metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m98-m99

Di­aqua­bis­­[N-(2-fluoro­benz­yl)-N-nitroso­hy­droxy­laminato-κ2O,O′]nickel(II)

aPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russia, bKarpov Institute of Physical Chemistry, 10 Vorontsovo Pole, 105064 Moscow, Russia, and cThe Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), Academician Semenov Avenue 1, Chernogolovka, Moscow Region, 142432 , Russian Federation
*Correspondence e-mail: okovalchukova@mail.ru

(Received 6 January 2014; accepted 8 February 2014; online 15 February 2014)

In the centrosymmetric title compound, [Ni(C7H6FN2O2)2(H2O)2], the NiII cation is in a slightly distorted octa­hedral environment and is surrounded by four O atoms from the N—O groups of the organic ligands [Ni—O = 2.0179 (13) and 2.0283 (12) Å], and two water mol­ecules [Ni—O = 2.0967 (14) Å]. The N-(2-fluoro­benz­yl)-N-nitroso­hydroxy­laminate monoanions act as bidentate chelating ligands. In the crystal, the Ni cations in the columns are shifted in such a way that the coordinated water mol­ecules are involved in the formation of hydrogen bonds with the O atoms of the organic species of neighbouring mol­ecules. Thus, a two-dimensional network parallel to (100) is built up by hydrogen-bonded molecules.

Related literature

For the synthesis of the potassium N-(2-fluoro­benz­yl)-N-nitroso­hydroxy­laminate salt, see: Zyuzin et al. (1997[Zyuzin, I. N., Nechiporenko, G. N., Golovina, N. I., Trofimova, R. F. & Loginova, M. V. (1997). Russ. Chem. Bull. 46, 1421-1429.]) and of the Ni complex of N-(2-fluoro­benz­yl)-N-nitroso­hydroxy­laminate, see: Kovalchukova et al. (2013[Kovalchukova, O., Bostanabad, A. S., Sergienko, V., Polyakova, I., Zyuzin, I. & Strashnova, S. (2013). Open J. Inorg. Chem., 3, 1-6.]). For the structures of some 3d-metal complexes with N-nitroso­hydroxyl­amine deriv­atives, see: Deák et al. (1998[Deák, A., Párkányi, L., Kálmán, A., Venter, M. & Haiduc, I. (1998). Acta Cryst. C54, IUC9800036.]); Okabe & Tamaki (1995[Okabe, N. & Tamaki, K. (1995). Acta Cryst. C51, 2004-2005.]); Tamaki & Okabe (1996[Tamaki, K. & Okabe, N. (1996). Acta Cryst. C52, 1612-1614.], 1998[Tamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195-197.]). For the synthesis, properties and applications of other metal nitroso­hydroxy­laminates, see: Okabe et al. (1995[Okabe, N., Tamaki, K., Suga, T. & Kohyama, Y. (1995). Acta Cryst. C51, 1295-1297.]); Abraham et al. (1987[Abraham, M. H., Bullock, J. I., Garland, J. H. N., Golder, A. J., Harden, G. J., Larkworti-Iy, L. F., Povey, D. C., Riedl, M. J. & Smith, G. W. (1987). Polyhedron, 6, 1375-1381.]); Venter et al. (2009[Venter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578.]); Popov & Wendlandt (1954[Popov, A. I. & Wendlandt, W. W. (1954). Anal. Chem. 26, 883-886.]); Lundell & Knowles (1920[Lundell, G. E. F. & Knowles, H. B. (1920). J. Ind. Eng. Chem. 12, 344-350.]); Buscarons & Canela (1974[Buscarons, F. & Canela, J. (1974). Anal. Chim. Acta, 70, 113-120.]); Oztekin & Erim (2000[Oztekin, N. & Erim, F. B. (2000). J. Chromatogr. A, 895, 263-268.]); Yi et al. (1995[Yi, G.-B., Khan, M. A. & Richter-Addo, G. B. (1995). Inorg. Chem. 34, 5703-5704.]); McGill et al. (2000[McGill, A. D., Zhang, W., Wittbrodt, J., Wang, J., Schlegel, H. B. & Wang, P. G. (2000). Bioorg. Med. Chem. 8, 405-412.]); Shiino et al. (2001[Shiino, M., Watanabe, Y. & Umezawa, K. (2001). Bioorg. Med. Chem. 9, 1233-1240.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H6FN2O2)2(H2O)2]

  • Mr = 433.02

  • Monoclinic, P 21 /c

  • a = 15.411 (3) Å

  • b = 7.235 (1) Å

  • c = 7.604 (1) Å

  • β = 91.65 (3)°

  • V = 847.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.75 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.427, Tmax = 0.809

  • 1703 measured reflections

  • 1571 independent reflections

  • 1181 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 60 min intensity decay: 0.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.066

  • S = 1.01

  • 1571 reflections

  • 132 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯O1i 0.84 (1) 1.97 (1) 2.7987 (18) 169 (3)
O3—H32⋯O2ii 0.84 (1) 1.98 (1) 2.8078 (18) 170 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4 Diffractometer Control Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CIFTAB97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELX97.

Supporting information


Comment top

N-nitrosohydroxylamine derivatives are good chelating agents which form stable complexes with a wide range of metal ions (Okabe et al., 1995; Abraham et al., 1987; Venter et al., 2009; Popov & Wendlandt, 1954). The phenyl and naphthyl derivatives, known as cupferron and neocupferron, are reported as good analytical reagents for the determination of zirconium in its ores and metallurgical products, as well as for the separation of iron and titanium from manganese and aluminum in limestone analysis, separation and direct UV detection of lanthanides and other analyses (Lundell & Knowles, 1920; Buscarons & Canela, 1974; Oztekin & Erim, 2000). R2N[N202] anions are smooth nonenzymatic releasers of nitric oxide in physiological media (Yi et al., 1995; McGill et al., 2000) and possess the property of inhibition of mushroom tyrosinase (Shiino et al., 2001).

In the title compound, C14H16F2N4NiO6, the Ni cation of the centrosymmetrical structure is in a slightly distorted octahedral coordination and is surrounded by four oxo O atoms of the N—O groups of the organic ligands [Ni—O = 2.0179 (13) and 2.0283 (12) Å], and two water molecules in the axial positions [Ni—O = 2.0967 (14) Å]. The described coordination type of the central atom correlates with those described previously for the dimethanolo-bis(N– nitroso-N-phenyl-hydroxylaminato-o,o) cobalt(II) (Deak et al., 1998) and the dimethanolo-bis (N-nitroso-N-phenylhydroxylaminato-O,O')nickel(II) (Okabe & Tamaki, 1995). On the other hand, in the reported structure of the diaquabis[N-(1-naphthyl)-N-nitrosohydroxylaminato- O, O'] cobalt(II) (Tamaki & Okabe, 1998), the two coordinated water molecules are in the cis arrangement. In addition in the bis(N-nitroso-N-phenylhydroxylaminato)manganese, or manganese cupferronate (Tamaki & Okabe, 1996), the saturation of the coordination sphere of the Mn(II) cation occurs with the two O atoms of the nitroso groups of two adjacent cupferron ligands. The N-(2-fluorobenzyl)-N-nitrosohydroxylaminate monoanions act as bidentate chelating ligands. The Ni cations in the columns are shifted in such a way that the coordinated H2O molecules are involved in the formation of hydrogen bonds with the O atoms of the organic species of the neighbouring molecules in the columns. Thus, the crystal lattice of the reported structure is a supramolecular architecture built up by infinite one dimensional chains of hydrogen bonded molecules.

Related literature top

For the synthesis of the potassium N-(2-fluorobenzyl)-N-nitrosohydroxylaminate salt, see: Zyuzin et al. (1997) and of the Ni complex of N-(2-fluorobenzyl)-N-nitrosohydroxylaminate, see: Kovalchukova et al. (2013). For the structures of some 3d-metal complexes with N-nitrosohydroxylamine derivatives, see: Deak et al. (1998); Okabe & Tamaki (1995); Tamaki & Okabe (1996, 1998). For the synthesis, properties and applications of other metal nitrosohydroxylaminates, see: Okabe et al. (1995); Abraham et al. (1987); Venter et al. (2009); Popov & Wendlandt (1954); Lundell & Knowles (1920); Buscarons & Canela (1974); Oztekin & Erim (2000); Yi et al. (1995); McGill et al. (2000); Shiino et al. (2001).

Experimental top

The potassium N-(2-fluorobenzyl)-N-nitrosohydroxylaminate salt and its Ni complex was prepared (see Fig. 3) according to procedures described previously (Zyuzin et al., 1997; Kovalchukova et al., 2013). Single crystals of C14H16F2N4O6 were grown by the slow evaporation of the ethanol solution of the diaquabis[N-(2-fluorobenzyl)-N-nitrosohydroxylaminato-O,O']nickel(II) powdered sample.

Refinement top

The structure of of C14H16F2N4O6 was solved by direct method and all non-hydrogen atoms were located and refined in anisotropically. All the hydrogen atoms were located in difference electron density syntheses and included in refinement with fixed parameters.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: CAD-4-PC (Enraf–Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 and SHELX97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of C14H16F2N4O6 with atom labeling scheme (displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms).
[Figure 2] Fig. 2. Molecular packing in the crystal of the complex along the crystallographic axis b.
[Figure 3] Fig. 3. The synthesis of the potassium N-(2-fluorobenzyl)-Nnitrosohydroxylaminate salt
Diaquabis[N-(2-fluorobenzyl)-N-nitrosohydroxylaminato-κ2O,O']nickel(II) top
Crystal data top
[Ni(C7H6FN2O2)2(H2O)2]F(000) = 444
Mr = 433.02Dx = 1.697 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.411 (3) ÅCell parameters from 24 reflections
b = 7.235 (1) Åθ = 10.9–12.5°
c = 7.604 (1) ŵ = 1.21 mm1
β = 91.65 (3)°T = 293 K
V = 847.5 (3) Å3Plate, green
Z = 20.75 × 0.20 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1181 reflections with I > 2σ(I)
Radiation source: fine-focus tubeRint = 0.022
β-filter monochromatorθmax = 25.5°, θmin = 2.6°
ω/2θ scansh = 1818
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 08
Tmin = 0.427, Tmax = 0.809l = 09
1703 measured reflections3 standard reflections every 60 min
1571 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
1571 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C7H6FN2O2)2(H2O)2]V = 847.5 (3) Å3
Mr = 433.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.411 (3) ŵ = 1.21 mm1
b = 7.235 (1) ÅT = 293 K
c = 7.604 (1) Å0.75 × 0.20 × 0.05 mm
β = 91.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1181 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.022
Tmin = 0.427, Tmax = 0.8093 standard reflections every 60 min
1703 measured reflections intensity decay: 0.0%
1571 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
1571 reflectionsΔρmin = 0.32 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02414 (12)
F10.12983 (10)0.46369 (18)0.3199 (2)0.0610 (4)
O10.39701 (8)0.63578 (16)0.39297 (15)0.0292 (3)
O20.41642 (8)0.28946 (16)0.44659 (16)0.0312 (3)
N10.34766 (9)0.51068 (19)0.31185 (19)0.0278 (3)
N20.35419 (10)0.3370 (2)0.3362 (2)0.0317 (3)
C10.14337 (13)0.6479 (3)0.3049 (3)0.0386 (4)
C20.22021 (12)0.7072 (3)0.2360 (2)0.0329 (4)
C30.23158 (14)0.8967 (3)0.2205 (3)0.0406 (5)
H30.28240.94230.17380.049*
C40.16858 (17)1.0184 (3)0.2733 (3)0.0519 (6)
H40.17731.14510.26290.062*
C50.09283 (16)0.9527 (3)0.3412 (3)0.0531 (6)
H50.05041.03540.37600.064*
C60.07923 (13)0.7649 (3)0.3581 (3)0.0477 (5)
H60.02820.71930.40410.057*
C70.28684 (13)0.5742 (3)0.1721 (2)0.0369 (4)
H710.25750.46790.12060.044*
H720.31940.63330.08050.044*
O30.45896 (10)0.53062 (17)0.75889 (18)0.0371 (3)
H310.4344 (17)0.628 (3)0.790 (4)0.075 (9)*
H320.4418 (15)0.443 (2)0.821 (3)0.052 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02426 (18)0.02405 (17)0.02409 (17)0.00166 (12)0.00050 (11)0.00039 (11)
F10.0577 (8)0.0447 (7)0.0812 (10)0.0079 (6)0.0135 (7)0.0001 (6)
O10.0292 (6)0.0261 (5)0.0321 (6)0.0014 (5)0.0027 (5)0.0010 (5)
O20.0330 (7)0.0271 (6)0.0335 (6)0.0003 (5)0.0004 (5)0.0022 (5)
N10.0243 (7)0.0317 (7)0.0274 (7)0.0030 (6)0.0003 (6)0.0027 (6)
N20.0304 (8)0.0317 (8)0.0331 (7)0.0006 (6)0.0021 (6)0.0030 (6)
C10.0366 (11)0.0405 (10)0.0382 (10)0.0008 (8)0.0049 (8)0.0023 (8)
C20.0286 (9)0.0419 (10)0.0279 (9)0.0051 (7)0.0059 (7)0.0005 (7)
C30.0381 (11)0.0441 (11)0.0394 (10)0.0001 (8)0.0046 (9)0.0047 (8)
C40.0595 (14)0.0403 (11)0.0553 (13)0.0083 (10)0.0067 (11)0.0006 (9)
C50.0494 (13)0.0590 (14)0.0504 (13)0.0228 (11)0.0050 (10)0.0083 (10)
C60.0317 (11)0.0679 (15)0.0434 (11)0.0052 (10)0.0013 (9)0.0062 (10)
C70.0351 (10)0.0484 (10)0.0269 (9)0.0077 (9)0.0029 (8)0.0001 (8)
O30.0518 (8)0.0300 (7)0.0303 (6)0.0022 (6)0.0127 (6)0.0008 (5)
Geometric parameters (Å, º) top
Ni1—O1i2.0179 (13)C2—C31.388 (3)
Ni1—O12.0179 (13)C2—C71.498 (3)
Ni1—O22.0283 (12)C3—C41.379 (3)
Ni1—O2i2.0283 (12)C3—H30.9300
Ni1—O32.0967 (14)C4—C51.375 (4)
Ni1—O3i2.0967 (14)C4—H40.9300
F1—C11.354 (2)C5—C61.381 (3)
O1—N11.3233 (19)C5—H50.9300
O2—N21.302 (2)C6—H60.9300
N1—N21.274 (2)C7—H710.9700
N1—C71.470 (2)C7—H720.9700
C1—C61.371 (3)O3—H310.838 (10)
C1—C21.377 (3)O3—H320.837 (10)
O1i—Ni1—O1180.0C1—C2—C3116.90 (18)
O1i—Ni1—O2101.70 (5)C1—C2—C7121.86 (17)
O1—Ni1—O278.30 (5)C3—C2—C7121.17 (18)
O1i—Ni1—O2i78.30 (5)C4—C3—C2121.0 (2)
O1—Ni1—O2i101.70 (5)C4—C3—H3119.5
O2—Ni1—O2i180.0C2—C3—H3119.5
O1i—Ni1—O385.86 (6)C5—C4—C3120.1 (2)
O1—Ni1—O394.14 (6)C5—C4—H4120.0
O2—Ni1—O393.46 (6)C3—C4—H4120.0
O2i—Ni1—O386.54 (6)C4—C5—C6120.5 (2)
O1i—Ni1—O3i94.14 (6)C4—C5—H5119.7
O1—Ni1—O3i85.86 (6)C6—C5—H5119.7
O2—Ni1—O3i86.54 (6)C1—C6—C5117.8 (2)
O2i—Ni1—O3i93.46 (6)C1—C6—H6121.1
O3—Ni1—O3i180.0C5—C6—H6121.1
N1—O1—Ni1106.85 (9)N1—C7—C2113.27 (14)
N2—O2—Ni1112.47 (10)N1—C7—H71108.9
N2—N1—O1124.40 (14)C2—C7—H71108.9
N2—N1—C7117.37 (14)N1—C7—H72108.9
O1—N1—C7117.96 (14)C2—C7—H72108.9
N1—N2—O2114.08 (14)H71—C7—H72107.7
F1—C1—C6117.94 (19)Ni1—O3—H31120 (2)
F1—C1—C2118.37 (17)Ni1—O3—H32124.0 (18)
C6—C1—C2123.69 (19)H31—O3—H32109 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O1ii0.84 (1)1.97 (1)2.7987 (18)169 (3)
O3—H32···O2iii0.84 (1)1.98 (1)2.8078 (18)170 (2)
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···O1i0.838 (10)1.972 (12)2.7987 (18)169 (3)
O3—H32···O2ii0.837 (10)1.979 (11)2.8078 (18)170 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (grant 13–03–00079).

References

First citationAbraham, M. H., Bullock, J. I., Garland, J. H. N., Golder, A. J., Harden, G. J., Larkworti-Iy, L. F., Povey, D. C., Riedl, M. J. & Smith, G. W. (1987). Polyhedron, 6, 1375–1381.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuscarons, F. & Canela, J. (1974). Anal. Chim. Acta, 70, 113–120.  CrossRef CAS Web of Science Google Scholar
First citationDeák, A., Párkányi, L., Kálmán, A., Venter, M. & Haiduc, I. (1998). Acta Cryst. C54, IUC9800036.  CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1993). CAD-4 Diffractometer Control Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKovalchukova, O., Bostanabad, A. S., Sergienko, V., Polyakova, I., Zyuzin, I. & Strashnova, S. (2013). Open J. Inorg. Chem., 3, 1–6.  CSD CrossRef CAS Google Scholar
First citationLundell, G. E. F. & Knowles, H. B. (1920). J. Ind. Eng. Chem. 12, 344–350.  CrossRef CAS Google Scholar
First citationMcGill, A. D., Zhang, W., Wittbrodt, J., Wang, J., Schlegel, H. B. & Wang, P. G. (2000). Bioorg. Med. Chem. 8, 405–412.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkabe, N. & Tamaki, K. (1995). Acta Cryst. C51, 2004–2005.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Tamaki, K., Suga, T. & Kohyama, Y. (1995). Acta Cryst. C51, 1295–1297.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOztekin, N. & Erim, F. B. (2000). J. Chromatogr. A, 895, 263–268.  Web of Science PubMed CAS Google Scholar
First citationPopov, A. I. & Wendlandt, W. W. (1954). Anal. Chem. 26, 883–886.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiino, M., Watanabe, Y. & Umezawa, K. (2001). Bioorg. Med. Chem. 9, 1233–1240.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTamaki, K. & Okabe, N. (1996). Acta Cryst. C52, 1612–1614.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195–197.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVenter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYi, G.-B., Khan, M. A. & Richter-Addo, G. B. (1995). Inorg. Chem. 34, 5703–5704.  CrossRef CAS Web of Science Google Scholar
First citationZyuzin, I. N., Nechiporenko, G. N., Golovina, N. I., Trofimova, R. F. & Loginova, M. V. (1997). Russ. Chem. Bull. 46, 1421–1429.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m98-m99
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds