metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m110-m111

trans-Chloridobis­(ethane-1,2-di­amine-κ2N,N′)(thio­cyanato-κN)cobalt(III) diammine­tetra­kis­(thio­cyanato-κN)cromate(III)

aTaras Shevchenko National University, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: valya.semenaka@gmail.com

(Received 21 January 2014; accepted 19 February 2014; online 26 February 2014)

The title ionic complex [CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2], which crystallizes as a non-merohedral twin, is build up of a complex cation [CoCl(NCS)(en)2]+ (en is ethane-1,2-di­amine) and the Reinecke's salt anion [Cr(NCS)4(NH3)2] as complex counter-ion. A network of N—H⋯S and N—H⋯Cl hydrogen bonds, as well as short S⋯S contacts [3.538 (2) and 3.489 (3) Å], between the NCS groups of the complex anions link the mol­ecules into a three-dimentional supra­molecular network. Intensity statistic indicated twinning by non-mero­hedry with refined weighs of twin components are 0.5662:0.4338.

Related literature

For background to the ammonium salt route for direct synthesis of coordination compounds, see: Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.]); Pryma et al. (2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]); Buvaylo et al. (2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.]). For the salt route for direct synthesis of coordination compounds, see: Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]); Makhankova et al. (2002[Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253-4259.]). For direct synthesis of heterometallic complexes with ethyl­enedi­amine, see: Nesterova (Pryma) et al. (2004[Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.]); Nesterova et al. (2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.], 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431-1436.]). For the application of Reinecke's salt in the direct synthesis of heterometallic complexes, see: Nikitina et al. (2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.], 2009[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Polyhedron, 28, 1265-1272.]). For the structures of related complexes, see: Schubert et al. (1981[Schubert, U., Zimmer-Gasser, B., Dash, K. C. & Chaudhury, G. R. (1981). Cryst. Struct. Commun. 10, 251-254.]); Tang et al. (1993[Tang, K., Kastner, M. E., Cooper, J. N., Kanaskie, M. & Monoski, A. (1993). Acta Cryst. C49, 1265-1267.]); Foust & Janickis (1980[Foust, A. S. & Janickis, V. (1980). Inorg. Chem. 19, 1048-1050.]); Anbalagan et al. (2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2]

  • Mr = 591.05

  • Triclinic, [P \overline 1]

  • a = 8.8290 (15) Å

  • b = 10.745 (3) Å

  • c = 13.275 (3) Å

  • α = 106.98 (2)°

  • β = 93.131 (17)°

  • γ = 90.646 (17)°

  • V = 1202.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.27 × 0.24 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.855, Tmax = 0.883

  • 8238 measured reflections

  • 8238 independent reflections

  • 6185 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.03

  • 8238 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S3iii 0.97 2.60 3.485 (5) 152
N1—H1B⋯S5iii 0.97 2.70 3.598 (5) 154
N2—H2A⋯S3 0.97 2.54 3.473 (4) 163
N2—H2B⋯S4iv 0.97 2.54 3.411 (4) 150
N4—H4A⋯Cl1v 0.97 2.59 3.398 (4) 141
N10—H10B⋯S1iv 0.89 2.81 3.696 (6) 171
N11—H11C⋯S5vi 0.89 2.70 3.578 (5) 168
Symmetry codes: (iii) x+1, y, z; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+2; (vi) -x, -y, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

Cobalt powder (0.074 g, 1.25 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (0.443 g, 1.25 mmol), en·2HCl (0.166 g, 1.25 mmol) and methanol (20 ml) were heated in air to 323–333 K and stirred magnetically during 7 h. The resulting blue solution was slowly evaporated at room temperature until light-brown crystals suitable for crystallographic study were formed. The crystals were filtered off, washed with dry PriOH and finally dried in vacuo at room temperature. Yield: 0.12 g, 17.1%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All of the hydrogen atoms were positioned geometricaly and refined using a riding model approximation with Uiso = 1.2 or 1.5 Ueq of the carrier atom. A rotating model was used for NH3 and CH3 groups. Intensity statistic indicated a nonmerohedral twinning with refined weights of twin components are 0.5662:0.4338.

Results and discussion top

In order to continue our research on direct synthesis of coordination compounds (Kovbasyuk et al., 1997; Pryma et al., 2003; Buvaylo et al., 2005; Vassilyeva et al., 1997; Makhankova et al., 2002; Nesterova (Pryma) et al., 2004; Nesterova et al., 2005, 2008; Nikitina et al., 2008, 2009) in this paper we present a novel Co/Cr heterometallic ionic complex which has been synthesized using zerovalent cobalt, Reinecke's salt and non-aqueous solution of ethyl­enedi­amine as a starting materials.

As it shown on Fig.1 Co atom in complex cation is in distorted square bypiramidal coordination enviroment with one NCS group and chlorine atom at the axial positions and four N atoms from two ethyl­enedi­amine molecules in equatorial plane. The Cr centers are in the similar to Co coordination enviroment and coordinated to six N atoms - four NCS-groups in equatorial position and two NH3 molecules in axial position. The bond distances and angles in the title molecule agree well with the corresponding bond distances and angles reported in closely related compounds (Schubert et al.,1981, Tang et al., 1993, Foust et al., 1980, Anbalagan et al., 2009, Nikitina et al., 2008, 2009). There are short inter­anionic S···S contacts between NCS-groups of the complex anions with the distances 3.538 (1) (S5···S5) and 3.489 (1) Å (S2···S2) whereas sum of standard Van-der-Vaals radius of the sulfur atom is 3.68 Å. Two NCS-groups of the ligand which involve S2 and S3 atoms show relatively large thermal displacements (Ueq is 0.1063 (9) Å2 and 0.0984 (8) Å2, resp.). Also these NCS-groups show notably non-linear Cr–N–C bond angles (166.2 (5)° and 163.2 (5)°).This might be caused by inter­molecular contacts involving S2 and S3. S···S contacts as well as a network of hydrogen bonds link the molecule into threedimentional supra­molecular network. The crystal packing of the title compound is presented on Fig 2.

Related literature top

For background to the ammonium salt route for direct synthesis of coordination compounds, see: Kovbasyuk et al. (1997); Pryma et al. (2003); Buvaylo et al. (2005). For the salt route for direct synthesis of coordination compounds, see: Vassilyeva et al. (1997); Makhankova et al. (2002). For direct synthesis of heterometallic complexes with ethylenediamine, see: Nesterova (Pryma) et al. (2004); Nesterova et al. (2005, 2008). For the application of Reinecke's salt in the direct synthesis of heterometallic complexes, see: Nikitina et al. (2008, 2009). For the structures of related complexes, see: Schubert et al. (1981); Tang et al. (1993); Foust & Janickis (1980); Anbalagan et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the complex, showing the atom numbering, with 30% probability displacement ellipsoids
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
trans-Chloridobis(ethane-1,2-diamine-κ2N,N')(thiocyanato-κN)cobalt(III) diamminetetrakis(thiocyanato-κN)cromate(III) top
Crystal data top
[CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2]Z = 2
Mr = 591.05F(000) = 602
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.8290 (15) ÅCell parameters from 3528 reflections
b = 10.745 (3) Åθ = 3.1–27.3°
c = 13.275 (3) ŵ = 1.71 mm1
α = 106.98 (2)°T = 293 K
β = 93.131 (17)°Block, light brown
γ = 90.646 (17)°0.27 × 0.24 × 0.08 mm
V = 1202.1 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
8238 measured reflections
Radiation source: Enhance (Mo) X-ray Source8238 independent reflections
Graphite monochromator6185 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1θmax = 28.6°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.855, Tmax = 0.883l = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.080P)2 + 0.5674P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8238 reflectionsΔρmax = 1.19 e Å3
256 parametersΔρmin = 0.72 e Å3
0 restraints
Crystal data top
[CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2]γ = 90.646 (17)°
Mr = 591.05V = 1202.1 (5) Å3
Triclinic, P1Z = 2
a = 8.8290 (15) ÅMo Kα radiation
b = 10.745 (3) ŵ = 1.71 mm1
c = 13.275 (3) ÅT = 293 K
α = 106.98 (2)°0.27 × 0.24 × 0.08 mm
β = 93.131 (17)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
8238 measured reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
8238 independent reflections
Tmin = 0.855, Tmax = 0.8836185 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 1.19 e Å3
8238 reflectionsΔρmin = 0.72 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.54186 (7)0.40606 (6)0.75563 (4)0.02775 (16)
Cr10.08452 (9)0.07796 (8)0.76057 (7)0.0385 (2)
Cl10.40444 (16)0.35647 (13)0.87609 (9)0.0438 (3)
S10.78440 (16)0.49754 (14)0.48138 (10)0.0452 (3)
S20.0503 (3)0.3524 (2)0.9791 (2)0.1063 (9)
S30.0184 (2)0.2947 (2)0.6471 (2)0.0984 (8)
S40.55652 (16)0.22096 (14)0.61991 (10)0.0442 (3)
S50.38612 (16)0.04575 (16)0.91039 (11)0.0518 (4)
N10.6708 (5)0.2569 (4)0.7487 (3)0.0370 (9)
H1A0.77640.28170.74710.044*
H1B0.65990.22720.81040.044*
N20.4114 (4)0.2859 (4)0.6452 (3)0.0343 (9)
H2A0.30610.29710.66230.041*
H2B0.42250.30360.57830.041*
N30.4130 (5)0.5558 (4)0.7636 (3)0.0371 (9)
H3A0.41800.58150.69960.045*
H3B0.30840.53230.77010.045*
N40.6745 (5)0.5263 (4)0.8661 (3)0.0367 (9)
H4A0.65820.51370.93420.044*
H4B0.78010.51040.85130.044*
N50.6529 (5)0.4460 (4)0.6499 (3)0.0362 (9)
N60.0981 (6)0.2081 (5)0.8404 (4)0.0603 (14)
N70.0637 (6)0.0593 (5)0.6873 (4)0.0561 (13)
N80.2839 (5)0.1270 (4)0.6994 (4)0.0461 (11)
N90.1149 (5)0.0282 (5)0.8214 (4)0.0515 (12)
N100.0200 (6)0.2146 (5)0.6325 (4)0.0695 (15)
H10A0.10870.23970.65010.104*
H10B0.03880.28320.61250.104*
H10C0.03530.18010.57960.104*
N110.1914 (5)0.0620 (4)0.8881 (3)0.0472 (11)
H11A0.12420.11980.91900.071*
H11B0.26520.10230.86560.071*
H11C0.23060.02380.93440.071*
C10.6231 (7)0.1510 (5)0.6512 (4)0.0502 (14)
H1C0.66870.16590.59080.060*
H1D0.65580.06770.65780.060*
C20.4560 (7)0.1507 (5)0.6370 (4)0.0482 (13)
H2C0.41010.12100.69100.058*
H2D0.42200.09260.56850.058*
C30.4661 (6)0.6663 (5)0.8567 (4)0.0444 (13)
H3C0.42230.65790.92000.053*
H3D0.43600.74840.84630.053*
C40.6367 (7)0.6613 (5)0.8674 (4)0.0459 (13)
H4C0.68140.68310.80930.055*
H4D0.67570.72300.93300.055*
C50.7041 (5)0.4652 (4)0.5783 (4)0.0323 (10)
C60.0819 (7)0.2700 (6)0.8967 (6)0.0664 (19)
C70.0454 (6)0.1544 (7)0.6701 (5)0.0591 (17)
C80.3977 (5)0.1639 (4)0.6657 (4)0.0334 (10)
C90.2279 (6)0.0020 (5)0.8567 (4)0.0374 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0309 (3)0.0296 (3)0.0247 (3)0.0017 (2)0.0031 (3)0.0106 (3)
Cr10.0263 (4)0.0419 (5)0.0462 (5)0.0008 (3)0.0036 (4)0.0108 (4)
Cl10.0507 (8)0.0489 (7)0.0341 (7)0.0010 (6)0.0105 (6)0.0143 (6)
S10.0434 (8)0.0541 (8)0.0429 (7)0.0030 (6)0.0120 (6)0.0201 (6)
S20.0773 (14)0.1127 (18)0.167 (2)0.0156 (12)0.0050 (15)0.1033 (18)
S30.0516 (11)0.1282 (18)0.163 (2)0.0142 (11)0.0175 (12)0.1146 (18)
S40.0379 (7)0.0539 (8)0.0404 (7)0.0099 (6)0.0089 (6)0.0116 (6)
S50.0381 (8)0.0682 (10)0.0514 (8)0.0099 (7)0.0136 (6)0.0190 (7)
N10.040 (2)0.037 (2)0.040 (2)0.0086 (18)0.0094 (19)0.0181 (19)
N20.034 (2)0.037 (2)0.030 (2)0.0024 (17)0.0018 (17)0.0074 (17)
N30.043 (2)0.038 (2)0.032 (2)0.0060 (18)0.0011 (19)0.0116 (18)
N40.040 (2)0.038 (2)0.033 (2)0.0029 (18)0.0041 (18)0.0126 (17)
N50.042 (2)0.035 (2)0.033 (2)0.0034 (18)0.0054 (19)0.0111 (18)
N60.051 (3)0.056 (3)0.083 (4)0.000 (2)0.013 (3)0.033 (3)
N70.047 (3)0.068 (3)0.057 (3)0.005 (3)0.003 (2)0.024 (3)
N80.033 (2)0.050 (3)0.055 (3)0.005 (2)0.008 (2)0.014 (2)
N90.034 (3)0.062 (3)0.059 (3)0.004 (2)0.013 (2)0.016 (2)
N100.049 (3)0.073 (4)0.073 (4)0.004 (3)0.002 (3)0.002 (3)
N110.041 (3)0.049 (3)0.048 (3)0.010 (2)0.003 (2)0.012 (2)
C10.068 (4)0.032 (3)0.051 (3)0.011 (3)0.021 (3)0.009 (2)
C20.065 (4)0.034 (3)0.042 (3)0.011 (3)0.004 (3)0.007 (2)
C30.060 (4)0.037 (3)0.036 (3)0.012 (2)0.004 (2)0.008 (2)
C40.064 (4)0.031 (3)0.041 (3)0.011 (2)0.003 (3)0.008 (2)
C50.032 (3)0.030 (2)0.033 (3)0.0010 (19)0.001 (2)0.007 (2)
C60.035 (3)0.049 (4)0.122 (6)0.001 (3)0.004 (4)0.038 (4)
C70.029 (3)0.105 (5)0.063 (4)0.003 (3)0.008 (3)0.053 (4)
C80.034 (3)0.030 (2)0.039 (3)0.001 (2)0.000 (2)0.014 (2)
C90.038 (3)0.039 (3)0.039 (3)0.000 (2)0.003 (2)0.017 (2)
Geometric parameters (Å, º) top
Co1—Cl12.2378 (14)N3—H3B0.9700
Co1—N11.960 (4)N3—C31.492 (6)
Co1—N21.954 (4)N4—H4A0.9700
Co1—N31.962 (4)N4—H4B0.9700
Co1—N41.965 (4)N4—C41.488 (6)
Co1—N51.900 (4)N5—C51.144 (6)
Cr1—N61.987 (5)N6—C61.149 (8)
Cr1—N71.995 (5)N7—C71.122 (8)
Cr1—N81.990 (4)N8—C81.150 (6)
Cr1—N91.990 (5)N9—C91.135 (6)
Cr1—N102.058 (5)N10—H10A0.8900
Cr1—N112.080 (4)N10—H10B0.8900
S1—C51.623 (5)N10—H10C0.8900
S2—C61.629 (7)N11—H11A0.8900
S3—C71.640 (7)N11—H11B0.8900
S4—C81.615 (5)N11—H11C0.8900
S5—C91.616 (5)C1—H1C0.9700
S2—S2i3.489 (3)C1—H1D0.9700
S5—S5ii3.538 (2)C1—C21.477 (8)
N1—H1A0.9700C2—H2C0.9700
N1—H1B0.9700C2—H2D0.9700
N1—C11.489 (7)C3—H3C0.9700
N2—H2A0.9700C3—H3D0.9700
N2—H2B0.9700C3—C41.508 (8)
N2—C21.485 (6)C4—H4C0.9700
N3—H3A0.9700C4—H4D0.9700
N1—Co1—Cl190.78 (12)H4A—N4—H4B108.5
N1—Co1—N3179.61 (17)C4—N4—Co1107.7 (3)
N1—Co1—N493.44 (17)C4—N4—H4A110.2
N2—Co1—Cl188.77 (12)C4—N4—H4B110.2
N2—Co1—N186.23 (17)C5—N5—Co1171.6 (4)
N2—Co1—N394.07 (17)C6—N6—Cr1166.2 (5)
N2—Co1—N4179.54 (17)C7—N7—Cr1163.2 (5)
N3—Co1—Cl188.98 (13)C8—N8—Cr1175.0 (4)
N3—Co1—N486.27 (17)C9—N9—Cr1179.0 (5)
N4—Co1—Cl191.54 (12)Cr1—N10—H10A109.5
N5—Co1—Cl1178.03 (13)Cr1—N10—H10B109.5
N5—Co1—N189.78 (17)Cr1—N10—H10C109.5
N5—Co1—N289.38 (17)H10A—N10—H10B109.5
N5—Co1—N390.47 (17)H10A—N10—H10C109.5
N5—Co1—N490.31 (17)H10B—N10—H10C109.5
N6—Cr1—N7176.5 (2)Cr1—N11—H11A109.5
N6—Cr1—N892.1 (2)Cr1—N11—H11B109.5
N6—Cr1—N988.1 (2)Cr1—N11—H11C109.5
N6—Cr1—N1090.7 (2)H11A—N11—H11B109.5
N6—Cr1—N1190.3 (2)H11A—N11—H11C109.5
N7—Cr1—N1091.1 (2)H11B—N11—H11C109.5
N7—Cr1—N1187.9 (2)N1—C1—H1C110.1
N8—Cr1—N790.8 (2)N1—C1—H1D110.1
N8—Cr1—N9179.7 (2)H1C—C1—H1D108.4
N8—Cr1—N1089.1 (2)C2—C1—N1108.0 (4)
N8—Cr1—N1190.47 (19)C2—C1—H1C110.1
N9—Cr1—N788.9 (2)C2—C1—H1D110.1
N9—Cr1—N1090.9 (2)N2—C2—H2C110.2
N9—Cr1—N1189.51 (19)N2—C2—H2D110.2
N10—Cr1—N11179.0 (2)C1—C2—N2107.6 (4)
Co1—N1—H1A110.1C1—C2—H2C110.2
Co1—N1—H1B110.1C1—C2—H2D110.2
H1A—N1—H1B108.4H2C—C2—H2D108.5
C1—N1—Co1108.2 (3)N3—C3—H3C110.3
C1—N1—H1A110.1N3—C3—H3D110.3
C1—N1—H1B110.1N3—C3—C4107.1 (4)
Co1—N2—H2A109.9H3C—C3—H3D108.5
Co1—N2—H2B109.9C4—C3—H3C110.3
H2A—N2—H2B108.3C4—C3—H3D110.3
C2—N2—Co1108.7 (3)N4—C4—C3107.1 (4)
C2—N2—H2A109.9N4—C4—H4C110.3
C2—N2—H2B109.9N4—C4—H4D110.3
Co1—N3—H3A109.8C3—C4—H4C110.3
Co1—N3—H3B109.8C3—C4—H4D110.3
H3A—N3—H3B108.2H4C—C4—H4D108.5
C3—N3—Co1109.4 (3)N5—C5—S1176.7 (5)
C3—N3—H3A109.8N6—C6—S2176.6 (6)
C3—N3—H3B109.8N7—C7—S3179.0 (7)
Co1—N4—H4A110.2N8—C8—S4177.7 (5)
Co1—N4—H4B110.2N9—C9—S5178.3 (5)
Co1—N1—C1—C238.5 (5)Co1—N4—C4—C342.6 (5)
Co1—N2—C2—C138.6 (5)N1—C1—C2—N250.6 (5)
Co1—N3—C3—C435.7 (5)N3—C3—C4—N451.3 (5)
Symmetry codes: (i) x, y1, z+2; (ii) x1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S3iii0.972.603.485 (5)152
N1—H1B···S5iii0.972.703.598 (5)154
N2—H2A···S30.972.543.473 (4)163
N2—H2B···S4iv0.972.543.411 (4)150
N4—H4A···Cl1v0.972.593.398 (4)141
N10—H10B···S1iv0.892.813.696 (6)171
N11—H11C···S5vi0.892.703.578 (5)168
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+2; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[CoCl(NCS)(C2H8N2)2][Cr(NCS)4(NH3)2]
Mr591.05
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.8290 (15), 10.745 (3), 13.275 (3)
α, β, γ (°)106.98 (2), 93.131 (17), 90.646 (17)
V3)1202.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.27 × 0.24 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.855, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
8238, 8238, 6185
Rint?
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.03
No. of reflections8238
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.72

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S3iii0.97002.60003.485 (5)152.00
N1—H1B···S5iii0.97002.70003.598 (5)154.00
N2—H2A···S30.97002.54003.473 (4)163.00
N2—H2B···S4iv0.97002.54003.411 (4)150.00
N4—H4A···Cl1v0.97002.59003.398 (4)141.00
N10—H10B···S1iv0.89002.81003.696 (6)171.00
N11—H11C···S5vi0.89002.70003.578 (5)168.00
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z+2; (vi) x, y, z+2.
 

Acknowledgements

This work was partly supported by the State Fund for Fundamental Research of Ukraine (project 54.3/005).

References

First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  Web of Science CSD CrossRef Google Scholar
First citationFoust, A. S. & Janickis, V. (1980). Inorg. Chem. 19, 1048–1050.  CSD CrossRef CAS Web of Science Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.  Web of Science CSD CrossRef Google Scholar
First citationNesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. pp. 1431–1436.  Web of Science CSD CrossRef PubMed Google Scholar
First citationNesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.  Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Polyhedron, 28, 1265–1272.  Web of Science CSD CrossRef CAS Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationSchubert, U., Zimmer-Gasser, B., Dash, K. C. & Chaudhury, G. R. (1981). Cryst. Struct. Commun. 10, 251–254.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, K., Kastner, M. E., Cooper, J. N., Kanaskie, M. & Monoski, A. (1993). Acta Cryst. C49, 1265–1267.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m110-m111
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds