organic compounds
2-(4-Chlorophenyl)-4-oxo-4-phenylbutanenitrile
aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China, and bCollege of Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: yangjy@nwnu.edu.cn
The title molecule, C16H12ClNO, has a V-shaped conformation and the dihedral angle between the planes of the phenyl and benzene rings of 64.6 (1)°. No directional intermolecular interactions could be identified in the crystal.
CCDC reference: 984546
Related literature
For hydrocyanation reactions used for the synthesis of related nitrile derivatives, see: Li et al. (2012); Lin et al. (2012); Yang, Shen & Chen (2010); Yang, Wu & Chen (2010). For related structures, see: Yang et al. (2011); Abdel-Aziz et al. (2012a, 2012b). For nitrile-containing pharmaceuticals, see: Fleming et al. (2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
CCDC reference: 984546
10.1107/S1600536814002335/bh2493sup1.cif
contains datablocks I, exp_1126_4. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002335/bh2493Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814002335/bh2493Isup3.cdx
Supporting information file. DOI: 10.1107/S1600536814002335/bh2493Isup4.cml
The synthesis follows that previously published (Yang, Shen & Chen, 2010). After Cs2CO3 (0.5 mg, 0.0015 mmol), (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (72.8 mg, 0.3 mmol), and dioxane (0.5 ml) were charged into a dry Schlenk tube equipped with cold finger, Me3SiCN (57 ml, 0.45 mmol) and H2O (22 ml, 1.2 mmol) were added. The reaction mixture was refluxed until the reaction was complete (as monitored by TLC). Then, H2O (2 ml) was added at room temperature and the resulting mixture was extracted with EtOAc (5 ml). The extract was washed with H2O (2 ml), brine (3 ml), dried (Na2SO4), and concentrated. The crude product was purified by flash
on silica gel (PE–EtOAc, 15:1) to afford the pure title compound as a white solid (71.2 mg, 88% yield). Colorless single crystals of the title compound suitable for X-ray were obtained by vapor diffusion of petroleum ether into an ethyl acetate solution, at room temperature.Carbon-bound H-atoms were placed in calculated positions (aromatic CH: 0.93 Å; methylene CH2: 0.97 Å; methine CH: 0.98 Å) and were included in the riding model approximation, with Uiso(H) set to 1.2Ueq(carrier C).
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. | |
Fig. 2. Packing diagram of the title compound. |
C16H12ClNO | Dx = 1.332 Mg m−3 |
Mr = 269.72 | Melting point: 383 K |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 1186 reflections |
a = 31.247 (13) Å | θ = 3.7–22.6° |
b = 9.1889 (10) Å | µ = 0.27 mm−1 |
c = 9.3719 (12) Å | T = 293 K |
V = 2690.9 (12) Å3 | Block, colourless |
Z = 8 | 0.44 × 0.39 × 0.37 mm |
F(000) = 1120 |
Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer | 2642 independent reflections |
Radiation source: MoKa | 1605 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 16.0733 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
ω scans | h = −20→38 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −11→10 |
Tmin = 0.584, Tmax = 1.000 | l = −11→11 |
6683 measured reflections |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0418P)2 + 0.4921P] where P = (Fo2 + 2Fc2)/3 |
2642 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C16H12ClNO | V = 2690.9 (12) Å3 |
Mr = 269.72 | Z = 8 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 31.247 (13) Å | µ = 0.27 mm−1 |
b = 9.1889 (10) Å | T = 293 K |
c = 9.3719 (12) Å | 0.44 × 0.39 × 0.37 mm |
Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer | 2642 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1605 reflections with I > 2σ(I) |
Tmin = 0.584, Tmax = 1.000 | Rint = 0.044 |
6683 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.14 e Å−3 |
2642 reflections | Δρmin = −0.23 e Å−3 |
172 parameters |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.49185 (3) | 0.22108 (11) | 0.94462 (10) | 0.0911 (4) | |
O1 | 0.31808 (7) | 0.4639 (2) | 1.6227 (2) | 0.0802 (7) | |
N1 | 0.39810 (8) | 0.1944 (3) | 1.6798 (3) | 0.0696 (7) | |
C1 | 0.41798 (9) | 0.1701 (3) | 1.2875 (3) | 0.0602 (8) | |
H1 | 0.4064 | 0.0933 | 1.3392 | 0.072* | |
C2 | 0.44356 (9) | 0.1413 (3) | 1.1702 (3) | 0.0655 (8) | |
H2 | 0.4492 | 0.0457 | 1.1436 | 0.079* | |
C3 | 0.46042 (8) | 0.2544 (4) | 1.0936 (3) | 0.0632 (8) | |
C4 | 0.45302 (9) | 0.3961 (4) | 1.1351 (3) | 0.0705 (9) | |
H4 | 0.4652 | 0.4728 | 1.0846 | 0.085* | |
C5 | 0.42749 (9) | 0.4235 (3) | 1.2521 (3) | 0.0655 (8) | |
H5 | 0.4224 | 0.5192 | 1.2796 | 0.079* | |
C6 | 0.40944 (8) | 0.3116 (3) | 1.3289 (3) | 0.0528 (7) | |
C7 | 0.37986 (8) | 0.3464 (3) | 1.4528 (3) | 0.0541 (7) | |
H7 | 0.3839 | 0.4493 | 1.4768 | 0.065* | |
C8 | 0.33248 (8) | 0.3254 (3) | 1.4156 (3) | 0.0561 (7) | |
H8A | 0.3269 | 0.3682 | 1.3228 | 0.067* | |
H8B | 0.3263 | 0.2221 | 1.4094 | 0.067* | |
C9 | 0.30306 (10) | 0.3939 (3) | 1.5247 (3) | 0.0579 (7) | |
C10 | 0.25590 (9) | 0.3757 (3) | 1.5110 (3) | 0.0541 (7) | |
C11 | 0.22948 (10) | 0.4530 (3) | 1.6019 (3) | 0.0699 (9) | |
H11 | 0.2415 | 0.5151 | 1.6692 | 0.084* | |
C12 | 0.18561 (11) | 0.4396 (4) | 1.5944 (4) | 0.0797 (10) | |
H12 | 0.1683 | 0.4923 | 1.6563 | 0.096* | |
C13 | 0.16764 (11) | 0.3486 (4) | 1.4955 (4) | 0.0809 (10) | |
H13 | 0.1380 | 0.3393 | 1.4904 | 0.097* | |
C14 | 0.19339 (11) | 0.2709 (4) | 1.4037 (4) | 0.0770 (9) | |
H14 | 0.1812 | 0.2091 | 1.3364 | 0.092* | |
C15 | 0.23731 (10) | 0.2848 (3) | 1.4116 (3) | 0.0643 (8) | |
H15 | 0.2546 | 0.2323 | 1.3493 | 0.077* | |
C16 | 0.39056 (9) | 0.2607 (3) | 1.5808 (3) | 0.0559 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0720 (5) | 0.1253 (8) | 0.0759 (6) | 0.0063 (5) | 0.0188 (5) | −0.0007 (5) |
O1 | 0.0793 (14) | 0.0887 (16) | 0.0725 (14) | 0.0126 (12) | −0.0085 (12) | −0.0260 (12) |
N1 | 0.0627 (15) | 0.0749 (18) | 0.0712 (18) | 0.0033 (13) | −0.0059 (14) | 0.0092 (14) |
C1 | 0.0579 (16) | 0.0528 (17) | 0.070 (2) | −0.0036 (14) | 0.0068 (16) | 0.0033 (14) |
C2 | 0.0604 (17) | 0.0644 (18) | 0.072 (2) | 0.0008 (16) | 0.0029 (17) | −0.0078 (16) |
C3 | 0.0445 (15) | 0.085 (2) | 0.0606 (19) | 0.0018 (15) | −0.0017 (15) | 0.0050 (16) |
C4 | 0.0598 (17) | 0.072 (2) | 0.080 (2) | −0.0025 (16) | 0.0099 (17) | 0.0201 (17) |
C5 | 0.0653 (17) | 0.0531 (17) | 0.078 (2) | 0.0058 (15) | 0.0081 (17) | 0.0083 (15) |
C6 | 0.0490 (14) | 0.0547 (16) | 0.0548 (17) | −0.0010 (13) | −0.0030 (14) | 0.0053 (13) |
C7 | 0.0593 (15) | 0.0486 (15) | 0.0545 (17) | 0.0003 (13) | −0.0022 (15) | 0.0026 (13) |
C8 | 0.0568 (15) | 0.0628 (18) | 0.0488 (16) | 0.0107 (14) | −0.0024 (14) | 0.0000 (13) |
C9 | 0.0695 (18) | 0.0541 (16) | 0.0502 (17) | 0.0128 (15) | −0.0010 (15) | 0.0031 (14) |
C10 | 0.0630 (16) | 0.0529 (16) | 0.0465 (15) | 0.0143 (14) | 0.0030 (14) | 0.0079 (13) |
C11 | 0.077 (2) | 0.068 (2) | 0.065 (2) | 0.0228 (17) | 0.0037 (17) | −0.0005 (15) |
C12 | 0.078 (2) | 0.088 (3) | 0.073 (2) | 0.028 (2) | 0.0169 (19) | 0.0067 (19) |
C13 | 0.0607 (18) | 0.098 (3) | 0.084 (2) | 0.014 (2) | 0.0059 (19) | 0.020 (2) |
C14 | 0.069 (2) | 0.095 (3) | 0.068 (2) | −0.0010 (19) | −0.0033 (18) | −0.0019 (18) |
C15 | 0.0646 (18) | 0.075 (2) | 0.0536 (18) | 0.0085 (16) | 0.0027 (16) | −0.0027 (15) |
C16 | 0.0499 (15) | 0.0567 (17) | 0.061 (2) | −0.0012 (13) | −0.0040 (15) | −0.0023 (15) |
Cl1—C3 | 1.734 (3) | C7—C16 | 1.474 (4) |
O1—C9 | 1.216 (3) | C8—H8A | 0.9700 |
N1—C16 | 1.134 (4) | C8—H8B | 0.9700 |
C1—H1 | 0.9300 | C8—C9 | 1.512 (4) |
C1—C2 | 1.385 (4) | C9—C10 | 1.489 (4) |
C1—C6 | 1.382 (4) | C10—C11 | 1.383 (4) |
C2—H2 | 0.9300 | C10—C15 | 1.379 (4) |
C2—C3 | 1.369 (4) | C11—H11 | 0.9300 |
C3—C4 | 1.379 (4) | C11—C12 | 1.378 (4) |
C4—H4 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.379 (4) | C12—C13 | 1.368 (5) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C5—C6 | 1.376 (4) | C13—C14 | 1.378 (4) |
C6—C7 | 1.518 (4) | C14—H14 | 0.9300 |
C7—H7 | 0.9800 | C14—C15 | 1.380 (5) |
C7—C8 | 1.533 (4) | C15—H15 | 0.9300 |
C2—C1—H1 | 119.5 | H8A—C8—H8B | 107.9 |
C6—C1—H1 | 119.5 | C9—C8—C7 | 112.4 (2) |
C6—C1—C2 | 120.9 (3) | C9—C8—H8A | 109.1 |
C1—C2—H2 | 120.2 | C9—C8—H8B | 109.1 |
C3—C2—C1 | 119.6 (3) | O1—C9—C8 | 119.8 (3) |
C3—C2—H2 | 120.2 | O1—C9—C10 | 120.4 (3) |
C2—C3—Cl1 | 120.4 (3) | C10—C9—C8 | 119.8 (2) |
C2—C3—C4 | 120.3 (3) | C11—C10—C9 | 118.7 (3) |
C4—C3—Cl1 | 119.3 (2) | C15—C10—C9 | 122.9 (3) |
C3—C4—H4 | 120.2 | C15—C10—C11 | 118.4 (3) |
C5—C4—C3 | 119.6 (3) | C10—C11—H11 | 119.5 |
C5—C4—H4 | 120.2 | C12—C11—C10 | 121.1 (3) |
C4—C5—H5 | 119.5 | C12—C11—H11 | 119.5 |
C6—C5—C4 | 121.1 (3) | C11—C12—H12 | 120.1 |
C6—C5—H5 | 119.5 | C13—C12—C11 | 119.8 (3) |
C1—C6—C7 | 122.0 (2) | C13—C12—H12 | 120.1 |
C5—C6—C1 | 118.5 (3) | C12—C13—H13 | 120.0 |
C5—C6—C7 | 119.5 (3) | C12—C13—C14 | 120.0 (3) |
C6—C7—H7 | 107.4 | C14—C13—H13 | 120.0 |
C6—C7—C8 | 112.8 (2) | C13—C14—H14 | 120.0 |
C8—C7—H7 | 107.4 | C13—C14—C15 | 119.9 (3) |
C16—C7—C6 | 111.8 (2) | C15—C14—H14 | 120.0 |
C16—C7—H7 | 107.4 | C10—C15—C14 | 120.8 (3) |
C16—C7—C8 | 109.7 (2) | C10—C15—H15 | 119.6 |
C7—C8—H8A | 109.1 | C14—C15—H15 | 119.6 |
C7—C8—H8B | 109.1 | N1—C16—C7 | 178.9 (3) |
Cl1—C3—C4—C5 | 179.0 (2) | C6—C1—C2—C3 | −0.4 (4) |
O1—C9—C10—C11 | 7.2 (4) | C6—C7—C8—C9 | −166.1 (2) |
O1—C9—C10—C15 | −172.7 (3) | C7—C8—C9—O1 | 4.4 (4) |
C1—C2—C3—Cl1 | −179.0 (2) | C7—C8—C9—C10 | −175.9 (2) |
C1—C2—C3—C4 | 1.8 (4) | C8—C9—C10—C11 | −172.5 (2) |
C1—C6—C7—C8 | −75.1 (3) | C8—C9—C10—C15 | 7.6 (4) |
C1—C6—C7—C16 | 49.1 (3) | C9—C10—C11—C12 | −179.6 (3) |
C2—C1—C6—C5 | −1.0 (4) | C9—C10—C15—C14 | 179.6 (3) |
C2—C1—C6—C7 | 177.1 (3) | C10—C11—C12—C13 | −0.1 (5) |
C2—C3—C4—C5 | −1.8 (4) | C11—C10—C15—C14 | −0.3 (4) |
C3—C4—C5—C6 | 0.4 (4) | C11—C12—C13—C14 | −0.1 (5) |
C4—C5—C6—C1 | 1.0 (4) | C12—C13—C14—C15 | 0.1 (5) |
C4—C5—C6—C7 | −177.2 (2) | C13—C14—C15—C10 | 0.1 (5) |
C5—C6—C7—C8 | 103.0 (3) | C15—C10—C11—C12 | 0.3 (4) |
C5—C6—C7—C16 | −132.8 (3) | C16—C7—C8—C9 | 68.5 (3) |
Experimental details
Crystal data | |
Chemical formula | C16H12ClNO |
Mr | 269.72 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 31.247 (13), 9.1889 (10), 9.3719 (12) |
V (Å3) | 2690.9 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.44 × 0.39 × 0.37 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2013) |
Tmin, Tmax | 0.584, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6683, 2642, 1605 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.145, 1.08 |
No. of reflections | 2642 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.23 |
Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
The authors thank the National Natural Science Foundation of China (grant No. 21362034), Provincial Nature Science Foundation of Gansu (grant No. 1107RJZ189), Northwest Normal University (grant No. NWNU-LKQN-11–15), and Gansu Agricultural University (grant No. GAU-CX1115) for financial support. We also thank Dr Yong-Liang Shao from the Center of Testing and Analysis, Lanzhou University, for the structure determination.
References
Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o736. CSD CrossRef IUCr Journals Google Scholar
Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o737. CSD CrossRef IUCr Journals Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. (2010). J. Med. Chem. 53, 7902–7917. Web of Science CrossRef CAS PubMed Google Scholar
Li, Z., Liu, C., Zhang, Y., Li, R., Ma, B. & Yang, J. (2012). Synlett, 23, 2567–2571. Web of Science CrossRef CAS Google Scholar
Lin, S., Wei, Y. & Liang, F. (2012). Chem. Commun. 64, 9879–9881. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, J., Shen, Y. & Chen, F.-X. (2010). Synthesis, pp. 1325–1333. CAS Google Scholar
Yang, J., Wu, S. & Chen, F.-X. (2010). Synlett, pp. 2725–2728. Google Scholar
Yang, J., Zhou, H. & Li, Z. (2011). Acta Cryst. E67, o1610. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitriles usually exhibit important biological and pharmacological activity. For instance, many nitrile-containing pharmaceuticals are widely used in clinical treatments (Fleming et al., 2010). In addition, nitrile derivatives are essential synthetic intermediates in organic synthesis because of their easy achievements and versatile transformations (e.g. Li et al., 2012; Lin et al., 2012; Yang, Shen & Chen, 2010; Yang, Wu & Chen, 2010). The title compound exhibits a V-shaped configuration (Fig. 1), previously observed in related structures (Yang et al., 2011; Abdel-Aziz et al., 2012a, 2012b). One molecule interpenetrates with other symmetry-related molecules in the crystal, to generate a two-dimensional roof-like crystal structure (Fig. 2). Finally, the roof-like structures pack to be the stable crystal structure.