metal-organic compounds
Diaquabis[N-(2-fluorobenzyl)-N-nitrosohydroxylaminato-κ2O,O′]nickel(II)
aPeoples' Friendship University of Russia, 6 Miklukho-Mallaya, 117198 Moscow, Russia, bKarpov Institute of Physical Chemistry, 10 Vorontsovo Pole, 105064 Moscow, Russia, and cThe Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), Academician Semenov Avenue 1, Chernogolovka, Moscow Region, 142432 , Russian Federation
*Correspondence e-mail: okovalchukova@mail.ru
In the centrosymmetric title compound, [Ni(C7H6FN2O2)2(H2O)2], the NiII cation is in a slightly distorted octahedral environment and is surrounded by four O atoms from the N—O groups of the organic ligands [Ni—O = 2.0179 (13) and 2.0283 (12) Å], and two water molecules [Ni—O = 2.0967 (14) Å]. The N-(2-fluorobenzyl)-N-nitrosohydroxylaminate monoanions act as bidentate chelating ligands. In the crystal, the Ni cations in the columns are shifted in such a way that the coordinated water molecules are involved in the formation of hydrogen bonds with the O atoms of the organic species of neighbouring molecules. Thus, a two-dimensional network parallel to (100) is built up by hydrogen-bonded molecules.
CCDC reference: 985943
Related literature
For the synthesis of the potassium N-(2-fluorobenzyl)-N-nitrosohydroxylaminate salt, see: Zyuzin et al. (1997) and of the Ni complex of N-(2-fluorobenzyl)-N-nitrosohydroxylaminate, see: Kovalchukova et al. (2013). For the structures of some 3d-metal complexes with N-nitrosohydroxylamine derivatives, see: Deák et al. (1998); Okabe & Tamaki (1995); Tamaki & Okabe (1996, 1998). For the synthesis, properties and applications of other metal nitrosohydroxylaminates, see: Okabe et al. (1995); Abraham et al. (1987); Venter et al. (2009); Popov & Wendlandt (1954); Lundell & Knowles (1920); Buscarons & Canela (1974); Oztekin & Erim (2000); Yi et al. (1995); McGill et al. (2000); Shiino et al. (2001).
Experimental
Crystal data
|
|
Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 (Sheldrick, 2008) and SHELX97.
Supporting information
CCDC reference: 985943
10.1107/S1600536814002876/bv2230sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002876/bv2230Isup2.hkl
The potassium N-(2-fluorobenzyl)-N-nitrosohydroxylaminate salt and its Ni complex was prepared (see Fig. 3) according to procedures described previously (Zyuzin et al., 1997; Kovalchukova et al., 2013). Single crystals of C14H16F2N4O6 were grown by the slow evaporation of the ethanol solution of the diaquabis[N-(2-fluorobenzyl)-N-nitrosohydroxylaminato-O,O']nickel(II) powdered sample.
The structure of of C14H16F2N4O6 was solved by direct method and all non-hydrogen atoms were located and refined in anisotropically. All the hydrogen atoms were located in difference electron density syntheses and included in
with fixed parameters.Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell
CAD-4-PC (Enraf–Nonius, 1993); data reduction: CAD-4-PC (Enraf–Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 and SHELX97 (Sheldrick, 2008).[Ni(C7H6FN2O2)2(H2O)2] | F(000) = 444 |
Mr = 433.02 | Dx = 1.697 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.411 (3) Å | Cell parameters from 24 reflections |
b = 7.235 (1) Å | θ = 10.9–12.5° |
c = 7.604 (1) Å | µ = 1.21 mm−1 |
β = 91.65 (3)° | T = 293 K |
V = 847.5 (3) Å3 | Plate, green |
Z = 2 | 0.75 × 0.20 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | 1181 reflections with I > 2σ(I) |
Radiation source: fine-focus tube | Rint = 0.022 |
β-filter monochromator | θmax = 25.5°, θmin = 2.6° |
ω/2θ scans | h = −18→18 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = 0→8 |
Tmin = 0.427, Tmax = 0.809 | l = 0→9 |
1703 measured reflections | 3 standard reflections every 60 min |
1571 independent reflections | intensity decay: 0.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3 |
1571 reflections | (Δ/σ)max < 0.001 |
132 parameters | Δρmax = 0.31 e Å−3 |
2 restraints | Δρmin = −0.32 e Å−3 |
[Ni(C7H6FN2O2)2(H2O)2] | V = 847.5 (3) Å3 |
Mr = 433.02 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.411 (3) Å | µ = 1.21 mm−1 |
b = 7.235 (1) Å | T = 293 K |
c = 7.604 (1) Å | 0.75 × 0.20 × 0.05 mm |
β = 91.65 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1181 reflections with I > 2σ(I) |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) Rint = 0.022 |
Tmin = 0.427, Tmax = 0.809 | 3 standard reflections every 60 min |
1703 measured reflections | intensity decay: 0.0% |
1571 independent reflections |
R[F2 > 2σ(F2)] = 0.022 | 2 restraints |
wR(F2) = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.31 e Å−3 |
1571 reflections | Δρmin = −0.32 e Å−3 |
132 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.02414 (12) | |
F1 | 0.12983 (10) | 0.46369 (18) | 0.3199 (2) | 0.0610 (4) | |
O1 | 0.39701 (8) | 0.63578 (16) | 0.39297 (15) | 0.0292 (3) | |
O2 | 0.41642 (8) | 0.28946 (16) | 0.44659 (16) | 0.0312 (3) | |
N1 | 0.34766 (9) | 0.51068 (19) | 0.31185 (19) | 0.0278 (3) | |
N2 | 0.35419 (10) | 0.3370 (2) | 0.3362 (2) | 0.0317 (3) | |
C1 | 0.14337 (13) | 0.6479 (3) | 0.3049 (3) | 0.0386 (4) | |
C2 | 0.22021 (12) | 0.7072 (3) | 0.2360 (2) | 0.0329 (4) | |
C3 | 0.23158 (14) | 0.8967 (3) | 0.2205 (3) | 0.0406 (5) | |
H3 | 0.2824 | 0.9423 | 0.1738 | 0.049* | |
C4 | 0.16858 (17) | 1.0184 (3) | 0.2733 (3) | 0.0519 (6) | |
H4 | 0.1773 | 1.1451 | 0.2629 | 0.062* | |
C5 | 0.09283 (16) | 0.9527 (3) | 0.3412 (3) | 0.0531 (6) | |
H5 | 0.0504 | 1.0354 | 0.3760 | 0.064* | |
C6 | 0.07923 (13) | 0.7649 (3) | 0.3581 (3) | 0.0477 (5) | |
H6 | 0.0282 | 0.7193 | 0.4041 | 0.057* | |
C7 | 0.28684 (13) | 0.5742 (3) | 0.1721 (2) | 0.0369 (4) | |
H71 | 0.2575 | 0.4679 | 0.1206 | 0.044* | |
H72 | 0.3194 | 0.6333 | 0.0805 | 0.044* | |
O3 | 0.45896 (10) | 0.53062 (17) | 0.75889 (18) | 0.0371 (3) | |
H31 | 0.4344 (17) | 0.628 (3) | 0.790 (4) | 0.075 (9)* | |
H32 | 0.4418 (15) | 0.443 (2) | 0.821 (3) | 0.052 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02426 (18) | 0.02405 (17) | 0.02409 (17) | 0.00166 (12) | 0.00050 (11) | 0.00039 (11) |
F1 | 0.0577 (8) | 0.0447 (7) | 0.0812 (10) | −0.0079 (6) | 0.0135 (7) | −0.0001 (6) |
O1 | 0.0292 (6) | 0.0261 (5) | 0.0321 (6) | 0.0014 (5) | −0.0027 (5) | −0.0010 (5) |
O2 | 0.0330 (7) | 0.0271 (6) | 0.0335 (6) | −0.0003 (5) | −0.0004 (5) | 0.0022 (5) |
N1 | 0.0243 (7) | 0.0317 (7) | 0.0274 (7) | 0.0030 (6) | −0.0003 (6) | −0.0027 (6) |
N2 | 0.0304 (8) | 0.0317 (8) | 0.0331 (7) | 0.0006 (6) | 0.0021 (6) | −0.0030 (6) |
C1 | 0.0366 (11) | 0.0405 (10) | 0.0382 (10) | 0.0008 (8) | −0.0049 (8) | −0.0023 (8) |
C2 | 0.0286 (9) | 0.0419 (10) | 0.0279 (9) | 0.0051 (7) | −0.0059 (7) | −0.0005 (7) |
C3 | 0.0381 (11) | 0.0441 (11) | 0.0394 (10) | 0.0001 (8) | −0.0046 (9) | 0.0047 (8) |
C4 | 0.0595 (14) | 0.0403 (11) | 0.0553 (13) | 0.0083 (10) | −0.0067 (11) | 0.0006 (9) |
C5 | 0.0494 (13) | 0.0590 (14) | 0.0504 (13) | 0.0228 (11) | −0.0050 (10) | −0.0083 (10) |
C6 | 0.0317 (11) | 0.0679 (15) | 0.0434 (11) | 0.0052 (10) | 0.0013 (9) | −0.0062 (10) |
C7 | 0.0351 (10) | 0.0484 (10) | 0.0269 (9) | 0.0077 (9) | −0.0029 (8) | −0.0001 (8) |
O3 | 0.0518 (8) | 0.0300 (7) | 0.0303 (6) | 0.0022 (6) | 0.0127 (6) | 0.0008 (5) |
Ni1—O1i | 2.0179 (13) | C2—C3 | 1.388 (3) |
Ni1—O1 | 2.0179 (13) | C2—C7 | 1.498 (3) |
Ni1—O2 | 2.0283 (12) | C3—C4 | 1.379 (3) |
Ni1—O2i | 2.0283 (12) | C3—H3 | 0.9300 |
Ni1—O3 | 2.0967 (14) | C4—C5 | 1.375 (4) |
Ni1—O3i | 2.0967 (14) | C4—H4 | 0.9300 |
F1—C1 | 1.354 (2) | C5—C6 | 1.381 (3) |
O1—N1 | 1.3233 (19) | C5—H5 | 0.9300 |
O2—N2 | 1.302 (2) | C6—H6 | 0.9300 |
N1—N2 | 1.274 (2) | C7—H71 | 0.9700 |
N1—C7 | 1.470 (2) | C7—H72 | 0.9700 |
C1—C6 | 1.371 (3) | O3—H31 | 0.838 (10) |
C1—C2 | 1.377 (3) | O3—H32 | 0.837 (10) |
O1i—Ni1—O1 | 180.0 | C1—C2—C3 | 116.90 (18) |
O1i—Ni1—O2 | 101.70 (5) | C1—C2—C7 | 121.86 (17) |
O1—Ni1—O2 | 78.30 (5) | C3—C2—C7 | 121.17 (18) |
O1i—Ni1—O2i | 78.30 (5) | C4—C3—C2 | 121.0 (2) |
O1—Ni1—O2i | 101.70 (5) | C4—C3—H3 | 119.5 |
O2—Ni1—O2i | 180.0 | C2—C3—H3 | 119.5 |
O1i—Ni1—O3 | 85.86 (6) | C5—C4—C3 | 120.1 (2) |
O1—Ni1—O3 | 94.14 (6) | C5—C4—H4 | 120.0 |
O2—Ni1—O3 | 93.46 (6) | C3—C4—H4 | 120.0 |
O2i—Ni1—O3 | 86.54 (6) | C4—C5—C6 | 120.5 (2) |
O1i—Ni1—O3i | 94.14 (6) | C4—C5—H5 | 119.7 |
O1—Ni1—O3i | 85.86 (6) | C6—C5—H5 | 119.7 |
O2—Ni1—O3i | 86.54 (6) | C1—C6—C5 | 117.8 (2) |
O2i—Ni1—O3i | 93.46 (6) | C1—C6—H6 | 121.1 |
O3—Ni1—O3i | 180.0 | C5—C6—H6 | 121.1 |
N1—O1—Ni1 | 106.85 (9) | N1—C7—C2 | 113.27 (14) |
N2—O2—Ni1 | 112.47 (10) | N1—C7—H71 | 108.9 |
N2—N1—O1 | 124.40 (14) | C2—C7—H71 | 108.9 |
N2—N1—C7 | 117.37 (14) | N1—C7—H72 | 108.9 |
O1—N1—C7 | 117.96 (14) | C2—C7—H72 | 108.9 |
N1—N2—O2 | 114.08 (14) | H71—C7—H72 | 107.7 |
F1—C1—C6 | 117.94 (19) | Ni1—O3—H31 | 120 (2) |
F1—C1—C2 | 118.37 (17) | Ni1—O3—H32 | 124.0 (18) |
C6—C1—C2 | 123.69 (19) | H31—O3—H32 | 109 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O1ii | 0.84 (1) | 1.97 (1) | 2.7987 (18) | 169 (3) |
O3—H32···O2iii | 0.84 (1) | 1.98 (1) | 2.8078 (18) | 170 (2) |
Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H31···O1i | 0.838 (10) | 1.972 (12) | 2.7987 (18) | 169 (3) |
O3—H32···O2ii | 0.837 (10) | 1.979 (11) | 2.8078 (18) | 170 (2) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
This research was supported by the Russian Foundation for Basic Research (grant 13–03–00079).
References
Abraham, M. H., Bullock, J. I., Garland, J. H. N., Golder, A. J., Harden, G. J., Larkworti-Iy, L. F., Povey, D. C., Riedl, M. J. & Smith, G. W. (1987). Polyhedron, 6, 1375–1381. CSD CrossRef CAS Web of Science Google Scholar
Buscarons, F. & Canela, J. (1974). Anal. Chim. Acta, 70, 113–120. CrossRef CAS Web of Science Google Scholar
Deák, A., Párkányi, L., Kálmán, A., Venter, M. & Haiduc, I. (1998). Acta Cryst. C54, IUC9800036. CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1993). CAD-4 Diffractometer Control Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Kovalchukova, O., Bostanabad, A. S., Sergienko, V., Polyakova, I., Zyuzin, I. & Strashnova, S. (2013). Open J. Inorg. Chem., 3, 1–6. CSD CrossRef CAS Google Scholar
Lundell, G. E. F. & Knowles, H. B. (1920). J. Ind. Eng. Chem. 12, 344–350. CrossRef CAS Google Scholar
McGill, A. D., Zhang, W., Wittbrodt, J., Wang, J., Schlegel, H. B. & Wang, P. G. (2000). Bioorg. Med. Chem. 8, 405–412. Web of Science CrossRef PubMed CAS Google Scholar
Okabe, N. & Tamaki, K. (1995). Acta Cryst. C51, 2004–2005. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Okabe, N., Tamaki, K., Suga, T. & Kohyama, Y. (1995). Acta Cryst. C51, 1295–1297. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Oztekin, N. & Erim, F. B. (2000). J. Chromatogr. A, 895, 263–268. Web of Science PubMed CAS Google Scholar
Popov, A. I. & Wendlandt, W. W. (1954). Anal. Chem. 26, 883–886. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shiino, M., Watanabe, Y. & Umezawa, K. (2001). Bioorg. Med. Chem. 9, 1233–1240. Web of Science CrossRef PubMed CAS Google Scholar
Tamaki, K. & Okabe, N. (1996). Acta Cryst. C52, 1612–1614. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Tamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195–197. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Venter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578. Web of Science CSD CrossRef IUCr Journals Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Yi, G.-B., Khan, M. A. & Richter-Addo, G. B. (1995). Inorg. Chem. 34, 5703–5704. CrossRef CAS Web of Science Google Scholar
Zyuzin, I. N., Nechiporenko, G. N., Golovina, N. I., Trofimova, R. F. & Loginova, M. V. (1997). Russ. Chem. Bull. 46, 1421–1429. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-nitrosohydroxylamine derivatives are good chelating agents which form stable complexes with a wide range of metal ions (Okabe et al., 1995; Abraham et al., 1987; Venter et al., 2009; Popov & Wendlandt, 1954). The phenyl and naphthyl derivatives, known as cupferron and neocupferron, are reported as good analytical reagents for the determination of zirconium in its ores and metallurgical products, as well as for the separation of iron and titanium from manganese and aluminum in limestone analysis, separation and direct UV detection of lanthanides and other analyses (Lundell & Knowles, 1920; Buscarons & Canela, 1974; Oztekin & Erim, 2000). R2N[N202] anions are smooth nonenzymatic releasers of nitric oxide in physiological media (Yi et al., 1995; McGill et al., 2000) and possess the property of inhibition of mushroom tyrosinase (Shiino et al., 2001).
In the title compound, C14H16F2N4NiO6, the Ni cation of the centrosymmetrical structure is in a slightly distorted octahedral coordination and is surrounded by four oxo O atoms of the N—O groups of the organic ligands [Ni—O = 2.0179 (13) and 2.0283 (12) Å], and two water molecules in the axial positions [Ni—O = 2.0967 (14) Å]. The described coordination type of the central atom correlates with those described previously for the dimethanolo-bis(N– nitroso-N-phenyl-hydroxylaminato-o,o) cobalt(II) (Deak et al., 1998) and the dimethanolo-bis (N-nitroso-N-phenylhydroxylaminato-O,O')nickel(II) (Okabe & Tamaki, 1995). On the other hand, in the reported structure of the diaquabis[N-(1-naphthyl)-N-nitrosohydroxylaminato- O, O'] cobalt(II) (Tamaki & Okabe, 1998), the two coordinated water molecules are in the cis arrangement. In addition in the bis(N-nitroso-N-phenylhydroxylaminato)manganese, or manganese cupferronate (Tamaki & Okabe, 1996), the saturation of the coordination sphere of the Mn(II) cation occurs with the two O atoms of the nitroso groups of two adjacent cupferron ligands. The N-(2-fluorobenzyl)-N-nitrosohydroxylaminate monoanions act as bidentate chelating ligands. The Ni cations in the columns are shifted in such a way that the coordinated H2O molecules are involved in the formation of hydrogen bonds with the O atoms of the organic species of the neighbouring molecules in the columns. Thus, the crystal lattice of the reported structure is a supramolecular architecture built up by infinite one dimensional chains of hydrogen bonded molecules.