metal-organic compounds
trans-Chloridobis(ethane-1,2-diamine-κ2N,N′)(thiocyanato-κN)cobalt(III) diamminetetrakis(thiocyanato-κN)cromate(III)
aTaras Shevchenko National University, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: valya.semenaka@gmail.com
The title ionic complex [CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2], which crystallizes as a non-merohedral twin, is build up of a complex cation [CoCl(NCS)(en)2]+ (en is ethane-1,2-diamine) and the Reinecke's salt anion [Cr(NCS)4(NH3)2]− as complex counter-ion. A network of N—H⋯S and N—H⋯Cl hydrogen bonds, as well as short S⋯S contacts [3.538 (2) and 3.489 (3) Å], between the NCS groups of the complex anions link the molecules into a three-dimentional supramolecular network. Intensity statistic indicated by non-merohedry with refined weighs of twin components are 0.5662:0.4338.
CCDC reference: 987894
Related literature
For background to the ammonium salt route for direct synthesis of coordination compounds, see: Kovbasyuk et al. (1997); Pryma et al. (2003); Buvaylo et al. (2005). For the salt route for direct synthesis of coordination compounds, see: Vassilyeva et al. (1997); Makhankova et al. (2002). For direct synthesis of heterometallic complexes with ethylenediamine, see: Nesterova (Pryma) et al. (2004); Nesterova et al. (2005, 2008). For the application of Reinecke's salt in the direct synthesis of heterometallic complexes, see: Nikitina et al. (2008, 2009). For the structures of related complexes, see: Schubert et al. (1981); Tang et al. (1993); Foust & Janickis (1980); Anbalagan et al. (2009).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 987894
10.1107/S1600536814003869/br2236sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814003869/br2236Isup2.hkl
Cobalt powder (0.074 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), en·2HCl (0.166 g, 1.25 mmol) and methanol (20 ml) were heated in air to 323–333 K and stirred magnetically during 7 h. The resulting blue solution was slowly evaporated at room temperature until light-brown crystals suitable for crystallographic study were formed. The crystals were filtered off, washed with dry PriOH and finally dried in vacuo at room temperature. Yield: 0.12 g, 17.1%.
Crystal data, data collection and structure
details are summarized in Table 1. All of the hydrogen atoms were positioned geometricaly and refined using a riding model approximation with Uiso = 1.2 or 1.5 Ueq of the A rotating model was used for NH3 and CH3 groups. Intensity statistic indicated a nonmerohedral with refined weights of twin components are 0.5662:0.4338.In order to continue our research on direct synthesis of coordination compounds (Kovbasyuk et al., 1997; Pryma et al., 2003; Buvaylo et al., 2005; Vassilyeva et al., 1997; Makhankova et al., 2002; Nesterova (Pryma) et al., 2004; Nesterova et al., 2005, 2008; Nikitina et al., 2008, 2009) in this paper we present a novel Co/Cr heterometallic ionic complex which has been synthesized using zerovalent cobalt, Reinecke's salt and non-aqueous solution of ethylenediamine as a starting materials.
As it shown on Fig.1 Co atom in complex cation is in distorted square bypiramidal coordination enviroment with one NCS group and chlorine atom at the axial positions and four N atoms from two ethylenediamine molecules in equatorial plane. The Cr centers are in the similar to Co coordination enviroment and coordinated to six N atoms - four NCS-groups in equatorial position and two NH3 molecules in axial position. The bond distances and angles in the title molecule agree well with the corresponding bond distances and angles reported in closely related compounds (Schubert et al.,1981, Tang et al., 1993, Foust et al., 1980, Anbalagan et al., 2009, Nikitina et al., 2008, 2009). There are short interanionic S···S contacts between NCS-groups of the complex anions with the distances 3.538 (1) (S5···S5) and 3.489 (1) Å (S2···S2) whereas sum of standard Van-der-Vaals radius of the sulfur atom is 3.68 Å. Two NCS-groups of the ligand which involve S2 and S3 atoms show relatively large thermal displacements (Ueq is 0.1063 (9) Å2 and 0.0984 (8) Å2, resp.). Also these NCS-groups show notably non-linear Cr–N–C bond angles (166.2 (5)° and 163.2 (5)°).This might be caused by intermolecular contacts involving S2 and S3. S···S contacts as well as a network of hydrogen bonds link the molecule into threedimentional supramolecular network. The crystal packing of the title compound is presented on Fig 2.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Crystal structure of the complex, showing the atom numbering, with 30% probability displacement ellipsoids | |
Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. |
[CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2] | Z = 2 |
Mr = 591.05 | F(000) = 602 |
Triclinic, P1 | Dx = 1.633 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 8.8290 (15) Å | Cell parameters from 3528 reflections |
b = 10.745 (3) Å | θ = 3.1–27.3° |
c = 13.275 (3) Å | µ = 1.71 mm−1 |
α = 106.98 (2)° | T = 293 K |
β = 93.131 (17)° | Block, light brown |
γ = 90.646 (17)° | 0.27 × 0.24 × 0.08 mm |
V = 1202.1 (5) Å3 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 8238 measured reflections |
Radiation source: Enhance (Mo) X-ray Source | 8238 independent reflections |
Graphite monochromator | 6185 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | θmax = 28.6°, θmin = 2.9° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −13→13 |
Tmin = 0.855, Tmax = 0.883 | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.080P)2 + 0.5674P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
8238 reflections | Δρmax = 1.19 e Å−3 |
256 parameters | Δρmin = −0.72 e Å−3 |
0 restraints |
[CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2] | γ = 90.646 (17)° |
Mr = 591.05 | V = 1202.1 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.8290 (15) Å | Mo Kα radiation |
b = 10.745 (3) Å | µ = 1.71 mm−1 |
c = 13.275 (3) Å | T = 293 K |
α = 106.98 (2)° | 0.27 × 0.24 × 0.08 mm |
β = 93.131 (17)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 8238 measured reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 8238 independent reflections |
Tmin = 0.855, Tmax = 0.883 | 6185 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.19 e Å−3 |
8238 reflections | Δρmin = −0.72 e Å−3 |
256 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.54186 (7) | 0.40606 (6) | 0.75563 (4) | 0.02775 (16) | |
Cr1 | 0.08452 (9) | −0.07796 (8) | 0.76057 (7) | 0.0385 (2) | |
Cl1 | 0.40444 (16) | 0.35647 (13) | 0.87609 (9) | 0.0438 (3) | |
S1 | 0.78440 (16) | 0.49754 (14) | 0.48138 (10) | 0.0452 (3) | |
S2 | 0.0503 (3) | −0.3524 (2) | 0.9791 (2) | 0.1063 (9) | |
S3 | 0.0184 (2) | 0.2947 (2) | 0.6471 (2) | 0.0984 (8) | |
S4 | 0.55652 (16) | −0.22096 (14) | 0.61991 (10) | 0.0442 (3) | |
S5 | −0.38612 (16) | 0.04575 (16) | 0.91039 (11) | 0.0518 (4) | |
N1 | 0.6708 (5) | 0.2569 (4) | 0.7487 (3) | 0.0370 (9) | |
H1A | 0.7764 | 0.2817 | 0.7471 | 0.044* | |
H1B | 0.6599 | 0.2272 | 0.8104 | 0.044* | |
N2 | 0.4114 (4) | 0.2859 (4) | 0.6452 (3) | 0.0343 (9) | |
H2A | 0.3061 | 0.2971 | 0.6623 | 0.041* | |
H2B | 0.4225 | 0.3036 | 0.5783 | 0.041* | |
N3 | 0.4130 (5) | 0.5558 (4) | 0.7636 (3) | 0.0371 (9) | |
H3A | 0.4180 | 0.5815 | 0.6996 | 0.045* | |
H3B | 0.3084 | 0.5323 | 0.7701 | 0.045* | |
N4 | 0.6745 (5) | 0.5263 (4) | 0.8661 (3) | 0.0367 (9) | |
H4A | 0.6582 | 0.5137 | 0.9342 | 0.044* | |
H4B | 0.7801 | 0.5104 | 0.8513 | 0.044* | |
N5 | 0.6529 (5) | 0.4460 (4) | 0.6499 (3) | 0.0362 (9) | |
N6 | 0.0981 (6) | −0.2081 (5) | 0.8404 (4) | 0.0603 (14) | |
N7 | 0.0637 (6) | 0.0593 (5) | 0.6873 (4) | 0.0561 (13) | |
N8 | 0.2839 (5) | −0.1270 (4) | 0.6994 (4) | 0.0461 (11) | |
N9 | −0.1149 (5) | −0.0282 (5) | 0.8214 (4) | 0.0515 (12) | |
N10 | −0.0200 (6) | −0.2146 (5) | 0.6325 (4) | 0.0695 (15) | |
H10A | −0.1087 | −0.2397 | 0.6501 | 0.104* | |
H10B | 0.0388 | −0.2832 | 0.6125 | 0.104* | |
H10C | −0.0353 | −0.1801 | 0.5796 | 0.104* | |
N11 | 0.1914 (5) | 0.0620 (4) | 0.8881 (3) | 0.0472 (11) | |
H11A | 0.1242 | 0.1198 | 0.9190 | 0.071* | |
H11B | 0.2652 | 0.1023 | 0.8656 | 0.071* | |
H11C | 0.2306 | 0.0238 | 0.9344 | 0.071* | |
C1 | 0.6231 (7) | 0.1510 (5) | 0.6512 (4) | 0.0502 (14) | |
H1C | 0.6687 | 0.1659 | 0.5908 | 0.060* | |
H1D | 0.6558 | 0.0677 | 0.6578 | 0.060* | |
C2 | 0.4560 (7) | 0.1507 (5) | 0.6370 (4) | 0.0482 (13) | |
H2C | 0.4101 | 0.1210 | 0.6910 | 0.058* | |
H2D | 0.4220 | 0.0926 | 0.5685 | 0.058* | |
C3 | 0.4661 (6) | 0.6663 (5) | 0.8567 (4) | 0.0444 (13) | |
H3C | 0.4223 | 0.6579 | 0.9200 | 0.053* | |
H3D | 0.4360 | 0.7484 | 0.8463 | 0.053* | |
C4 | 0.6367 (7) | 0.6613 (5) | 0.8674 (4) | 0.0459 (13) | |
H4C | 0.6814 | 0.6831 | 0.8093 | 0.055* | |
H4D | 0.6757 | 0.7230 | 0.9330 | 0.055* | |
C5 | 0.7041 (5) | 0.4652 (4) | 0.5783 (4) | 0.0323 (10) | |
C6 | 0.0819 (7) | −0.2700 (6) | 0.8967 (6) | 0.0664 (19) | |
C7 | 0.0454 (6) | 0.1544 (7) | 0.6701 (5) | 0.0591 (17) | |
C8 | 0.3977 (5) | −0.1639 (4) | 0.6657 (4) | 0.0334 (10) | |
C9 | −0.2279 (6) | 0.0020 (5) | 0.8567 (4) | 0.0374 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0309 (3) | 0.0296 (3) | 0.0247 (3) | 0.0017 (2) | 0.0031 (3) | 0.0106 (3) |
Cr1 | 0.0263 (4) | 0.0419 (5) | 0.0462 (5) | 0.0008 (3) | 0.0036 (4) | 0.0108 (4) |
Cl1 | 0.0507 (8) | 0.0489 (7) | 0.0341 (7) | −0.0010 (6) | 0.0105 (6) | 0.0143 (6) |
S1 | 0.0434 (8) | 0.0541 (8) | 0.0429 (7) | −0.0030 (6) | 0.0120 (6) | 0.0201 (6) |
S2 | 0.0773 (14) | 0.1127 (18) | 0.167 (2) | −0.0156 (12) | −0.0050 (15) | 0.1033 (18) |
S3 | 0.0516 (11) | 0.1282 (18) | 0.163 (2) | 0.0142 (11) | 0.0175 (12) | 0.1146 (18) |
S4 | 0.0379 (7) | 0.0539 (8) | 0.0404 (7) | 0.0099 (6) | 0.0089 (6) | 0.0116 (6) |
S5 | 0.0381 (8) | 0.0682 (10) | 0.0514 (8) | 0.0099 (7) | 0.0136 (6) | 0.0190 (7) |
N1 | 0.040 (2) | 0.037 (2) | 0.040 (2) | 0.0086 (18) | 0.0094 (19) | 0.0181 (19) |
N2 | 0.034 (2) | 0.037 (2) | 0.030 (2) | −0.0024 (17) | 0.0018 (17) | 0.0074 (17) |
N3 | 0.043 (2) | 0.038 (2) | 0.032 (2) | 0.0060 (18) | 0.0011 (19) | 0.0116 (18) |
N4 | 0.040 (2) | 0.038 (2) | 0.033 (2) | −0.0029 (18) | −0.0041 (18) | 0.0126 (17) |
N5 | 0.042 (2) | 0.035 (2) | 0.033 (2) | 0.0034 (18) | 0.0054 (19) | 0.0111 (18) |
N6 | 0.051 (3) | 0.056 (3) | 0.083 (4) | 0.000 (2) | 0.013 (3) | 0.033 (3) |
N7 | 0.047 (3) | 0.068 (3) | 0.057 (3) | 0.005 (3) | 0.003 (2) | 0.024 (3) |
N8 | 0.033 (2) | 0.050 (3) | 0.055 (3) | 0.005 (2) | 0.008 (2) | 0.014 (2) |
N9 | 0.034 (3) | 0.062 (3) | 0.059 (3) | 0.004 (2) | 0.013 (2) | 0.016 (2) |
N10 | 0.049 (3) | 0.073 (4) | 0.073 (4) | −0.004 (3) | −0.002 (3) | 0.002 (3) |
N11 | 0.041 (3) | 0.049 (3) | 0.048 (3) | −0.010 (2) | −0.003 (2) | 0.012 (2) |
C1 | 0.068 (4) | 0.032 (3) | 0.051 (3) | 0.011 (3) | 0.021 (3) | 0.009 (2) |
C2 | 0.065 (4) | 0.034 (3) | 0.042 (3) | −0.011 (3) | 0.004 (3) | 0.007 (2) |
C3 | 0.060 (4) | 0.037 (3) | 0.036 (3) | 0.012 (2) | 0.004 (2) | 0.008 (2) |
C4 | 0.064 (4) | 0.031 (3) | 0.041 (3) | −0.011 (2) | −0.003 (3) | 0.008 (2) |
C5 | 0.032 (3) | 0.030 (2) | 0.033 (3) | −0.0010 (19) | −0.001 (2) | 0.007 (2) |
C6 | 0.035 (3) | 0.049 (4) | 0.122 (6) | 0.001 (3) | 0.004 (4) | 0.038 (4) |
C7 | 0.029 (3) | 0.105 (5) | 0.063 (4) | 0.003 (3) | 0.008 (3) | 0.053 (4) |
C8 | 0.034 (3) | 0.030 (2) | 0.039 (3) | −0.001 (2) | 0.000 (2) | 0.014 (2) |
C9 | 0.038 (3) | 0.039 (3) | 0.039 (3) | 0.000 (2) | −0.003 (2) | 0.017 (2) |
Co1—Cl1 | 2.2378 (14) | N3—H3B | 0.9700 |
Co1—N1 | 1.960 (4) | N3—C3 | 1.492 (6) |
Co1—N2 | 1.954 (4) | N4—H4A | 0.9700 |
Co1—N3 | 1.962 (4) | N4—H4B | 0.9700 |
Co1—N4 | 1.965 (4) | N4—C4 | 1.488 (6) |
Co1—N5 | 1.900 (4) | N5—C5 | 1.144 (6) |
Cr1—N6 | 1.987 (5) | N6—C6 | 1.149 (8) |
Cr1—N7 | 1.995 (5) | N7—C7 | 1.122 (8) |
Cr1—N8 | 1.990 (4) | N8—C8 | 1.150 (6) |
Cr1—N9 | 1.990 (5) | N9—C9 | 1.135 (6) |
Cr1—N10 | 2.058 (5) | N10—H10A | 0.8900 |
Cr1—N11 | 2.080 (4) | N10—H10B | 0.8900 |
S1—C5 | 1.623 (5) | N10—H10C | 0.8900 |
S2—C6 | 1.629 (7) | N11—H11A | 0.8900 |
S3—C7 | 1.640 (7) | N11—H11B | 0.8900 |
S4—C8 | 1.615 (5) | N11—H11C | 0.8900 |
S5—C9 | 1.616 (5) | C1—H1C | 0.9700 |
S2—S2i | 3.489 (3) | C1—H1D | 0.9700 |
S5—S5ii | 3.538 (2) | C1—C2 | 1.477 (8) |
N1—H1A | 0.9700 | C2—H2C | 0.9700 |
N1—H1B | 0.9700 | C2—H2D | 0.9700 |
N1—C1 | 1.489 (7) | C3—H3C | 0.9700 |
N2—H2A | 0.9700 | C3—H3D | 0.9700 |
N2—H2B | 0.9700 | C3—C4 | 1.508 (8) |
N2—C2 | 1.485 (6) | C4—H4C | 0.9700 |
N3—H3A | 0.9700 | C4—H4D | 0.9700 |
N1—Co1—Cl1 | 90.78 (12) | H4A—N4—H4B | 108.5 |
N1—Co1—N3 | 179.61 (17) | C4—N4—Co1 | 107.7 (3) |
N1—Co1—N4 | 93.44 (17) | C4—N4—H4A | 110.2 |
N2—Co1—Cl1 | 88.77 (12) | C4—N4—H4B | 110.2 |
N2—Co1—N1 | 86.23 (17) | C5—N5—Co1 | 171.6 (4) |
N2—Co1—N3 | 94.07 (17) | C6—N6—Cr1 | 166.2 (5) |
N2—Co1—N4 | 179.54 (17) | C7—N7—Cr1 | 163.2 (5) |
N3—Co1—Cl1 | 88.98 (13) | C8—N8—Cr1 | 175.0 (4) |
N3—Co1—N4 | 86.27 (17) | C9—N9—Cr1 | 179.0 (5) |
N4—Co1—Cl1 | 91.54 (12) | Cr1—N10—H10A | 109.5 |
N5—Co1—Cl1 | 178.03 (13) | Cr1—N10—H10B | 109.5 |
N5—Co1—N1 | 89.78 (17) | Cr1—N10—H10C | 109.5 |
N5—Co1—N2 | 89.38 (17) | H10A—N10—H10B | 109.5 |
N5—Co1—N3 | 90.47 (17) | H10A—N10—H10C | 109.5 |
N5—Co1—N4 | 90.31 (17) | H10B—N10—H10C | 109.5 |
N6—Cr1—N7 | 176.5 (2) | Cr1—N11—H11A | 109.5 |
N6—Cr1—N8 | 92.1 (2) | Cr1—N11—H11B | 109.5 |
N6—Cr1—N9 | 88.1 (2) | Cr1—N11—H11C | 109.5 |
N6—Cr1—N10 | 90.7 (2) | H11A—N11—H11B | 109.5 |
N6—Cr1—N11 | 90.3 (2) | H11A—N11—H11C | 109.5 |
N7—Cr1—N10 | 91.1 (2) | H11B—N11—H11C | 109.5 |
N7—Cr1—N11 | 87.9 (2) | N1—C1—H1C | 110.1 |
N8—Cr1—N7 | 90.8 (2) | N1—C1—H1D | 110.1 |
N8—Cr1—N9 | 179.7 (2) | H1C—C1—H1D | 108.4 |
N8—Cr1—N10 | 89.1 (2) | C2—C1—N1 | 108.0 (4) |
N8—Cr1—N11 | 90.47 (19) | C2—C1—H1C | 110.1 |
N9—Cr1—N7 | 88.9 (2) | C2—C1—H1D | 110.1 |
N9—Cr1—N10 | 90.9 (2) | N2—C2—H2C | 110.2 |
N9—Cr1—N11 | 89.51 (19) | N2—C2—H2D | 110.2 |
N10—Cr1—N11 | 179.0 (2) | C1—C2—N2 | 107.6 (4) |
Co1—N1—H1A | 110.1 | C1—C2—H2C | 110.2 |
Co1—N1—H1B | 110.1 | C1—C2—H2D | 110.2 |
H1A—N1—H1B | 108.4 | H2C—C2—H2D | 108.5 |
C1—N1—Co1 | 108.2 (3) | N3—C3—H3C | 110.3 |
C1—N1—H1A | 110.1 | N3—C3—H3D | 110.3 |
C1—N1—H1B | 110.1 | N3—C3—C4 | 107.1 (4) |
Co1—N2—H2A | 109.9 | H3C—C3—H3D | 108.5 |
Co1—N2—H2B | 109.9 | C4—C3—H3C | 110.3 |
H2A—N2—H2B | 108.3 | C4—C3—H3D | 110.3 |
C2—N2—Co1 | 108.7 (3) | N4—C4—C3 | 107.1 (4) |
C2—N2—H2A | 109.9 | N4—C4—H4C | 110.3 |
C2—N2—H2B | 109.9 | N4—C4—H4D | 110.3 |
Co1—N3—H3A | 109.8 | C3—C4—H4C | 110.3 |
Co1—N3—H3B | 109.8 | C3—C4—H4D | 110.3 |
H3A—N3—H3B | 108.2 | H4C—C4—H4D | 108.5 |
C3—N3—Co1 | 109.4 (3) | N5—C5—S1 | 176.7 (5) |
C3—N3—H3A | 109.8 | N6—C6—S2 | 176.6 (6) |
C3—N3—H3B | 109.8 | N7—C7—S3 | 179.0 (7) |
Co1—N4—H4A | 110.2 | N8—C8—S4 | 177.7 (5) |
Co1—N4—H4B | 110.2 | N9—C9—S5 | 178.3 (5) |
Co1—N1—C1—C2 | −38.5 (5) | Co1—N4—C4—C3 | 42.6 (5) |
Co1—N2—C2—C1 | −38.6 (5) | N1—C1—C2—N2 | 50.6 (5) |
Co1—N3—C3—C4 | 35.7 (5) | N3—C3—C4—N4 | −51.3 (5) |
Symmetry codes: (i) −x, −y−1, −z+2; (ii) −x−1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S3iii | 0.97 | 2.60 | 3.485 (5) | 152 |
N1—H1B···S5iii | 0.97 | 2.70 | 3.598 (5) | 154 |
N2—H2A···S3 | 0.97 | 2.54 | 3.473 (4) | 163 |
N2—H2B···S4iv | 0.97 | 2.54 | 3.411 (4) | 150 |
N4—H4A···Cl1v | 0.97 | 2.59 | 3.398 (4) | 141 |
N10—H10B···S1iv | 0.89 | 2.81 | 3.696 (6) | 171 |
N11—H11C···S5vi | 0.89 | 2.70 | 3.578 (5) | 168 |
Symmetry codes: (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) −x+1, −y+1, −z+2; (vi) −x, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2] |
Mr | 591.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.8290 (15), 10.745 (3), 13.275 (3) |
α, β, γ (°) | 106.98 (2), 93.131 (17), 90.646 (17) |
V (Å3) | 1202.1 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.71 |
Crystal size (mm) | 0.27 × 0.24 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.855, 0.883 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8238, 8238, 6185 |
Rint | ? |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.141, 1.03 |
No. of reflections | 8238 |
No. of parameters | 256 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.19, −0.72 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S3iii | 0.9700 | 2.6000 | 3.485 (5) | 152.00 |
N1—H1B···S5iii | 0.9700 | 2.7000 | 3.598 (5) | 154.00 |
N2—H2A···S3 | 0.9700 | 2.5400 | 3.473 (4) | 163.00 |
N2—H2B···S4iv | 0.9700 | 2.5400 | 3.411 (4) | 150.00 |
N4—H4A···Cl1v | 0.9700 | 2.5900 | 3.398 (4) | 141.00 |
N10—H10B···S1iv | 0.8900 | 2.8100 | 3.696 (6) | 171.00 |
N11—H11C···S5vi | 0.8900 | 2.7000 | 3.578 (5) | 168.00 |
Symmetry codes: (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) −x+1, −y+1, −z+2; (vi) −x, −y, −z+2. |
Acknowledgements
This work was partly supported by the State Fund for Fundamental Research of Ukraine (project 54.3/005).
References
Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. Web of Science CSD CrossRef Google Scholar
Foust, A. S. & Janickis, V. (1980). Inorg. Chem. 19, 1048–1050. CSD CrossRef CAS Web of Science Google Scholar
Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163. CSD CrossRef CAS Web of Science Google Scholar
Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259. Web of Science CSD CrossRef Google Scholar
Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434. Web of Science CSD CrossRef CAS Google Scholar
Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436. Web of Science CSD CrossRef PubMed Google Scholar
Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454. Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Polyhedron, 28, 1265–1272. Web of Science CSD CrossRef CAS Google Scholar
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432. CSD CrossRef Google Scholar
Schubert, U., Zimmer-Gasser, B., Dash, K. C. & Chaudhury, G. R. (1981). Cryst. Struct. Commun. 10, 251–254. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, K., Kastner, M. E., Cooper, J. N., Kanaskie, M. & Monoski, A. (1993). Acta Cryst. C49, 1265–1267. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.