0029 (3)
C1A0.0390 (16)0.0183 (12)0.0230 (14)0.0020 (12)0.0037 (12)0.0032 (11)
C2A0.0374 (15)0.0168 (12)0.0210 (13)0.0038 (11)0.0037 (11)0.0016 (10)
C3A0.0314 (14)0.0207 (13)0.0211 (13)0.0052 (11)0.0003 (11)0.0015 (10)
C4A0.0288 (14)0.0223 (13)0.0228 (14)0.0035 (11)0.0005 (11)0.0008 (11)
C5A0.0327 (14)0.0227 (13)0.0197 (13)0.0026 (12)0.0070 (11)0.0008 (10)
C6A0.057 (2)0.0279 (15)0.0243 (15)0.0056 (15)0.0104 (14)0.0110 (12)
C7A0.0491 (19)0.0212 (14)0.0313 (16)0.0014 (14)0.0102 (14)0.0004 (12)
C8A0.0373 (16)0.0341 (16)0.0209 (14)0.0047 (13)0.0012 (12)0.0004 (12)
C9A0.0322 (15)0.0277 (15)0.0282 (15)0.0008 (12)0.0004 (12)0.0043 (12)
C10A0.0412 (17)0.0301 (15)0.0245 (15)0.0008 (14)0.0085 (13)0.0016 (12)
C1B0.0197 (12)0.0250 (13)0.0206 (13)0.0006 (11)0.0047 (10)0.0027 (10)
C2B0.0208 (12)0.0279 (14)0.0188 (13)0.0015 (11)0.0022 (10)0.0015 (10)
C3B0.0196 (12)0.0218 (13)0.0237 (13)0.0026 (10)0.0007 (10)0.0009 (10)
C4B0.0189 (11)0.0248 (13)0.0208 (13)0.0001 (10)0.0002 (10)0.0040 (10)
C5B0.0185 (11)0.0247 (13)0.0212 (13)0.0016 (10)0.0021 (10)0.0009 (10)
C6B0.0347 (15)0.0430 (18)0.0207 (14)0.0030 (14)0.0037 (12)0.0103 (13)
C7B0.0306 (15)0.0385 (17)0.0219 (14)0.0004 (13)0.0008 (12)0.0093 (12)
C8B0.0371 (16)0.0222 (14)0.0375 (17)0.0003 (13)0.0019 (13)0.0007 (12)
C9B0.0276 (14)0.0335 (16)0.0241 (14)0.0008 (12)0.0050 (11)0.0058 (12)
C10B0.0268 (14)0.0289 (15)0.0308 (16)0.0069 (12)0.0001 (12)0.0003 (12)
Geometric parameters (Å, º) top
Br1—Al32.2963 (9)C6A—H6AC0.9800
Br2—Al32.2952 (8)C7A—H7AA0.9800
Br3A—Al32.239 (7)C7A—H7AB0.9800
Br4A—Al32.304 (4)C7A—H7AC0.9800
Br3B—Al32.304 (2)C8A—H8AA0.9800
Br4B—Al32.2869 (14)C8A—H8AB0.9800
Al1—C4A2.129 (3)C8A—H8AC0.9800
Al1—C4Ai2.129 (3)C9A—H9AA0.9800
Al1—C3A2.139 (3)C9A—H9AB0.9800
Al1—C3Ai2.139 (3)C9A—H9AC0.9800
Al1—C5A2.140 (3)C10A—H10D0.9800
Al1—C5Ai2.140 (3)C10A—H10E0.9800
Al1—C1Ai2.153 (3)C10A—H10F0.9800
Al1—C1A2.153 (3)C1B—C2B1.429 (4)
Al1—C2A2.157 (3)C1B—C5B1.438 (4)
Al1—C2Ai2.157 (3)C1B—C6B1.501 (3)
Al2—C4Bii2.134 (2)C2B—C3B1.436 (3)
Al2—C4B2.134 (2)C2B—C7B1.494 (4)
Al2—C5Bii2.148 (3)C3B—C4B1.426 (4)
Al2—C5B2.148 (3)C3B—C8B1.507 (4)
Al2—C1B2.150 (3)C4B—C5B1.438 (3)
Al2—C1Bii2.150 (3)C4B—C9B1.504 (3)
Al2—C3Bii2.152 (2)C5B—C10B1.497 (4)
Al2—C3B2.152 (2)C6B—H6BA0.9800
Al2—C2Bii2.157 (3)C6B—H6BB0.9800
Al2—C2B2.157 (3)C6B—H6BC0.9800
C1A—C2A1.419 (4)C7B—H7BA0.9800
C1A—C5A1.447 (3)C7B—H7BB0.9800
C1A—C6A1.508 (3)C7B—H7BC0.9800
C2A—C3A1.431 (3)C8B—H8BA0.9800
C2A—C7A1.505 (4)C8B—H8BB0.9800
C3A—C4A1.427 (4)C8B—H8BC0.9800
C3A—C8A1.499 (4)C9B—H9BA0.9800
C4A—C5A1.441 (3)C9B—H9BB0.9800
C4A—C9A1.508 (3)C9B—H9BC0.9800
C5A—C10A1.502 (4)C10B—H10A0.9800
C6A—H6AA0.9800C10B—H10B0.9800
C6A—H6AB0.9800C10B—H10C0.9800
C4A—Al1—C4Ai180.0C3A—C2A—Al169.87 (16)
C4A—Al1—C3A39.05 (10)C7A—C2A—Al1125.4 (2)
C4Ai—Al1—C3A140.95 (10)C4A—C3A—C2A108.3 (2)
C4A—Al1—C3Ai140.95 (10)C4A—C3A—C8A127.0 (2)
C4Ai—Al1—C3Ai39.05 (10)C2A—C3A—C8A124.7 (2)
C3A—Al1—C3Ai180.0C4A—C3A—Al170.10 (17)
C4A—Al1—C5A39.46 (10)C2A—C3A—Al171.23 (16)
C4Ai—Al1—C5A140.54 (10)C8A—C3A—Al1125.4 (2)
C3A—Al1—C5A65.71 (11)C3A—C4A—C5A108.1 (2)
C3Ai—Al1—C5A114.29 (11)C3A—C4A—C9A126.9 (2)
C4A—Al1—C5Ai140.54 (10)C5A—C4A—C9A125.0 (2)
C4Ai—Al1—C5Ai39.46 (10)C3A—C4A—Al170.85 (16)
C3A—Al1—C5Ai114.29 (11)C5A—C4A—Al170.68 (15)
C3Ai—Al1—C5Ai65.71 (11)C9A—C4A—Al1124.2 (2)
C5A—Al1—C5Ai180.0C4A—C5A—C1A107.1 (2)
C4A—Al1—C1Ai114.31 (10)C4A—C5A—C10A126.7 (2)
C4Ai—Al1—C1Ai65.69 (10)C1A—C5A—C10A126.2 (2)
C3A—Al1—C1Ai114.91 (10)C4A—C5A—Al169.86 (15)
C3Ai—Al1—C1Ai65.09 (10)C1A—C5A—Al170.79 (16)
C5A—Al1—C1Ai140.62 (10)C10A—C5A—Al1126.4 (2)
C5Ai—Al1—C1Ai39.38 (10)C1A—C6A—H6AA109.5
C4A—Al1—C1A65.69 (10)C1A—C6A—H6AB109.5
C4Ai—Al1—C1A114.31 (10)H6AA—C6A—H6AB109.5
C3A—Al1—C1A65.09 (10)C1A—C6A—H6AC109.5
C3Ai—Al1—C1A114.90 (10)H6AA—C6A—H6AC109.5
C5A—Al1—C1A39.38 (10)H6AB—C6A—H6AC109.5
C5Ai—Al1—C1A140.62 (10)C2A—C7A—H7AA109.5
C1Ai—Al1—C1A180.00 (12)C2A—C7A—H7AB109.5
C4A—Al1—C2A65.39 (10)H7AA—C7A—H7AB109.5
C4Ai—Al1—C2A114.61 (10)C2A—C7A—H7AC109.5
C3A—Al1—C2A38.90 (9)H7AA—C7A—H7AC109.5
C3Ai—Al1—C2A141.10 (9)H7AB—C7A—H7AC109.5
C5A—Al1—C2A65.43 (11)C3A—C8A—H8AA109.5
C5Ai—Al1—C2A114.57 (11)C3A—C8A—H8AB109.5
C1Ai—Al1—C2A141.56 (10)H8AA—C8A—H8AB109.5
C1A—Al1—C2A38.44 (10)C3A—C8A—H8AC109.5
C4A—Al1—C2Ai114.61 (10)H8AA—C8A—H8AC109.5
C4Ai—Al1—C2Ai65.39 (10)H8AB—C8A—H8AC109.5
C3A—Al1—C2Ai141.10 (9)C4A—C9A—H9AA109.5
C3Ai—Al1—C2Ai38.90 (9)C4A—C9A—H9AB109.5
C5A—Al1—C2Ai114.57 (11)H9AA—C9A—H9AB109.5
C5Ai—Al1—C2Ai65.43 (11)C4A—C9A—H9AC109.5
C1Ai—Al1—C2Ai38.44 (10)H9AA—C9A—H9AC109.5
C1A—Al1—C2Ai141.56 (10)H9AB—C9A—H9AC109.5
C2A—Al1—C2Ai180.0C5A—C10A—H10D109.5
C4Bii—Al2—C4B180.0C5A—C10A—H10E109.5
C4Bii—Al2—C5Bii39.25 (9)H10D—C10A—H10E109.5
C4B—Al2—C5Bii140.75 (9)C5A—C10A—H10F109.5
C4Bii—Al2—C5B140.75 (9)H10D—C10A—H10F109.5
C4B—Al2—C5B39.25 (9)H10E—C10A—H10F109.5
C5Bii—Al2—C5B180.00 (14)C2B—C1B—C5B108.7 (2)
C4Bii—Al2—C1B114.57 (9)C2B—C1B—C6B125.4 (3)
C4B—Al2—C1B65.43 (9)C5B—C1B—C6B126.0 (3)
C5Bii—Al2—C1B140.90 (10)C2B—C1B—Al270.88 (14)
C5B—Al2—C1B39.10 (10)C5B—C1B—Al270.40 (14)
C4Bii—Al2—C1Bii65.43 (9)C6B—C1B—Al2125.53 (17)
C4B—Al2—C1Bii114.57 (9)C1B—C2B—C3B107.5 (2)
C5Bii—Al2—C1Bii39.10 (10)C1B—C2B—C7B125.5 (2)
C5B—Al2—C1Bii140.90 (10)C3B—C2B—C7B127.0 (3)
C1B—Al2—C1Bii180.0C1B—C2B—Al270.37 (14)
C4Bii—Al2—C3Bii38.87 (10)C3B—C2B—Al270.39 (15)
C4B—Al2—C3Bii141.13 (10)C7B—C2B—Al2126.15 (18)
C5Bii—Al2—C3Bii65.33 (10)C4B—C3B—C2B108.4 (2)
C5B—Al2—C3Bii114.67 (10)C4B—C3B—C8B125.7 (2)
C1B—Al2—C3Bii115.04 (9)C2B—C3B—C8B126.0 (3)
C1Bii—Al2—C3Bii64.96 (9)C4B—C3B—Al269.87 (14)
C4Bii—Al2—C3B141.13 (10)C2B—C3B—Al270.69 (13)
C4B—Al2—C3B38.87 (10)C8B—C3B—Al2126.13 (19)
C5Bii—Al2—C3B114.67 (10)C3B—C4B—C5B108.3 (2)
C5B—Al2—C3B65.33 (10)C3B—C4B—C9B126.2 (2)
C1B—Al2—C3B64.96 (9)C5B—C4B—C9B125.5 (3)
C1Bii—Al2—C3B115.04 (9)C3B—C4B—Al271.26 (13)
C3Bii—Al2—C3B180.0C5B—C4B—Al270.91 (13)
C4Bii—Al2—C2Bii65.48 (10)C9B—C4B—Al2125.92 (18)
C4B—Al2—C2Bii114.52 (10)C4B—C5B—C1B107.2 (2)
C5Bii—Al2—C2Bii65.51 (11)C4B—C5B—C10B126.0 (2)
C5B—Al2—C2Bii114.49 (11)C1B—C5B—C10B126.8 (2)
C1B—Al2—C2Bii141.24 (10)C4B—C5B—Al269.84 (15)
C1Bii—Al2—C2Bii38.76 (10)C1B—C5B—Al270.50 (15)
C3Bii—Al2—C2Bii38.92 (9)C10B—C5B—Al2125.03 (17)
C3B—Al2—C2Bii141.08 (9)C1B—C6B—H6BA109.5
C4Bii—Al2—C2B114.52 (10)C1B—C6B—H6BB109.5
C4B—Al2—C2B65.48 (10)H6BA—C6B—H6BB109.5
C5Bii—Al2—C2B114.49 (11)C1B—C6B—H6BC109.5
C5B—Al2—C2B65.51 (11)H6BA—C6B—H6BC109.5
C1B—Al2—C2B38.76 (10)H6BB—C6B—H6BC109.5
C1Bii—Al2—C2B141.24 (10)C2B—C7B—H7BA109.5
C3Bii—Al2—C2B141.08 (9)C2B—C7B—H7BB109.5
C3B—Al2—C2B38.92 (9)H7BA—C7B—H7BB109.5
C2Bii—Al2—C2B180.00 (10)C2B—C7B—H7BC109.5
Br3A—Al3—Br2105.36 (15)H7BA—C7B—H7BC109.5
Br4B—Al3—Br2111.17 (5)H7BB—C7B—H7BC109.5
Br3A—Al3—Br1105.60 (19)C3B—C8B—H8BA109.5
Br4B—Al3—Br1110.88 (6)C3B—C8B—H8BB109.5
Br2—Al3—Br1109.71 (4)H8BA—C8B—H8BB109.5
Br3A—Al3—Br4A127.9 (3)C3B—C8B—H8BC109.5
Br2—Al3—Br4A104.55 (10)H8BA—C8B—H8BC109.5
Br1—Al3—Br4A103.04 (10)H8BB—C8B—H8BC109.5
Br4B—Al3—Br3B105.47 (14)C4B—C9B—H9BA109.5
Br2—Al3—Br3B111.46 (7)C4B—C9B—H9BB109.5
Br1—Al3—Br3B108.05 (7)H9BA—C9B—H9BB109.5
C2A—C1A—C5A108.3 (2)C4B—C9B—H9BC109.5
C2A—C1A—C6A127.0 (2)H9BA—C9B—H9BC109.5
C5A—C1A—C6A124.7 (2)H9BB—C9B—H9BC109.5
C2A—C1A—Al170.94 (15)C5B—C10B—H10A109.5
C5A—C1A—Al169.83 (15)C5B—C10B—H10B109.5
C6A—C1A—Al1126.8 (2)H10A—C10B—H10B109.5
C1A—C2A—C3A108.3 (2)C5B—C10B—H10C109.5
C1A—C2A—C7A126.8 (2)H10A—C10B—H10C109.5
C3A—C2A—C7A125.0 (2)H10B—C10B—H10C109.5
C1A—C2A—Al170.62 (17)
C5A—C1A—C2A—C3A0.1 (3)C5B—C1B—C2B—C3B0.4 (3)
C6A—C1A—C2A—C3A177.9 (3)C6B—C1B—C2B—C3B178.6 (2)
Al1—C1A—C2A—C3A60.0 (2)Al2—C1B—C2B—C3B60.89 (17)
C5A—C1A—C2A—C7A179.7 (3)C5B—C1B—C2B—C7B178.5 (2)
C6A—C1A—C2A—C7A1.9 (5)C6B—C1B—C2B—C7B0.5 (4)
Al1—C1A—C2A—C7A120.2 (3)Al2—C1B—C2B—C7B121.0 (2)
C5A—C1A—C2A—Al160.1 (2)C5B—C1B—C2B—Al260.53 (17)
C6A—C1A—C2A—Al1122.2 (3)C6B—C1B—C2B—Al2120.5 (2)
C1A—C2A—C3A—C4A0.2 (3)C1B—C2B—C3B—C4B0.9 (3)
C7A—C2A—C3A—C4A179.6 (3)C7B—C2B—C3B—C4B179.0 (2)
Al1—C2A—C3A—C4A60.6 (2)Al2—C2B—C3B—C4B59.97 (17)
C1A—C2A—C3A—C8A179.0 (3)C1B—C2B—C3B—C8B177.9 (2)
C7A—C2A—C3A—C8A0.8 (5)C7B—C2B—C3B—C8B0.1 (4)
Al1—C2A—C3A—C8A120.5 (3)Al2—C2B—C3B—C8B121.2 (3)
C1A—C2A—C3A—Al160.5 (2)C1B—C2B—C3B—Al260.88 (16)
C7A—C2A—C3A—Al1119.7 (3)C7B—C2B—C3B—Al2121.0 (3)
C2A—C3A—C4A—C5A0.1 (3)C2B—C3B—C4B—C5B1.1 (3)
C8A—C3A—C4A—C5A178.9 (3)C8B—C3B—C4B—C5B177.7 (2)
Al1—C3A—C4A—C5A61.2 (2)Al2—C3B—C4B—C5B61.60 (16)
C2A—C3A—C4A—C9A179.7 (3)C2B—C3B—C4B—C9B178.2 (2)
C8A—C3A—C4A—C9A0.9 (5)C8B—C3B—C4B—C9B0.6 (4)
Al1—C3A—C4A—C9A118.9 (3)Al2—C3B—C4B—C9B121.3 (3)
C2A—C3A—C4A—Al161.3 (2)C2B—C3B—C4B—Al260.49 (17)
C8A—C3A—C4A—Al1119.9 (3)C8B—C3B—C4B—Al2120.7 (3)
C3A—C4A—C5A—C1A0.1 (3)C3B—C4B—C5B—C1B0.9 (3)
C9A—C4A—C5A—C1A179.8 (3)C9B—C4B—C5B—C1B178.0 (2)
Al1—C4A—C5A—C1A61.4 (2)Al2—C4B—C5B—C1B60.94 (17)
C3A—C4A—C5A—C10A177.8 (3)C3B—C4B—C5B—C10B178.9 (2)
C9A—C4A—C5A—C10A2.1 (5)C9B—C4B—C5B—C10B1.8 (4)
Al1—C4A—C5A—C10A120.9 (3)Al2—C4B—C5B—C10B119.3 (2)
C3A—C4A—C5A—Al161.3 (2)C3B—C4B—C5B—Al261.82 (17)
C9A—C4A—C5A—Al1118.8 (3)C9B—C4B—C5B—Al2121.0 (3)
C2A—C1A—C5A—C4A0.0 (3)C2B—C1B—C5B—C4B0.3 (3)
C6A—C1A—C5A—C4A177.8 (3)C6B—C1B—C5B—C4B179.2 (2)
Al1—C1A—C5A—C4A60.76 (19)Al2—C1B—C5B—C4B60.52 (17)
C2A—C1A—C5A—C10A177.7 (3)C2B—C1B—C5B—C10B179.5 (2)
C6A—C1A—C5A—C10A0.1 (5)C6B—C1B—C5B—C10B0.5 (4)
Al1—C1A—C5A—C10A121.5 (3)Al2—C1B—C5B—C10B119.7 (2)
C2A—C1A—C5A—Al160.8 (2)C2B—C1B—C5B—Al260.83 (17)
C6A—C1A—C5A—Al1121.4 (3)C6B—C1B—C5B—Al2120.2 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···Br3Biii0.983.033.886 (4)146
C9A—H9AC···Br3A0.983.043.773 (8)133
C10A—H10E···Br3A0.983.054.007 (7)165
C9B—H9BB···Br10.982.953.770 (3)141
Symmetry code: (iii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···Br3Bi0.983.033.886 (4)146.3
C9A—H9AC···Br3A0.983.043.773 (8)132.9
C10A—H10E···Br3A0.983.054.007 (7)165.1
C9B—H9BB···Br10.982.953.770 (3)141.4
Symmetry code: (i) x+2, y+2, z.
 

Footnotes

NREIP Intern at NRL.

Acknowledgements

We thank the Office of Naval Research for financial support. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurns, C. T., Stelck, D. S., Shapiro, P. J., Vij, A., Kunz, K., Kehr, G., Concolino, T. & Rheingold, A. L. (1999). Organometallics, 18, 5432–5434.  Web of Science CSD CrossRef CAS Google Scholar
First citationDohmeier, C., Schnöckel, H., Schneider, U., Ahlrichs, R. & Robl, C. (1993). Angew. Chem. Int. Ed. Engl. 32, 1655–1657.  CSD CrossRef Web of Science Google Scholar
First citationKruczyński, T., Pushkarevsky, N., Henke, P., Köppe, R., Baum, E., Konchenko, S., Pikies, J. & Schnöckel, H. (2012). Angew. Chem. Int. Ed. 51, 9025–9029.  Google Scholar
First citationMacdonald, C. L. B., Gorden, J. D., Voigt, A., Filipponi, S. & Cowley, A. H. (2008). Dalton Trans. pp. 1161–1176.  Web of Science CSD CrossRef Google Scholar
First citationMinasian, S. G. & Arnold, J. (2008). Chem. Commun. pp. 4043–4045.  Web of Science CSD CrossRef Google Scholar
First citationSchormann, M., Klimek, K. S., Hatop, H., Varkey, S. P., Roesky, H. W., Lehmann, C., Röpken, C., Herbst-Irmer, R. & Noltemeyer, M. (2001). J. Solid State Chem. 162, 225–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchurko, R. W., Hung, I., Macdonald, C. L. B. & Cowley, A. H. (2002). J. Am. Chem. Soc. 124, 13204–13214.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜffing, C., Baum, E., Köppe, R. & Schnöckel, H. (1998). Angew. Chem. Int. Ed. 37, 2397–2400.  Google Scholar
First citationÜffing, C., Ecker, A., Baum, E. & Schnöckel, H. (1999). Z. Anorg. Allg. Chem. 625, 1354–1356.  Google Scholar
First citationVollet, J., Burgert, R. & Schnöckel, H. (2005). Angew. Chem. Int. Ed. 44, 6956–6960.  Web of Science CSD CrossRef CAS Google Scholar
First citationVollet, J., Hartig, J. R., Baranowska, K. & Schnöckel, H. (2006). Organometallics, 25, 2101–2103.  Web of Science CSD CrossRef CAS Google Scholar
First citationVollet, J., Hartig, J. R. & Schnöckel, H. (2004). Angew. Chem. Int. Ed. 43, 3186–3189.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m88-m89
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds