organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o233-o234

3-Anilino-5,5-di­methyl­cyclo­hex-2-enone

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université, Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 15 January 2014; accepted 26 January 2014; online 5 February 2014)

In the title mol­ecule, C14H17NO, the 5,5-di­methyl­cyclo­hex-2-enone moiety is attached to an aniline group, the dihedral angle subtended [54.43 (3)°] indicating a significant twist. The hexaneone ring has a half-chair conformation with the C atom bearing two methyl groups lying 0.6384 (8) Å above the plane of the five remaining atoms (r.m.s. deviation = 0.0107 Å). The crystal packing can be described as alternating layers parallel to (-101), which are consolidated by N—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Amini et al. (2013[Amini, M., Edraki, N., Sarkarzadeh, H., Shafiee, A., Edraki, N., Firuzi, O., Miri, R. & Razzaghi-Asl, N. (2013). Arch. Pharm. Res. 36, 436-447.]); Machacek et al. (2002[Machacek, V., Simunek, P. & Lycka, A. (2002). Eur. J. Org. Chem. 16, 2764-2769.]). For its reactivity, see: Wang et al. (2007[Wang, W.-S., Zhang, M.-M., Jiang, H., Chang-Sheng Yao, S.-S. & Tu, S.-J. (2007). Tetrahedron, 63, 4439-4449.]); Mohammadizadeh et al. (2009[Mohammadizadeh, M. R., Hasaninejad, A., Bahramzadeh, M. & Khanjarlou, Z. S. (2009). Synth. Commun. 39, 1152-1165.]); Gao et al. (2008[Gao, S., Tsai, C. H., Tseng, C. & Yao, C.-F. (2008). Tetrahedron, 64, 9143-9149.]). For our previous work [inspired by Assy (1996[Assy, A. M. (1996). Indian J. Chem. Sect. B, 35, 608-610.])] on the preparation and the reactivity of imidazole derivatives, see: Zama et al. (2013a[Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013a). Tetrahedron Lett. 54, 5605-5607.],b[Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013b). Acta Cryst. E69, o837-o838.]); Chelghoum et al. (2011[Chelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890.]); Bahnous et al. (2012[Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391.]) For enamine derivatives as precursors in the synthesis ofcompounds of pharmaceutical inter­est, see: Palko et al. (2008[Palko, R., Egyed, O., Bombicz, P., Riedl, Z. & Hajós, G. (2008). Tetrahedron, 64, 10375-10380.]) Park & Jahng (1998[Park, J. G. & Jahng, Y. (1998). Bull. Korean Chem. Soc. 19, 436-439.]); Tadesse et al. (1999[Tadesse, S., Bhandari, A. & Gallop, M. A. (1999). J. Comb. Chem. 1, 184-187.]); Thummel & Jahng (1985[Thummel, R. P. & Jahng, Y. (1985). J. Org. Chem. 50, 2407-2412.]); When enamines are treated with alkyl halides, an alkyl­ation occurs to give an iminium salt, see: Adams (2000[Adams, J. P. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 125-128.]); Kempf et al. (2003[Kempf, B., Hampel, N., Ofial, A. R. & Mayr, H. (2003). Chem. Eur. J. 9, 2209-2213.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO

  • Mr = 215.29

  • Monoclinic, P 21 /c

  • a = 10.1766 (19) Å

  • b = 13.159 (2) Å

  • c = 9.2877 (17) Å

  • β = 104.062 (7)°

  • V = 1206.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.15 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.667, Tmax = 0.747

  • 12403 measured reflections

  • 5021 independent reflections

  • 3873 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.04

  • 5021 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.8587 (11) 165
C8—H8ACg1ii 0.96 2.61 3.5547 (12) 157
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

The reaction of primary amines with ketones leads to imines; however, secondary amines give enamines. The preparation of enamines takes place when an aldehyde or ketone containing an α hydrogen is treated with a secondary amine. When enamines are treated with alkyl halides, an alkylation occurs to give an iminium salt via an electron transfer from the electron pair on nitrogen, through the C=C to the electrophilic carbon of the alkyl halide (Adams, 2000). In fact, an enamine behaves as a "nitrogen enolate" and generally react as carbon nucleophiles (Kempf et al., 2003). The use of enamine derivatives as intermediates in organic synthesis has been extensively investigated and they proved to be versatile precursors in the synthesis of a large variety of compounds of pharmaceutical interest (Tadesse et al., 1999; Park et al., 1998; Thummel & Jahng 1985; Palko et al., 2008). Inspired by the works of Assy 1996 and also as an extension of our ongoing research on the preparation and the reactivity of imidazole derivatives (Zama et al., 2013a; Zama et al., 2013b; Chelghoum et al., 2011; Bahnous et al., 2012), we describe herein the single-crystal X-ray structure of the enamine 5,5-dimethyl-3-(phenylamino)cyclohex-2-enone (I). This latter has been recovered from our attempt to coupling the dihydropyridine entity with imidazole unit using a "One Pot reaction" strategy implicating aniline, 5,5-dimethyl-1,3-cyclohexandione and N-methylimidazolmethylenemalononitrile. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I) consists of the 5,5-dimethyl-cyclohex-2-enone moiety and its attached phenylamino group. The crystal packing can be described as alternating layers parallel to the (-101)(Fig. 2). It is stabilized by N—H···O hydrogen bond (Fig.3) and C—H···π interactions (Table. 1). These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.

Related literature top

For the synthesis of the title compound, see: Amini et al. (2013); Machacek et al. (2002). For its reactivity, see: Wang et al. (2007); Mohammadizadeh et al. (2009); Gao et al. (2008). For our previous work [inspired by Assy (1996)] on the preparation and the reactivity of imidazole derivatives, see: Zama et al. (2013a,b); Chelghoum et al. (2011); Bahnous et al. (2012) For enamine derivatives as precursors in the synthesis ofcompounds of pharmaceutical interest, see: Palko et al. (2008) Park & Jahng (1998); Tadesse et al. (1999); Thummel & Jahng (1985); When enamines are treated with alkyl halides, an alkylation occurs to give an iminium salt via an electron transfer from the electron pair, see: Adams (2000); Kempf et al. (2003).

Experimental top

5,5-dimethyl-3-(phenylamino)cyclohex-2-enone (I) has been obtained from the reaction of aniline and 5,5-dimethyl-1,3-cyclohexandione. In a typical reaction, 1 mmol of 5,5-dimethylcyclohex-1,3-dione, and 1 mmol aniline, in ethanol were placed in a 10 ml round-bottomed flask fitted with a condenser and a magnetic stirrer bar. The reaction mixture was stirred at reflux for 24 h, then 1 mmol of N-methylimidazolmethylenemalononitrile was added to this solution and the reaction mixture was heated for an additional 24 h. The solvent was distilled off and flash chromatographic purification furnished the 5,5-dimethyl-3-(phenylamino)cyclohex-2-enone I and the recovered N-methylimidazolmethylenemalononitrile. Suitable crystals for X-ray experiments of I were obtained by slow evaporation from an ethanol/CH2Cl2 solution at room temperature.

Refinement top

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.93 Å; Cmethylene—Hmethylene = 0.97 Å; Cmethyl—Hmethyl = 0.96 Å and N—H = 0.86 Å; The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Haryl, methylene, amine) = 1.2 Ueq(Caryl, methylene or N).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. (Farrugia, 2012) The molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) Alternating layers parallel to (-101) planes of (I) viewed down the b axis.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the a axis showing hydrogen bond as dashed line.
3-Anilino-5,5-dimethylcyclohex-2-enone top
Crystal data top
C14H17NOF(000) = 464
Mr = 215.29Dx = 1.185 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4703 reflections
a = 10.1766 (19) Åθ = 2.6–34.3°
b = 13.159 (2) ŵ = 0.07 mm1
c = 9.2877 (17) ÅT = 150 K
β = 104.062 (7)°Prism, colorless
V = 1206.5 (4) Å30.15 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
CCD rotation images, thin slices scansθmax = 34.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1614
Tmin = 0.667, Tmax = 0.747k = 1320
12403 measured reflectionsl = 1214
5021 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.1791P]
where P = (Fo2 + 2Fc2)/3
5021 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H17NOV = 1206.5 (4) Å3
Mr = 215.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1766 (19) ŵ = 0.07 mm1
b = 13.159 (2) ÅT = 150 K
c = 9.2877 (17) Å0.15 × 0.12 × 0.09 mm
β = 104.062 (7)°
Data collection top
Bruker APEXII
diffractometer
5021 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3873 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.747Rint = 0.030
12403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
5021 reflectionsΔρmin = 0.20 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64385 (8)0.73838 (6)0.82567 (9)0.01988 (15)
C20.53143 (8)0.78529 (6)0.72449 (9)0.01973 (15)
H20.47420.74550.65310.024*
C30.50602 (8)0.88768 (6)0.73022 (9)0.01767 (14)
C40.59803 (8)0.95491 (6)0.84239 (10)0.02194 (16)
H4A0.55930.9630.92740.026*
H4B0.60121.02160.79870.026*
C50.74309 (8)0.91494 (6)0.89647 (9)0.01943 (15)
C60.73478 (9)0.80376 (6)0.94261 (9)0.02232 (16)
H6A0.82530.7750.96610.027*
H6B0.70190.80171.03220.027*
C70.81684 (10)0.97776 (8)1.03068 (11)0.0320 (2)
H7A0.77030.97151.10860.048*
H7B0.81851.04781.00240.048*
H7C0.9080.95331.06520.048*
C80.81959 (9)0.92285 (7)0.77337 (10)0.02490 (17)
H8A0.82680.99290.74770.037*
H8B0.77120.8860.68760.037*
H8C0.90860.89450.80790.037*
C100.29024 (8)0.89121 (6)0.53767 (9)0.01887 (15)
C110.15721 (8)0.90959 (7)0.54586 (10)0.02316 (16)
H110.14030.950.62150.028*
C120.04984 (9)0.86746 (7)0.44081 (12)0.0306 (2)
H120.03880.880.44610.037*
C130.07470 (11)0.80686 (7)0.32830 (13)0.0351 (2)
H130.0030.77810.25870.042*
C140.20729 (11)0.78931 (8)0.31997 (12)0.0343 (2)
H140.22390.74880.24430.041*
C150.31524 (9)0.83168 (7)0.42365 (10)0.02586 (18)
H150.40370.82030.41680.031*
N10.39813 (7)0.93664 (5)0.64459 (8)0.02126 (14)
H10.39451.00140.65590.026*
O10.66676 (7)0.64544 (5)0.82303 (9)0.03086 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (3)0.0142 (3)0.0280 (4)0.0002 (2)0.0086 (3)0.0044 (3)
C20.0182 (3)0.0134 (3)0.0268 (4)0.0001 (2)0.0040 (3)0.0003 (3)
C30.0170 (3)0.0144 (3)0.0217 (3)0.0010 (2)0.0048 (3)0.0012 (2)
C40.0214 (3)0.0170 (3)0.0261 (4)0.0017 (3)0.0032 (3)0.0060 (3)
C50.0198 (3)0.0172 (3)0.0202 (3)0.0011 (3)0.0027 (3)0.0009 (3)
C60.0225 (3)0.0210 (4)0.0226 (3)0.0010 (3)0.0036 (3)0.0053 (3)
C70.0320 (4)0.0310 (5)0.0280 (4)0.0039 (4)0.0024 (4)0.0070 (4)
C80.0245 (4)0.0214 (4)0.0300 (4)0.0041 (3)0.0092 (3)0.0014 (3)
C100.0191 (3)0.0144 (3)0.0221 (3)0.0013 (2)0.0031 (3)0.0013 (2)
C110.0212 (3)0.0206 (3)0.0278 (4)0.0043 (3)0.0061 (3)0.0046 (3)
C120.0201 (4)0.0254 (4)0.0437 (5)0.0011 (3)0.0025 (3)0.0103 (4)
C130.0317 (5)0.0228 (4)0.0420 (5)0.0068 (3)0.0080 (4)0.0015 (4)
C140.0397 (5)0.0256 (4)0.0328 (5)0.0008 (4)0.0004 (4)0.0097 (4)
C150.0254 (4)0.0237 (4)0.0278 (4)0.0026 (3)0.0052 (3)0.0053 (3)
N10.0210 (3)0.0135 (3)0.0266 (3)0.0034 (2)0.0007 (3)0.0026 (2)
O10.0290 (3)0.0135 (3)0.0487 (4)0.0018 (2)0.0067 (3)0.0065 (3)
Geometric parameters (Å, º) top
C1—O11.2463 (10)C7—H7C0.96
C1—C21.4320 (11)C8—H8A0.96
C1—C61.5126 (12)C8—H8B0.96
C2—C31.3754 (11)C8—H8C0.96
C2—H20.93C10—C151.3895 (12)
C3—N11.3523 (10)C10—C111.3954 (12)
C3—C41.5069 (11)C10—N11.4209 (10)
C4—C51.5323 (12)C11—C121.3911 (13)
C4—H4A0.97C11—H110.93
C4—H4B0.97C12—C131.3857 (16)
C5—C71.5316 (12)C12—H120.93
C5—C61.5326 (12)C13—C141.3895 (16)
C5—C81.5351 (12)C13—H130.93
C6—H6A0.97C14—C151.3896 (13)
C6—H6B0.97C14—H140.93
C7—H7A0.96C15—H150.93
C7—H7B0.96N1—H10.86
O1—C1—C2122.25 (8)C5—C7—H7C109.5
O1—C1—C6119.18 (7)H7A—C7—H7C109.5
C2—C1—C6118.54 (7)H7B—C7—H7C109.5
C3—C2—C1121.65 (7)C5—C8—H8A109.5
C3—C2—H2119.2C5—C8—H8B109.5
C1—C2—H2119.2H8A—C8—H8B109.5
N1—C3—C2125.26 (7)C5—C8—H8C109.5
N1—C3—C4113.97 (7)H8A—C8—H8C109.5
C2—C3—C4120.72 (7)H8B—C8—H8C109.5
C3—C4—C5114.36 (7)C15—C10—C11119.93 (8)
C3—C4—H4A108.7C15—C10—N1121.09 (7)
C5—C4—H4A108.7C11—C10—N1118.95 (8)
C3—C4—H4B108.7C12—C11—C10119.99 (9)
C5—C4—H4B108.7C12—C11—H11120
H4A—C4—H4B107.6C10—C11—H11120
C7—C5—C4108.91 (7)C13—C12—C11120.13 (9)
C7—C5—C6109.70 (7)C13—C12—H12119.9
C4—C5—C6107.77 (7)C11—C12—H12119.9
C7—C5—C8109.43 (7)C12—C13—C14119.69 (9)
C4—C5—C8110.80 (7)C12—C13—H13120.2
C6—C5—C8110.20 (7)C14—C13—H13120.2
C1—C6—C5114.07 (7)C13—C14—C15120.64 (10)
C1—C6—H6A108.7C13—C14—H14119.7
C5—C6—H6A108.7C15—C14—H14119.7
C1—C6—H6B108.7C10—C15—C14119.61 (9)
C5—C6—H6B108.7C10—C15—H15120.2
H6A—C6—H6B107.6C14—C15—H15120.2
C5—C7—H7A109.5C3—N1—C10126.13 (7)
C5—C7—H7B109.5C3—N1—H1116.9
H7A—C7—H7B109.5C10—N1—H1116.9
O1—C1—C2—C3178.90 (8)C8—C5—C6—C169.18 (9)
C6—C1—C2—C30.93 (12)C15—C10—C11—C120.66 (12)
C1—C2—C3—N1176.05 (8)N1—C10—C11—C12178.82 (7)
C1—C2—C3—C41.17 (12)C10—C11—C12—C130.27 (13)
N1—C3—C4—C5157.43 (7)C11—C12—C13—C140.70 (15)
C2—C3—C4—C525.06 (11)C12—C13—C14—C150.19 (16)
C3—C4—C5—C7168.72 (7)C11—C10—C15—C141.17 (13)
C3—C4—C5—C649.78 (9)N1—C10—C15—C14179.28 (8)
C3—C4—C5—C870.86 (9)C13—C14—C15—C100.74 (15)
O1—C1—C6—C5152.80 (8)C2—C3—N1—C102.19 (14)
C2—C1—C6—C529.16 (11)C4—C3—N1—C10175.20 (7)
C7—C5—C6—C1170.28 (7)C15—C10—N1—C354.91 (12)
C4—C5—C6—C151.84 (9)C11—C10—N1—C3126.96 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.022.8587 (11)165
C8—H8A···Cg1ii0.962.613.5547 (12)157
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86002.02002.8587 (11)165.00
C8—H8A···Cg1ii0.962.613.5547 (12)157
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support.

References

First citationAdams, J. P. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 125–128.  Web of Science CrossRef Google Scholar
First citationAmini, M., Edraki, N., Sarkarzadeh, H., Shafiee, A., Edraki, N., Firuzi, O., Miri, R. & Razzaghi-Asl, N. (2013). Arch. Pharm. Res. 36, 436–447.  Web of Science PubMed Google Scholar
First citationAssy, A. M. (1996). Indian J. Chem. Sect. B, 35, 608–610.  Google Scholar
First citationBahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChelghoum, M., Bahnous, M., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, S., Tsai, C. H., Tseng, C. & Yao, C.-F. (2008). Tetrahedron, 64, 9143–9149.  Web of Science CrossRef CAS Google Scholar
First citationKempf, B., Hampel, N., Ofial, A. R. & Mayr, H. (2003). Chem. Eur. J. 9, 2209–2213.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMachacek, V., Simunek, P. & Lycka, A. (2002). Eur. J. Org. Chem. 16, 2764–2769.  Google Scholar
First citationMohammadizadeh, M. R., Hasaninejad, A., Bahramzadeh, M. & Khanjarlou, Z. S. (2009). Synth. Commun. 39, 1152–1165.  Web of Science CrossRef CAS Google Scholar
First citationPalko, R., Egyed, O., Bombicz, P., Riedl, Z. & Hajós, G. (2008). Tetrahedron, 64, 10375–10380.  CAS Google Scholar
First citationPark, J. G. & Jahng, Y. (1998). Bull. Korean Chem. Soc. 19, 436–439.  CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadesse, S., Bhandari, A. & Gallop, M. A. (1999). J. Comb. Chem. 1, 184–187.  Web of Science CrossRef CAS Google Scholar
First citationThummel, R. P. & Jahng, Y. (1985). J. Org. Chem. 50, 2407–2412.  CrossRef CAS Web of Science Google Scholar
First citationWang, W.-S., Zhang, M.-M., Jiang, H., Chang-Sheng Yao, S.-S. & Tu, S.-J. (2007). Tetrahedron, 63, 4439–4449.  Web of Science CSD CrossRef CAS Google Scholar
First citationZama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013a). Tetrahedron Lett. 54, 5605–5607.  Web of Science CSD CrossRef CAS Google Scholar
First citationZama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013b). Acta Cryst. E69, o837–o838.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o233-o234
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds