organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-4-oxo-4-phenyl­butane­nitrile

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China, and bCollege of Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: yangjy@nwnu.edu.cn

(Received 13 January 2014; accepted 31 January 2014; online 8 February 2014)

The title mol­ecule, C16H12ClNO, has a V-shaped conformation and the dihedral angle between the planes of the phenyl and benzene rings of 64.6 (1)°. No directional intermolecular interactions could be identified in the crystal.

Related literature

For hydro­cyanation reactions used for the synthesis of related nitrile derivatives, see: Li et al. (2012[Li, Z., Liu, C., Zhang, Y., Li, R., Ma, B. & Yang, J. (2012). Synlett, 23, 2567-2571.]); Lin et al. (2012[Lin, S., Wei, Y. & Liang, F. (2012). Chem. Commun. 64, 9879-9881.]); Yang, Shen & Chen (2010[Yang, J., Shen, Y. & Chen, F.-X. (2010). Synthesis, pp. 1325-1333.]); Yang, Wu & Chen (2010[Yang, J., Wu, S. & Chen, F.-X. (2010). Synlett, pp. 2725-2728.]). For related structures, see: Yang et al. (2011[Yang, J., Zhou, H. & Li, Z. (2011). Acta Cryst. E67, o1610.]); Abdel-Aziz et al. (2012a[Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o736.], 2012b[Abdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o737.]). For nitrile-containing pharmaceuticals, see: Fleming et al. (2010[Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. (2010). J. Med. Chem. 53, 7902-7917.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClNO

  • Mr = 269.72

  • Orthorhombic, P b c n

  • a = 31.247 (13) Å

  • b = 9.1889 (10) Å

  • c = 9.3719 (12) Å

  • V = 2690.9 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.44 × 0.39 × 0.37 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.584, Tmax = 1.000

  • 6683 measured reflections

  • 2642 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.145

  • S = 1.08

  • 2642 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Nitriles usually exhibit important biological and pharmacological activity. For instance, many nitrile-containing pharmaceuticals are widely used in clinical treatments (Fleming et al., 2010). In addition, nitrile derivatives are essential synthetic intermediates in organic synthesis because of their easy achievements and versatile transformations (e.g. Li et al., 2012; Lin et al., 2012; Yang, Shen & Chen, 2010; Yang, Wu & Chen, 2010). The title compound exhibits a V-shaped configuration (Fig. 1), previously observed in related structures (Yang et al., 2011; Abdel-Aziz et al., 2012a, 2012b). One molecule interpenetrates with other symmetry-related molecules in the crystal, to generate a two-dimensional roof-like crystal structure (Fig. 2). Finally, the roof-like structures pack to be the stable crystal structure.

Related literature top

For hydrocyanation reactions used for the synthesis of related nitrile derivatives, see: Li et al. (2012); Lin et al. (2012); Yang, Shen & Chen (2010); Yang, Wu & Chen (2010). For related structures, see: Yang et al. (2011); Abdel-Aziz et al. (2012a, 2012b). For nitrile-containing pharmaceuticals, see: Fleming et al. (2010).

Experimental top

The synthesis follows that previously published (Yang, Shen & Chen, 2010). After Cs2CO3 (0.5 mg, 0.0015 mmol), (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (72.8 mg, 0.3 mmol), and dioxane (0.5 ml) were charged into a dry Schlenk tube equipped with cold finger, Me3SiCN (57 ml, 0.45 mmol) and H2O (22 ml, 1.2 mmol) were added. The reaction mixture was refluxed until the reaction was complete (as monitored by TLC). Then, H2O (2 ml) was added at room temperature and the resulting mixture was extracted with EtOAc (5 ml). The extract was washed with H2O (2 ml), brine (3 ml), dried (Na2SO4), and concentrated. The crude product was purified by flash column chromatography on silica gel (PE–EtOAc, 15:1) to afford the pure title compound as a white solid (71.2 mg, 88% yield). Colorless single crystals of the title compound suitable for X-ray structure determination were obtained by vapor diffusion of petroleum ether into an ethyl acetate solution, at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (aromatic CH: 0.93 Å; methylene CH2: 0.97 Å; methine CH: 0.98 Å) and were included in the riding model approximation, with Uiso(H) set to 1.2Ueq(carrier C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound.
2-(4-Chlorophenyl)-4-oxo-4-phenylbutanenitrile top
Crystal data top
C16H12ClNODx = 1.332 Mg m3
Mr = 269.72Melting point: 383 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1186 reflections
a = 31.247 (13) Åθ = 3.7–22.6°
b = 9.1889 (10) ŵ = 0.27 mm1
c = 9.3719 (12) ÅT = 293 K
V = 2690.9 (12) Å3Block, colourless
Z = 80.44 × 0.39 × 0.37 mm
F(000) = 1120
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
2642 independent reflections
Radiation source: MoKa1605 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 16.0733 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 2038
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1110
Tmin = 0.584, Tmax = 1.000l = 1111
6683 measured reflections
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.4921P]
where P = (Fo2 + 2Fc2)/3
2642 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H12ClNOV = 2690.9 (12) Å3
Mr = 269.72Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 31.247 (13) ŵ = 0.27 mm1
b = 9.1889 (10) ÅT = 293 K
c = 9.3719 (12) Å0.44 × 0.39 × 0.37 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
2642 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1605 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 1.000Rint = 0.044
6683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.08Δρmax = 0.14 e Å3
2642 reflectionsΔρmin = 0.23 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49185 (3)0.22108 (11)0.94462 (10)0.0911 (4)
O10.31808 (7)0.4639 (2)1.6227 (2)0.0802 (7)
N10.39810 (8)0.1944 (3)1.6798 (3)0.0696 (7)
C10.41798 (9)0.1701 (3)1.2875 (3)0.0602 (8)
H10.40640.09331.33920.072*
C20.44356 (9)0.1413 (3)1.1702 (3)0.0655 (8)
H20.44920.04571.14360.079*
C30.46042 (8)0.2544 (4)1.0936 (3)0.0632 (8)
C40.45302 (9)0.3961 (4)1.1351 (3)0.0705 (9)
H40.46520.47281.08460.085*
C50.42749 (9)0.4235 (3)1.2521 (3)0.0655 (8)
H50.42240.51921.27960.079*
C60.40944 (8)0.3116 (3)1.3289 (3)0.0528 (7)
C70.37986 (8)0.3464 (3)1.4528 (3)0.0541 (7)
H70.38390.44931.47680.065*
C80.33248 (8)0.3254 (3)1.4156 (3)0.0561 (7)
H8A0.32690.36821.32280.067*
H8B0.32630.22211.40940.067*
C90.30306 (10)0.3939 (3)1.5247 (3)0.0579 (7)
C100.25590 (9)0.3757 (3)1.5110 (3)0.0541 (7)
C110.22948 (10)0.4530 (3)1.6019 (3)0.0699 (9)
H110.24150.51511.66920.084*
C120.18561 (11)0.4396 (4)1.5944 (4)0.0797 (10)
H120.16830.49231.65630.096*
C130.16764 (11)0.3486 (4)1.4955 (4)0.0809 (10)
H130.13800.33931.49040.097*
C140.19339 (11)0.2709 (4)1.4037 (4)0.0770 (9)
H140.18120.20911.33640.092*
C150.23731 (10)0.2848 (3)1.4116 (3)0.0643 (8)
H150.25460.23231.34930.077*
C160.39056 (9)0.2607 (3)1.5808 (3)0.0559 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0720 (5)0.1253 (8)0.0759 (6)0.0063 (5)0.0188 (5)0.0007 (5)
O10.0793 (14)0.0887 (16)0.0725 (14)0.0126 (12)0.0085 (12)0.0260 (12)
N10.0627 (15)0.0749 (18)0.0712 (18)0.0033 (13)0.0059 (14)0.0092 (14)
C10.0579 (16)0.0528 (17)0.070 (2)0.0036 (14)0.0068 (16)0.0033 (14)
C20.0604 (17)0.0644 (18)0.072 (2)0.0008 (16)0.0029 (17)0.0078 (16)
C30.0445 (15)0.085 (2)0.0606 (19)0.0018 (15)0.0017 (15)0.0050 (16)
C40.0598 (17)0.072 (2)0.080 (2)0.0025 (16)0.0099 (17)0.0201 (17)
C50.0653 (17)0.0531 (17)0.078 (2)0.0058 (15)0.0081 (17)0.0083 (15)
C60.0490 (14)0.0547 (16)0.0548 (17)0.0010 (13)0.0030 (14)0.0053 (13)
C70.0593 (15)0.0486 (15)0.0545 (17)0.0003 (13)0.0022 (15)0.0026 (13)
C80.0568 (15)0.0628 (18)0.0488 (16)0.0107 (14)0.0024 (14)0.0000 (13)
C90.0695 (18)0.0541 (16)0.0502 (17)0.0128 (15)0.0010 (15)0.0031 (14)
C100.0630 (16)0.0529 (16)0.0465 (15)0.0143 (14)0.0030 (14)0.0079 (13)
C110.077 (2)0.068 (2)0.065 (2)0.0228 (17)0.0037 (17)0.0005 (15)
C120.078 (2)0.088 (3)0.073 (2)0.028 (2)0.0169 (19)0.0067 (19)
C130.0607 (18)0.098 (3)0.084 (2)0.014 (2)0.0059 (19)0.020 (2)
C140.069 (2)0.095 (3)0.068 (2)0.0010 (19)0.0033 (18)0.0019 (18)
C150.0646 (18)0.075 (2)0.0536 (18)0.0085 (16)0.0027 (16)0.0027 (15)
C160.0499 (15)0.0567 (17)0.061 (2)0.0012 (13)0.0040 (15)0.0023 (15)
Geometric parameters (Å, º) top
Cl1—C31.734 (3)C7—C161.474 (4)
O1—C91.216 (3)C8—H8A0.9700
N1—C161.134 (4)C8—H8B0.9700
C1—H10.9300C8—C91.512 (4)
C1—C21.385 (4)C9—C101.489 (4)
C1—C61.382 (4)C10—C111.383 (4)
C2—H20.9300C10—C151.379 (4)
C2—C31.369 (4)C11—H110.9300
C3—C41.379 (4)C11—C121.378 (4)
C4—H40.9300C12—H120.9300
C4—C51.379 (4)C12—C131.368 (5)
C5—H50.9300C13—H130.9300
C5—C61.376 (4)C13—C141.378 (4)
C6—C71.518 (4)C14—H140.9300
C7—H70.9800C14—C151.380 (5)
C7—C81.533 (4)C15—H150.9300
C2—C1—H1119.5H8A—C8—H8B107.9
C6—C1—H1119.5C9—C8—C7112.4 (2)
C6—C1—C2120.9 (3)C9—C8—H8A109.1
C1—C2—H2120.2C9—C8—H8B109.1
C3—C2—C1119.6 (3)O1—C9—C8119.8 (3)
C3—C2—H2120.2O1—C9—C10120.4 (3)
C2—C3—Cl1120.4 (3)C10—C9—C8119.8 (2)
C2—C3—C4120.3 (3)C11—C10—C9118.7 (3)
C4—C3—Cl1119.3 (2)C15—C10—C9122.9 (3)
C3—C4—H4120.2C15—C10—C11118.4 (3)
C5—C4—C3119.6 (3)C10—C11—H11119.5
C5—C4—H4120.2C12—C11—C10121.1 (3)
C4—C5—H5119.5C12—C11—H11119.5
C6—C5—C4121.1 (3)C11—C12—H12120.1
C6—C5—H5119.5C13—C12—C11119.8 (3)
C1—C6—C7122.0 (2)C13—C12—H12120.1
C5—C6—C1118.5 (3)C12—C13—H13120.0
C5—C6—C7119.5 (3)C12—C13—C14120.0 (3)
C6—C7—H7107.4C14—C13—H13120.0
C6—C7—C8112.8 (2)C13—C14—H14120.0
C8—C7—H7107.4C13—C14—C15119.9 (3)
C16—C7—C6111.8 (2)C15—C14—H14120.0
C16—C7—H7107.4C10—C15—C14120.8 (3)
C16—C7—C8109.7 (2)C10—C15—H15119.6
C7—C8—H8A109.1C14—C15—H15119.6
C7—C8—H8B109.1N1—C16—C7178.9 (3)
Cl1—C3—C4—C5179.0 (2)C6—C1—C2—C30.4 (4)
O1—C9—C10—C117.2 (4)C6—C7—C8—C9166.1 (2)
O1—C9—C10—C15172.7 (3)C7—C8—C9—O14.4 (4)
C1—C2—C3—Cl1179.0 (2)C7—C8—C9—C10175.9 (2)
C1—C2—C3—C41.8 (4)C8—C9—C10—C11172.5 (2)
C1—C6—C7—C875.1 (3)C8—C9—C10—C157.6 (4)
C1—C6—C7—C1649.1 (3)C9—C10—C11—C12179.6 (3)
C2—C1—C6—C51.0 (4)C9—C10—C15—C14179.6 (3)
C2—C1—C6—C7177.1 (3)C10—C11—C12—C130.1 (5)
C2—C3—C4—C51.8 (4)C11—C10—C15—C140.3 (4)
C3—C4—C5—C60.4 (4)C11—C12—C13—C140.1 (5)
C4—C5—C6—C11.0 (4)C12—C13—C14—C150.1 (5)
C4—C5—C6—C7177.2 (2)C13—C14—C15—C100.1 (5)
C5—C6—C7—C8103.0 (3)C15—C10—C11—C120.3 (4)
C5—C6—C7—C16132.8 (3)C16—C7—C8—C968.5 (3)

Experimental details

Crystal data
Chemical formulaC16H12ClNO
Mr269.72
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)31.247 (13), 9.1889 (10), 9.3719 (12)
V3)2690.9 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.44 × 0.39 × 0.37
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.584, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6683, 2642, 1605
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.145, 1.08
No. of reflections2642
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 21362034), Provincial Nature Science Foundation of Gansu (grant No. 1107RJZ189), Northwest Normal University (grant No. NWNU-LKQN-11–15), and Gansu Agricultural University (grant No. GAU-CX1115) for financial support. We also thank Dr Yong-Liang Shao from the Center of Testing and Analysis, Lanzhou University, for the structure determination.

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o736.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o737.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. (2010). J. Med. Chem. 53, 7902–7917.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, Z., Liu, C., Zhang, Y., Li, R., Ma, B. & Yang, J. (2012). Synlett, 23, 2567–2571.  Web of Science CrossRef CAS Google Scholar
First citationLin, S., Wei, Y. & Liang, F. (2012). Chem. Commun. 64, 9879–9881.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Shen, Y. & Chen, F.-X. (2010). Synthesis, pp. 1325–1333.  CAS Google Scholar
First citationYang, J., Wu, S. & Chen, F.-X. (2010). Synlett, pp. 2725–2728.  Google Scholar
First citationYang, J., Zhou, H. & Li, Z. (2011). Acta Cryst. E67, o1610.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds