organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o301-o302

N-Methyl-2-(1,2,3,4-tetra­hydro­naph­thalen-1-yl­­idene)hydrazinecarbo­thio­amide

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão, SE, Brazil, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: adriano@daad-alumni.de

(Received 5 February 2014; accepted 10 February 2014; online 15 February 2014)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H15N3S, both of which display disorder of several C atoms in the N-bound ring (occupancy ratios of 0.75:0.25 in the first independent mol­ecule and 0.50:0.50 in the second) with the methyl H atoms also being disordered in the first mol­ecule (occupancy ratio of 0.70:0.30). The planes of the benzene ring and the N—N—C—N fragment make dihedral angles of 12.92 (14)° in the first independent mol­ecule and 7.60 (13)° in the second. In the crystal, mol­ecules are linked by weak N—H⋯S hydrogen bonds into chains along the a-axis direction. The crystal packing ressembles a herringbone arrangement.

Related literature

For the synthesis, coordination chemistry and biological activity of thio­semicarbazones, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For one of the first reports of the synthesis of thio­semicarbazone derivatives, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3S

  • Mr = 233.33

  • Triclinic, [P \overline 1]

  • a = 10.6234 (6) Å

  • b = 10.9425 (6) Å

  • c = 11.0576 (6) Å

  • α = 73.685 (4)°

  • β = 79.152 (4)°

  • γ = 88.614 (4)°

  • V = 1211.04 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • 11521 measured reflections

  • 5125 independent reflections

  • 4111 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.06

  • 5125 reflections

  • 334 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S21i 0.88 (2) 3.03 (2) 3.7226 (15) 138.0
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have been used as ligands in coordination chemistry as well as for applications in biological systems, because some of them shows antifungal, antibacterial and anticancer properties (Lobana et al., 2009). As part of our study on thiosemicarbazone compounds, we report herein the crystal structure of a tetralone thiosemicarbazone derivative.

In the crystal structure of the title compound, there are two crystallographically independent molecules on the asymmetric unit in general positions, in which some of the C, and H atoms are disordered (Fig. 1). For one crystallographic independent molecule, the dihedral angle between the benzene ring (C5—C10) and the N1—N2—C11—N3 fragment amounts to 12.92 (14)° and for the second crystallographically independent molecule the dihedral angle between the benzene ring (C25—C30) and the N21—N22—C31—N23 fragment amouts to 7.60 (13)°. So, the molecules do not only show a different kind of disorder, but differ also in the molecular geometry.

In the crystal, the molecules are linked by long weak N—H···S hydrogen bonding into chains that run along the a-axis. The S···H distances amount to 3.02 (2) Å for the S1 and 3.291 (22) Å for the S21 atoms (Table 1). When viewed along the c-axis (Fig. 2), the molecules show a herringbone motif.

Related literature top

For the synthesis, coordination chemistry and biological activity of thiosemicarbazones, see: Lobana et al. (2009). For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902).

Experimental top

Starting materials were commercially available and were used without further purification. The tetralone-thiosemicarbazone derivative synthesis was adapted from a procedure reported previously (Freund & Schander, 1902). The hydrochloric acid catalyzed reaction of tetralone (8,83 mmol) and 4-methylthiosemicarbazide (8,83 mmol) in ethanol (50 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained as a solid. Crystals suitable for X-ray diffraction of the title compound were obtained in tethahydrofuran by the slow evaporation of solvent.

Refinement top

All non-hydrogen atoms were refined anisotropic. All H atoms were located in difference map but were positioned with idealized geometry (methyl H atoms allowed to rotate but no to tip) and were refined isotropic with Uiso(H) = 1,2 Ueq(C) (1,5 for methyl H atoms) using a riding model with C—H = 0,95 Å for aromatic and C—H = 0,99 Å for methylene. The N—H H atoms were located in difference map and refined with varying coordinates and varying isotropic displacement parameters. There are two crystallographically independent molecules in the asymmetric unit. In both of them several C atoms disordered (C3, C4 and C23) and were refined using a split model. The methyl C12 H atoms are disordered and were refined in two orientations.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level. Disorder is shown with full and open bonds.
[Figure 2] Fig. 2. : Crystal structure of the title compound viewed along the c-axis. The disorder is not shown for clarity.
N-Methyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide top
Crystal data top
C12H15N3SZ = 4
Mr = 233.33F(000) = 496
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6234 (6) ÅCell parameters from 11521 reflections
b = 10.9425 (6) Åθ = 1.9–27.0°
c = 11.0576 (6) ŵ = 0.24 mm1
α = 73.685 (4)°T = 200 K
β = 79.152 (4)°Block, white
γ = 88.614 (4)°0.2 × 0.1 × 0.1 mm
V = 1211.04 (12) Å3
Data collection top
Stoe IPDS-1
diffractometer
4111 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Stoe IPDS-1Rint = 0.031
Graphite monochromatorθmax = 27.0°, θmin = 1.9°
φ scansh = 1312
11521 measured reflectionsk = 1313
5125 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2784P]
where P = (Fo2 + 2Fc2)/3
5125 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C12H15N3Sγ = 88.614 (4)°
Mr = 233.33V = 1211.04 (12) Å3
Triclinic, P1Z = 4
a = 10.6234 (6) ÅMo Kα radiation
b = 10.9425 (6) ŵ = 0.24 mm1
c = 11.0576 (6) ÅT = 200 K
α = 73.685 (4)°0.2 × 0.1 × 0.1 mm
β = 79.152 (4)°
Data collection top
Stoe IPDS-1
diffractometer
4111 reflections with I > 2σ(I)
11521 measured reflectionsRint = 0.031
5125 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.42 e Å3
5125 reflectionsΔρmin = 0.42 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.48672 (15)0.18650 (14)0.58968 (14)0.0359 (3)
C20.5663 (2)0.2436 (2)0.65971 (16)0.0585 (5)
H2A0.54650.33480.64610.070*0.75
H2B0.65810.23850.62290.070*0.75
H2C0.59930.32920.60570.070*0.25
H2D0.64060.18960.67720.070*0.25
C30.5434 (3)0.1769 (3)0.8050 (2)0.0523 (6)0.75
H3A0.57850.09040.82050.063*0.75
H3B0.58780.22590.84830.063*0.75
C40.4004 (7)0.1680 (7)0.8593 (8)0.0515 (13)0.75
H4A0.36340.25360.84000.062*0.75
H4B0.38440.13030.95350.062*0.75
C3'0.4840 (13)0.2542 (11)0.7888 (8)0.074 (3)0.25
H3C0.53980.27870.84110.088*0.25
H3D0.41960.32070.77150.088*0.25
C4'0.420 (3)0.133 (2)0.858 (3)0.071 (7)0.25
H4C0.48680.06990.88060.085*0.25
H4D0.36830.14110.93920.085*0.25
C50.34020 (17)0.08243 (17)0.79474 (15)0.0456 (4)
C60.24021 (19)0.00422 (19)0.86362 (18)0.0570 (5)
H60.21170.01320.95250.068*
C70.18239 (19)0.07657 (18)0.8054 (2)0.0582 (5)
H70.11520.13590.85420.070*
C80.22184 (17)0.06331 (16)0.67515 (19)0.0497 (4)
H80.18090.11260.63450.060*
C90.32074 (15)0.02177 (14)0.60490 (16)0.0396 (3)
H90.34790.03070.51590.048*
C100.38118 (15)0.09484 (13)0.66391 (14)0.0350 (3)
N10.50410 (13)0.21270 (11)0.46681 (12)0.0354 (3)
N20.60085 (15)0.29850 (14)0.39563 (12)0.0430 (3)
H20.652 (2)0.3371 (19)0.431 (2)0.056 (6)*
C110.62069 (17)0.32887 (15)0.26515 (14)0.0420 (4)
S10.73841 (6)0.43493 (5)0.17704 (4)0.06437 (17)
N30.54320 (15)0.27078 (15)0.21718 (13)0.0441 (3)
H30.486 (2)0.215 (2)0.272 (2)0.057 (6)*
C120.5478 (2)0.2904 (2)0.08134 (17)0.0624 (5)
H12A0.48430.23340.06930.094*0.70
H12B0.63360.27190.04100.094*0.70
H12C0.52850.37900.04180.094*0.70
H12D0.61330.35610.03210.094*0.30
H12E0.46400.31770.06040.094*0.30
H12F0.56910.21050.05960.094*0.30
C211.03532 (14)0.72157 (13)0.43323 (14)0.0345 (3)
C220.98459 (18)0.80910 (17)0.32295 (15)0.0463 (4)
H22A0.97990.89630.33300.056*0.50
H22B0.89680.78010.32380.056*0.50
H22C1.03700.88930.29050.056*0.50
H22D0.89540.83050.35360.056*0.50
C231.0710 (4)0.8118 (3)0.1933 (3)0.0439 (7)0.50
H23A1.02730.85830.12310.053*0.50
H23B1.15170.85960.18470.053*0.50
C23'0.9870 (4)0.7468 (4)0.2094 (3)0.0527 (9)0.50
H23C0.91610.68240.23390.063*0.50
H23D0.97200.81350.13240.063*0.50
C241.1012 (3)0.6896 (3)0.1790 (2)0.0752 (7)
H24A1.16380.69940.09810.090*0.50
H24B1.02250.64810.17130.090*0.50
H24C1.16620.75780.13070.090*0.50
H24D1.08910.63920.12020.090*0.50
C251.15584 (17)0.60384 (17)0.28740 (17)0.0451 (4)
C261.23846 (19)0.50776 (19)0.2683 (2)0.0562 (5)
H261.26180.49670.18480.067*
C271.28696 (19)0.42841 (18)0.3681 (2)0.0571 (5)
H271.34340.36330.35330.069*
C281.25370 (17)0.44333 (17)0.4896 (2)0.0518 (4)
H281.28720.38850.55850.062*
C291.17199 (15)0.53750 (15)0.51113 (17)0.0424 (4)
H291.14880.54680.59530.051*
C301.12244 (14)0.61990 (14)0.41059 (14)0.0352 (3)
N211.00717 (13)0.72885 (12)0.54928 (12)0.0378 (3)
N220.92325 (15)0.81998 (13)0.57445 (13)0.0417 (3)
H220.883 (2)0.8683 (19)0.517 (2)0.055 (6)*
C310.87550 (17)0.81552 (16)0.69932 (15)0.0420 (4)
S210.76008 (5)0.91523 (5)0.73333 (5)0.05696 (15)
N230.92760 (17)0.73086 (15)0.78559 (13)0.0475 (3)
H230.985 (2)0.683 (2)0.762 (2)0.059 (6)*
C320.8857 (2)0.7063 (2)0.92353 (17)0.0637 (6)
H32A0.89080.78580.94700.096*
H32B0.94110.64370.96820.096*
H32C0.79690.67300.94830.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (8)0.0407 (7)0.0292 (7)0.0037 (6)0.0035 (6)0.0102 (6)
C20.0602 (12)0.0828 (13)0.0308 (8)0.0339 (10)0.0013 (8)0.0151 (8)
C30.0488 (15)0.0784 (19)0.0313 (11)0.0160 (13)0.0046 (10)0.0188 (12)
C40.056 (2)0.069 (4)0.0309 (16)0.015 (2)0.0027 (16)0.022 (2)
C3'0.106 (9)0.081 (6)0.036 (4)0.049 (6)0.009 (5)0.029 (4)
C4'0.107 (14)0.068 (12)0.031 (5)0.022 (8)0.022 (7)0.023 (7)
C50.0455 (10)0.0531 (9)0.0329 (8)0.0093 (7)0.0038 (7)0.0048 (7)
C60.0531 (11)0.0669 (12)0.0377 (9)0.0157 (9)0.0003 (8)0.0026 (8)
C70.0479 (11)0.0510 (10)0.0615 (12)0.0149 (8)0.0065 (9)0.0059 (8)
C80.0417 (9)0.0410 (8)0.0666 (11)0.0041 (7)0.0151 (9)0.0117 (8)
C90.0355 (8)0.0406 (8)0.0439 (8)0.0026 (6)0.0093 (7)0.0127 (6)
C100.0343 (8)0.0354 (7)0.0327 (7)0.0005 (6)0.0065 (6)0.0052 (6)
N10.0377 (7)0.0373 (6)0.0296 (6)0.0036 (5)0.0033 (5)0.0084 (5)
N20.0479 (8)0.0508 (8)0.0276 (6)0.0152 (6)0.0011 (6)0.0093 (5)
C110.0476 (10)0.0462 (8)0.0291 (7)0.0023 (7)0.0021 (7)0.0088 (6)
S10.0763 (4)0.0707 (3)0.0348 (2)0.0303 (3)0.0012 (2)0.0016 (2)
N30.0461 (8)0.0577 (8)0.0271 (6)0.0038 (7)0.0032 (6)0.0119 (6)
C120.0653 (13)0.0932 (15)0.0298 (8)0.0070 (11)0.0084 (8)0.0189 (9)
C210.0342 (8)0.0374 (7)0.0304 (7)0.0045 (6)0.0047 (6)0.0078 (6)
C220.0542 (11)0.0497 (9)0.0317 (8)0.0123 (8)0.0068 (7)0.0079 (7)
C230.0446 (19)0.0546 (19)0.0265 (14)0.0051 (15)0.0023 (13)0.0039 (13)
C23'0.059 (2)0.069 (2)0.0328 (16)0.016 (2)0.0152 (16)0.0156 (16)
C240.0950 (18)0.0995 (17)0.0404 (10)0.0374 (14)0.0212 (11)0.0322 (11)
C250.0414 (9)0.0532 (9)0.0446 (9)0.0016 (7)0.0067 (7)0.0210 (7)
C260.0478 (11)0.0641 (11)0.0641 (12)0.0030 (9)0.0033 (9)0.0347 (10)
C270.0423 (10)0.0481 (10)0.0848 (14)0.0060 (8)0.0100 (10)0.0267 (9)
C280.0390 (9)0.0434 (9)0.0697 (12)0.0016 (7)0.0139 (9)0.0085 (8)
C290.0361 (9)0.0424 (8)0.0460 (9)0.0040 (6)0.0085 (7)0.0073 (7)
C300.0284 (7)0.0380 (7)0.0385 (8)0.0057 (6)0.0039 (6)0.0107 (6)
N210.0401 (7)0.0409 (7)0.0331 (6)0.0004 (5)0.0065 (5)0.0118 (5)
N220.0489 (8)0.0447 (7)0.0316 (6)0.0046 (6)0.0058 (6)0.0123 (5)
C310.0448 (9)0.0472 (8)0.0358 (8)0.0119 (7)0.0016 (7)0.0172 (7)
S210.0551 (3)0.0707 (3)0.0517 (3)0.0034 (2)0.0019 (2)0.0334 (2)
N230.0555 (10)0.0538 (8)0.0313 (7)0.0079 (7)0.0036 (6)0.0114 (6)
C320.0733 (14)0.0818 (14)0.0308 (8)0.0207 (11)0.0003 (9)0.0119 (8)
Geometric parameters (Å, º) top
C1—N11.2851 (19)C12—H12E0.9800
C1—C101.477 (2)C12—H12F0.9800
C1—C21.499 (2)C21—N211.2863 (19)
C2—C31.541 (3)C21—C301.475 (2)
C2—C3'1.560 (9)C21—C221.504 (2)
C2—H2A0.9900C22—C231.543 (3)
C2—H2B0.9900C22—C23'1.584 (4)
C2—H2C0.9900C22—H22A0.9900
C2—H2D0.9900C22—H22B0.9900
C3—C41.519 (8)C22—H22C0.9900
C3—H3A0.9900C22—H22D0.9900
C3—H3B0.9900C23—C241.412 (4)
C4—C51.540 (6)C23—H23A0.9900
C4—H4A0.9900C23—H23B0.9900
C4—H4B0.9900C23'—C241.380 (4)
C3'—C4'1.45 (3)C23'—H23C0.9900
C3'—H3C0.9900C23'—H23D0.9900
C3'—H3D0.9900C24—C251.502 (3)
C4'—C51.41 (3)C24—H24A0.9900
C4'—H4C0.9900C24—H24B0.9900
C4'—H4D0.9900C24—H24C0.9900
C5—C61.395 (2)C24—H24D0.9900
C5—C101.399 (2)C25—C261.390 (3)
C6—C71.370 (3)C25—C301.401 (2)
C6—H60.9500C26—C271.375 (3)
C7—C81.389 (3)C26—H260.9500
C7—H70.9500C27—C281.377 (3)
C8—C91.381 (2)C27—H270.9500
C8—H80.9500C28—C291.374 (3)
C9—C101.398 (2)C28—H280.9500
C9—H90.9500C29—C301.400 (2)
N1—N21.3727 (18)C29—H290.9500
N2—C111.362 (2)N21—N221.373 (2)
N2—H20.90 (2)N22—C311.366 (2)
C11—N31.320 (2)N22—H220.88 (2)
C11—S11.6841 (17)C31—N231.324 (2)
N3—C121.448 (2)C31—S211.6816 (18)
N3—H30.88 (2)N23—C321.455 (2)
C12—H12A0.9800N23—H230.85 (2)
C12—H12B0.9800C32—H32A0.9800
C12—H12C0.9800C32—H32B0.9800
C12—H12D0.9800C32—H32C0.9800
N1—C1—C10116.87 (13)H12D—C12—H12F109.5
N1—C1—C2123.86 (14)H12E—C12—H12F109.5
C10—C1—C2119.27 (13)N21—C21—C30116.47 (13)
C1—C2—C3113.13 (16)N21—C21—C22123.90 (14)
C1—C2—C3'110.1 (4)C30—C21—C22119.63 (13)
C1—C2—H2A109.0C21—C22—C23111.25 (18)
C3—C2—H2A109.0C21—C22—C23'111.96 (18)
C1—C2—H2B109.0C21—C22—H22A109.4
C3—C2—H2B109.0C23—C22—H22A109.4
H2A—C2—H2B107.8C23'—C22—H22A136.4
C1—C2—H2C109.6C21—C22—H22B109.4
C3—C2—H2C134.0C23—C22—H22B109.4
C3'—C2—H2C109.6C23'—C22—H22B70.4
C1—C2—H2D109.6H22A—C22—H22B108.0
C3'—C2—H2D109.6C21—C22—H22C109.2
H2A—C2—H2D136.7C23—C22—H22C70.8
H2C—C2—H2D108.2C23'—C22—H22C109.2
C4—C3—C2109.4 (4)H22B—C22—H22C137.9
C4—C3—H3A109.8C21—C22—H22D109.2
C2—C3—H3A109.8C23'—C22—H22D109.2
C4—C3—H3B109.8H22C—C22—H22D107.9
C2—C3—H3B109.8C24—C23—C22113.7 (2)
H3A—C3—H3B108.2C24—C23—H23A108.8
C3—C4—C5106.5 (4)C22—C23—H23A108.8
C3—C4—H4A110.4C24—C23—H23B108.8
C5—C4—H4A110.4C22—C23—H23B108.8
C3—C4—H4B110.4H23A—C23—H23B107.7
C5—C4—H4B110.4C24—C23'—C22113.0 (3)
H4A—C4—H4B108.6C24—C23'—H23C109.0
C4'—C3'—C2109.1 (11)C22—C23'—H23C109.0
C4'—C3'—H3C109.9C24—C23'—H23D109.0
C2—C3'—H3C109.9C22—C23'—H23D109.0
C4'—C3'—H3D109.9H23C—C23'—H23D107.8
C2—C3'—H3D109.9C23'—C24—C25117.8 (2)
H3C—C3'—H3D108.3C23—C24—C25114.3 (2)
C5—C4'—C3'116.9 (19)C23'—C24—H24A133.1
C5—C4'—H4C108.1C23—C24—H24A108.7
C3'—C4'—H4C108.1C25—C24—H24A108.7
C5—C4'—H4D108.1C23—C24—H24B108.7
C3'—C4'—H4D108.1C25—C24—H24B108.7
H4C—C4'—H4D107.3H24A—C24—H24B107.6
C6—C5—C10118.82 (16)C23'—C24—H24C107.9
C6—C5—C4'121.1 (11)C25—C24—H24C107.9
C10—C5—C4'118.1 (11)H24B—C24—H24C141.8
C6—C5—C4120.9 (3)C23'—C24—H24D107.9
C10—C5—C4120.2 (3)C23—C24—H24D137.6
C4'—C5—C416.3 (11)C25—C24—H24D107.9
C7—C6—C5121.20 (17)H24C—C24—H24D107.2
C7—C6—H6119.4C26—C25—C30119.05 (17)
C5—C6—H6119.4C26—C25—C24121.30 (17)
C6—C7—C8120.10 (16)C30—C25—C24119.65 (16)
C6—C7—H7119.9C27—C26—C25121.11 (19)
C8—C7—H7119.9C27—C26—H26119.4
C9—C8—C7119.78 (16)C25—C26—H26119.4
C9—C8—H8120.1C26—C27—C28120.03 (17)
C7—C8—H8120.1C26—C27—H27120.0
C8—C9—C10120.45 (16)C28—C27—H27120.0
C8—C9—H9119.8C29—C28—C27120.02 (18)
C10—C9—H9119.8C29—C28—H28120.0
C9—C10—C5119.64 (14)C27—C28—H28120.0
C9—C10—C1120.94 (14)C28—C29—C30120.82 (17)
C5—C10—C1119.41 (14)C28—C29—H29119.6
C1—N1—N2117.98 (13)C30—C29—H29119.6
C11—N2—N1119.22 (14)C29—C30—C25118.97 (15)
C11—N2—H2117.8 (13)C29—C30—C21120.96 (14)
N1—N2—H2123.0 (13)C25—C30—C21120.07 (14)
N3—C11—N2115.75 (14)C21—N21—N22117.99 (13)
N3—C11—S1124.70 (12)C31—N22—N21118.72 (14)
N2—C11—S1119.54 (13)C31—N22—H22115.9 (14)
C11—N3—C12124.39 (15)N21—N22—H22123.3 (14)
C11—N3—H3117.7 (14)N23—C31—N22115.30 (16)
C12—N3—H3117.9 (14)N23—C31—S21124.95 (13)
N3—C12—H12A109.5N22—C31—S21119.74 (13)
N3—C12—H12B109.5C31—N23—C32123.87 (18)
H12A—C12—H12B109.5C31—N23—H23120.0 (15)
N3—C12—H12C109.5C32—N23—H23116.0 (15)
H12A—C12—H12C109.5N23—C32—H32A109.5
H12B—C12—H12C109.5N23—C32—H32B109.5
N3—C12—H12D109.5H32A—C32—H32B109.5
N3—C12—H12E109.5N23—C32—H32C109.5
H12D—C12—H12E109.5H32A—C32—H32C109.5
N3—C12—H12F109.5H32B—C32—H32C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S21i0.88 (2)3.03 (2)3.7226 (15)138.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S21i0.88 (2)3.03 (2)3.7226 (15)138.0
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o301-o302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds