organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyclo­heptyl­­idene-N-phenyl­hydrazine­carbo­thio­amide

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 19 February 2014; accepted 20 February 2014; online 26 February 2014)

In the title compound, C14H19N3S, the seven-membered cyclo­heptane ring adopts a chair conformation. An intra­molecular N—H⋯N hydrogen bond [graph-set motif S(5)] is present in the N—N—C—N chain between the ring systems. An intra­molecular C—H⋯S contact also occurs. In the crystal, pairs of mol­ecules form centrosymmetric dimers through N—H⋯S hydrogen bonds [graph-set R22(8)]. These dimers are connected by C—H⋯S inter­actions with an R22(14) motif.

Related literature

For the coordination chemistry of thio­semicarbazones, see: Gingras et al. (1961[Gingras, B. A., Somorjai, R. L. & Bayley, C. H. (1961). Can. J. Chem. 39, 973-985.]); Ali & Livingstone (1974[Ali, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For general biological properties of thio­semicarbazone scaffold compounds, see: Hu et al. (2006[Hu, W. X., Zhou, W., Xia, C. N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]); Du et al. (2002[Du, X., Guo, C., Hansall, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrov, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695-2707.]); Lovejoy & Richardson (2002[Lovejoy, D. B. & Richardson, D. R. (2002). Blood, 100, 666-676.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3S

  • Mr = 261.39

  • Monoclinic, C 2/c

  • a = 22.1371 (4) Å

  • b = 6.1079 (1) Å

  • c = 22.0796 (5) Å

  • β = 113.219 (2)°

  • V = 2743.61 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.97 mm−1

  • T = 100 K

  • 0.20 × 0.08 × 0.04 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.93

  • 11263 measured reflections

  • 2693 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.07

  • 2693 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.857 (18) 2.052 (18) 2.5599 (16) 117.2 (16)
N2—H2N⋯S1i 0.858 (19) 2.830 (19) 3.6790 (13) 170.5 (15)
C2—H2⋯S1 0.95 2.60 3.2660 (15) 128
C9—H9A⋯S1i 0.99 2.69 3.3141 (13) 121
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N, S-donor ligands, and their coordination chemistry was initially explored in the early sixties (Gingras et al., 1961; Ali & Livingstone, 1974; Lobana et al., 2009). On other hand, depending on the parent aldehyde or ketone, the corresponding thiosemicarbazone scaffolds have been evaluated over the last 50 years as anti-viral, anti-bacterial and anti-cancer therapeutic agents (Hu et al., 2006; Du et al., 2002; Lovejoy & Richardson, 2002). Based on these facts and following our study of cyclization reactions of thiosemicarbazides we report the synthesis and crystal structure of the title compound.

In this compound (Fig. 1), the cycloheptane ring (C8–C14) adopts a chair conformation [puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.4493 (14) Å, φ(2) = 126.68 (18)° and Q(3) = 0.6604 (14) Å, φ(3) = 102.94 (12)°]. The C1–N1–C7–S1, C1–N1–C7–N2 and N1–C7–N2–N3 torsion angles are 3.8 (2), -176.94 (12) and -2.53 (16) °, respectively.

The molecular conformation of the title compound is stabilized by a cyclic intramolecular N1—H1N···N3 hydrogen bond, forming a graph set S(5) (Table 1; Bernstein et al., 1995).

In the crystal, pairs of molecules form centrosymmetric dimers through intermolecular N—H···S hydrogen bonds [graph-set R22(8)]. These dimers are also connected by C—H···S interactions with an R22(14) motif.

Related literature top

For the coordination chemistry of thiosemicarbazones, see: Gingras et al. (1961); Ali & Livingstone (1974); Lobana et al. (2009). For general biological properties of thiosemicarbazone scaffold compounds, see: Hu et al. (2006); Du et al. (2002); Lovejoy & Richardson (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 1 mmol (112 mg) of cycloheptanone in 5 ml DMSO was added dropwise to a solution of 1 mmol (167 mg) of N-phenylhydrazinecarbothioamide in 5 ml of DMSO. The reaction mixture was stirred for 2 h at ambient temperature and then left to stand overnight. The resulting mixture was poured into 250 ml of ice/water to give a white precipitate. The crude product was filtered off, washed with cold ethanol and recystallized from ethanol to furnish colourless crystals suitable for X-ray diffraction. M.p. 379 K.

Refinement top

All H atoms were found in a difference map. All C-bonded H-atoms were positioned geometrically and refined using a riding model [C—H = 0.95 (aromatic H) and 0.99 Å (methylene H)], with Uiso(H) = 1.2 Uiso(C). The N-bonded H-atoms were refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the centrosymmetric R22(8) dimers of the title compound viewed down b-axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Cycloheptylidene-N-phenylhydrazinecarbothioamide top
Crystal data top
C14H19N3SF(000) = 1120
Mr = 261.39Dx = 1.266 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 8726 reflections
a = 22.1371 (4) Åθ = 4.4–72.4°
b = 6.1079 (1) ŵ = 1.97 mm1
c = 22.0796 (5) ÅT = 100 K
β = 113.219 (2)°Parallelepiped, colourless
V = 2743.61 (10) Å30.20 × 0.08 × 0.04 mm
Z = 8
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2693 independent reflections
Radiation source: INCOATEC IµS micro–focus source2460 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.4°
ω scansh = 2527
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 77
Tmin = 0.83, Tmax = 0.93l = 2727
11263 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0368P)2 + 2.2793P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2693 reflectionsΔρmax = 0.24 e Å3
171 parametersΔρmin = 0.24 e Å3
Crystal data top
C14H19N3SV = 2743.61 (10) Å3
Mr = 261.39Z = 8
Monoclinic, C2/cCu Kα radiation
a = 22.1371 (4) ŵ = 1.97 mm1
b = 6.1079 (1) ÅT = 100 K
c = 22.0796 (5) Å0.20 × 0.08 × 0.04 mm
β = 113.219 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2460 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.93Rint = 0.023
11263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.24 e Å3
2693 reflectionsΔρmin = 0.24 e Å3
171 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17859 (2)0.78279 (5)0.04498 (2)0.0211 (1)
N10.11142 (5)0.39799 (19)0.02178 (5)0.0198 (3)
N20.17477 (5)0.46222 (18)0.03562 (5)0.0198 (3)
N30.15155 (5)0.26265 (17)0.06567 (5)0.0194 (3)
C10.07507 (6)0.4095 (2)0.06186 (6)0.0184 (3)
C20.07037 (6)0.5909 (2)0.09770 (6)0.0238 (4)
C30.03058 (6)0.5801 (2)0.13315 (7)0.0255 (4)
C40.00440 (6)0.3922 (2)0.13341 (6)0.0246 (4)
C50.00110 (7)0.2115 (2)0.09818 (7)0.0260 (4)
C60.04086 (6)0.2191 (2)0.06301 (6)0.0226 (4)
C70.15252 (6)0.5377 (2)0.01003 (6)0.0187 (3)
C80.17441 (6)0.1871 (2)0.10668 (6)0.0186 (3)
C90.22606 (6)0.3024 (2)0.12320 (6)0.0201 (3)
C100.24745 (6)0.1938 (2)0.17382 (6)0.0221 (4)
C110.19353 (7)0.1805 (2)0.24352 (6)0.0254 (4)
C120.14582 (7)0.0109 (2)0.25458 (6)0.0261 (4)
C130.10499 (6)0.0088 (2)0.21264 (6)0.0259 (4)
C140.14621 (6)0.0277 (2)0.13788 (6)0.0217 (4)
H1N0.1062 (8)0.280 (3)0.0007 (8)0.023 (4)*
H20.094100.720900.098000.0290*
H2N0.2057 (8)0.535 (3)0.0405 (8)0.025 (4)*
H30.027300.704100.157700.0310*
H40.031800.387600.157400.0300*
H50.022500.081500.098100.0310*
H60.044800.093500.039500.0270*
H9A0.265500.320900.081900.0240*
H9B0.209500.450700.139500.0240*
H10A0.262900.043600.158600.0270*
H10B0.285100.276400.175700.0270*
H11A0.168100.318700.253000.0300*
H11B0.214600.168300.275400.0300*
H12A0.115400.012100.301600.0310*
H12B0.171300.148800.245700.0310*
H13A0.073400.131900.226500.0310*
H13B0.079300.128800.221300.0310*
H14A0.118200.087100.116200.0260*
H14B0.182600.132500.130400.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0234 (2)0.0197 (2)0.0226 (2)0.0056 (1)0.0116 (1)0.0035 (1)
N10.0235 (5)0.0191 (6)0.0189 (5)0.0053 (4)0.0106 (4)0.0042 (4)
N20.0225 (5)0.0195 (6)0.0209 (5)0.0054 (4)0.0122 (4)0.0025 (4)
N30.0215 (5)0.0183 (5)0.0188 (5)0.0021 (4)0.0084 (4)0.0008 (4)
C10.0151 (5)0.0240 (7)0.0148 (5)0.0009 (5)0.0046 (4)0.0016 (5)
C20.0252 (6)0.0235 (7)0.0249 (6)0.0062 (5)0.0123 (5)0.0032 (5)
C30.0280 (7)0.0277 (7)0.0242 (6)0.0015 (6)0.0138 (6)0.0035 (5)
C40.0209 (6)0.0323 (8)0.0238 (6)0.0001 (5)0.0122 (5)0.0031 (6)
C50.0229 (6)0.0249 (7)0.0326 (7)0.0038 (5)0.0136 (6)0.0026 (6)
C60.0216 (6)0.0222 (7)0.0247 (6)0.0023 (5)0.0099 (5)0.0013 (5)
C70.0173 (6)0.0213 (6)0.0162 (5)0.0001 (5)0.0051 (5)0.0018 (5)
C80.0180 (6)0.0203 (6)0.0179 (6)0.0000 (5)0.0074 (5)0.0024 (5)
C90.0214 (6)0.0199 (6)0.0202 (6)0.0035 (5)0.0095 (5)0.0004 (5)
C100.0219 (6)0.0251 (7)0.0234 (6)0.0027 (5)0.0133 (5)0.0002 (5)
C110.0295 (7)0.0293 (7)0.0208 (6)0.0028 (6)0.0136 (5)0.0005 (5)
C120.0267 (6)0.0314 (8)0.0215 (6)0.0038 (6)0.0109 (5)0.0052 (6)
C130.0218 (6)0.0310 (7)0.0257 (7)0.0057 (5)0.0103 (5)0.0080 (6)
C140.0230 (6)0.0217 (7)0.0251 (6)0.0045 (5)0.0146 (5)0.0025 (5)
Geometric parameters (Å, º) top
S1—C71.6788 (13)C12—C131.528 (2)
N1—C11.4132 (18)C13—C141.5437 (17)
N1—C71.3451 (18)C2—H20.9500
N2—N31.3861 (15)C3—H30.9500
N2—C71.3648 (17)C4—H40.9500
N3—C81.2846 (17)C5—H50.9500
N1—H1N0.857 (18)C6—H60.9500
N2—H2N0.858 (19)C9—H9A0.9900
C1—C61.3935 (18)C9—H9B0.9900
C1—C21.3891 (18)C10—H10A0.9900
C2—C31.392 (2)C10—H10B0.9900
C3—C41.3858 (18)C11—H11A0.9900
C4—C51.3830 (18)C11—H11B0.9900
C5—C61.385 (2)C12—H12A0.9900
C8—C141.4988 (17)C12—H12B0.9900
C8—C91.5051 (19)C13—H13A0.9900
C9—C101.5267 (18)C13—H13B0.9900
C10—C111.5334 (18)C14—H14A0.9900
C11—C121.529 (2)C14—H14B0.9900
C1—N1—C7133.21 (11)C6—C5—H5120.00
N3—N2—C7118.48 (11)C1—C6—H6120.00
N2—N3—C8118.59 (11)C5—C6—H6120.00
C7—N1—H1N111.7 (12)C8—C9—H9A108.00
C1—N1—H1N115.1 (12)C8—C9—H9B108.00
C7—N2—H2N117.1 (12)C10—C9—H9A108.00
N3—N2—H2N124.0 (12)C10—C9—H9B108.00
N1—C1—C2125.84 (12)H9A—C9—H9B107.00
C2—C1—C6119.47 (12)C9—C10—H10A109.00
N1—C1—C6114.68 (11)C9—C10—H10B109.00
C1—C2—C3119.26 (12)C11—C10—H10A109.00
C2—C3—C4121.35 (12)C11—C10—H10B109.00
C3—C4—C5119.04 (13)H10A—C10—H10B108.00
C4—C5—C6120.32 (12)C10—C11—H11A109.00
C1—C6—C5120.54 (12)C10—C11—H11B109.00
S1—C7—N2118.81 (10)C12—C11—H11A109.00
N1—C7—N2113.37 (11)C12—C11—H11B109.00
S1—C7—N1127.82 (10)H11A—C11—H11B108.00
N3—C8—C9123.42 (11)C11—C12—H12A108.00
N3—C8—C14115.47 (12)C11—C12—H12B108.00
C9—C8—C14121.12 (11)C13—C12—H12A108.00
C8—C9—C10117.30 (10)C13—C12—H12B108.00
C9—C10—C11114.48 (12)H12A—C12—H12B107.00
C10—C11—C12114.59 (10)C12—C13—H13A109.00
C11—C12—C13115.67 (11)C12—C13—H13B109.00
C12—C13—C14113.95 (11)C14—C13—H13A109.00
C8—C14—C13112.92 (10)C14—C13—H13B109.00
C1—C2—H2120.00H13A—C13—H13B108.00
C3—C2—H2120.00C8—C14—H14A109.00
C2—C3—H3119.00C8—C14—H14B109.00
C4—C3—H3119.00C13—C14—H14A109.00
C3—C4—H4120.00C13—C14—H14B109.00
C5—C4—H4120.00H14A—C14—H14B108.00
C4—C5—H5120.00
C7—N1—C1—C25.0 (2)C1—C2—C3—C40.0 (2)
C7—N1—C1—C6176.19 (13)C2—C3—C4—C50.7 (2)
C1—N1—C7—S13.8 (2)C3—C4—C5—C60.2 (2)
C1—N1—C7—N2176.94 (12)C4—C5—C6—C10.9 (2)
C7—N2—N3—C8177.23 (12)N3—C8—C9—C10178.99 (12)
N3—N2—C7—S1178.15 (9)C14—C8—C9—C101.11 (17)
N3—N2—C7—N12.53 (16)N3—C8—C14—C13113.26 (13)
N2—N3—C8—C14179.13 (10)C9—C8—C14—C1366.84 (16)
N2—N3—C8—C90.97 (18)C8—C9—C10—C1165.39 (14)
N1—C1—C2—C3177.64 (12)C9—C10—C11—C1281.85 (14)
C2—C1—C6—C51.6 (2)C10—C11—C12—C1362.65 (16)
C6—C1—C2—C31.15 (19)C11—C12—C13—C1463.37 (14)
N1—C1—C6—C5177.31 (12)C12—C13—C14—C882.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.857 (18)2.052 (18)2.5599 (16)117.2 (16)
N2—H2N···S1i0.858 (19)2.830 (19)3.6790 (13)170.5 (15)
C2—H2···S10.952.603.2660 (15)128
C9—H9A···S1i0.992.693.3141 (13)121
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.857 (18)2.052 (18)2.5599 (16)117.2 (16)
N2—H2N···S1i0.858 (19)2.830 (19)3.6790 (13)170.5 (15)
C2—H2···S10.952.603.2660 (15)128
C9—H9A···S1i0.992.693.3141 (13)121
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

We gratefully acknowledge Manchester Metropolitan University, Tulane University and Erciyes University for supporting this study. The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

References

First citationAli, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDu, X., Guo, C., Hansall, E., Doyle, P. S., Caffrey, C. R., Holler, T. P., McKerrov, J. H. & Cohen, F. E. (2002). J. Med. Chem. 45, 2695–2707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGingras, B. A., Somorjai, R. L. & Bayley, C. H. (1961). Can. J. Chem. 39, 973–985.  CrossRef CAS Web of Science Google Scholar
First citationHu, W. X., Zhou, W., Xia, C. N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationLovejoy, D. B. & Richardson, D. R. (2002). Blood, 100, 666–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds