organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo­phenyl­sulfon­yl)-5-cyclo­hexyl-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 12 February 2014; accepted 17 February 2014; online 22 February 2014)

In the title compound, C21H21BrO3S, the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean planes of the benzo­furan and 2-bromo­phenyl fragments is 82.47 (5)°. In the crystal, mol­ecules related by inversion are paired into dimers via C—H⋯π and ππ inter­actions, the latter are indicated by the short distance of 3.607 (3) Å between the centroids of the furan rings. Inter­molecular C—H⋯O hydrogen bonds and short Br⋯O [3.280 (1) Å] contacts further consolidate the crystal packing.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o767.], 2012a[Choi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o480.],b[Choi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o1068.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21BrO3S

  • Mr = 433.35

  • Monoclinic, P 21 /n

  • a = 7.3548 (1) Å

  • b = 20.4554 (4) Å

  • c = 12.6801 (2) Å

  • β = 92.463 (1)°

  • V = 1905.90 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.46 × 0.35 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.507, Tmax = 0.746

  • 19277 measured reflections

  • 4748 independent reflections

  • 4028 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.03

  • 4748 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.95 2.61 3.487 (2) 155
C20—H20⋯O3i 0.95 2.56 3.382 (2) 144
C15—H15CCg1ii 0.98 2.69 3.531 (2) 144
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 4-fluorophenylsulfonyl (Choi et al., 2011), 4-bromophenylsulfonyl (Choi et al., 2012a) and 4-methylphenylsulfonyl (Choi et al., 2012b) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the cyclohexyl ring adopts a chair conformation. The benzofuran ring system is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The 2-bromophenyl ring is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 2-bromophenyl ring is 82.47 (5)°.

In the crystal structure (Fig. 2), the molecules related by inversion are paired into dimers via C—H···π (Table 1, Cg1 is the centroid of the C2-C7 benzene ring) and π···π interactions, the latter are proved by short distance of 3.607 (3) Å between the centroids of furan rings (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring). These dimers are further packed by intermolecular C—H···O hydrogen bonds (Table 1) and short Br···O halogen-bondings (Politzer et al., 2007) between the bromine atom and the oxygen atom of the OSO unit [Br1···O2iii = 3.280 (1) Å, C21—Br1···O2iii = 157.45 (5)°; symmerty code: (iii) x+1, y, z].

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 426 mg, 1.9 mmol) was added in small portions to a stirred solution of 3-(2-bromophenylsulfanyl)-5-cyclohexyl-2-methyl-1-benzofuran (361 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colourless solid [yield 76%, m.p. 445–446 K; Rf = 0.51 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O, π···π, C—H···π and Br···O interactions (dashed lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes : (i) x + 1/2, - y + 3/2, z + 1/2; (ii) - x + 1, - y + 1, - z; (iii) x + 1, y, z; (iv) x - 1/2, - y + 3/2, z - 1/2 ; (v) x - 1, y, z.]
3-(2-Bromophenylsulfonyl)-5-cyclohexyl-2-methyl-1-benzofuran top
Crystal data top
C21H21BrO3SF(000) = 888
Mr = 433.35Dx = 1.510 Mg m3
Monoclinic, P21/nMelting point = 445–446 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.3548 (1) ÅCell parameters from 7682 reflections
b = 20.4554 (4) Åθ = 2.6–28.2°
c = 12.6801 (2) ŵ = 2.28 mm1
β = 92.463 (1)°T = 173 K
V = 1905.90 (5) Å3Block, colourless
Z = 40.46 × 0.35 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4748 independent reflections
Radiation source: rotating anode4028 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.9°
φ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 2721
Tmin = 0.507, Tmax = 0.746l = 1616
19277 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.083H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.0558P]
where P = (Fo2 + 2Fc2)/3
4748 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C21H21BrO3SV = 1905.90 (5) Å3
Mr = 433.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3548 (1) ŵ = 2.28 mm1
b = 20.4554 (4) ÅT = 173 K
c = 12.6801 (2) Å0.46 × 0.35 × 0.23 mm
β = 92.463 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4028 reflections with I > 2σ(I)
Tmin = 0.507, Tmax = 0.746Rint = 0.031
19277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 0.60 e Å3
4748 reflectionsΔρmin = 0.56 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86740 (3)0.705237 (11)0.155454 (16)0.02977 (8)
S10.43880 (6)0.64983 (2)0.08850 (3)0.01954 (10)
O10.75164 (19)0.49455 (7)0.08436 (13)0.0321 (3)
O20.24696 (18)0.63578 (7)0.08776 (11)0.0263 (3)
O30.5080 (2)0.68541 (7)0.00109 (11)0.0277 (3)
C10.5550 (3)0.57650 (9)0.10478 (15)0.0216 (4)
C20.5104 (3)0.52574 (9)0.17993 (15)0.0226 (4)
C30.3820 (3)0.51623 (9)0.25675 (15)0.0238 (4)
H30.29550.54930.27060.029*
C40.3828 (3)0.45752 (10)0.31282 (16)0.0277 (4)
C50.5130 (3)0.40942 (11)0.2906 (2)0.0370 (5)
H50.51230.36940.32870.044*
C60.6409 (3)0.41813 (10)0.2159 (2)0.0374 (5)
H60.72780.38530.20180.045*
C70.6369 (3)0.47670 (10)0.16263 (17)0.0283 (4)
C80.6990 (3)0.55528 (10)0.05010 (17)0.0266 (4)
C90.2428 (3)0.44470 (10)0.39452 (17)0.0315 (5)
H90.17810.48690.40660.038*
C100.3273 (4)0.42243 (13)0.50155 (19)0.0449 (7)
H10A0.39270.38060.49240.054*
H10B0.41670.45540.52790.054*
C110.1817 (4)0.41342 (13)0.5820 (2)0.0480 (7)
H11A0.23890.39730.64920.058*
H11B0.12420.45610.59600.058*
C120.0365 (4)0.36519 (13)0.5428 (2)0.0476 (7)
H12A0.06080.36310.59430.057*
H12B0.09110.32110.53810.057*
C130.0463 (3)0.38442 (13)0.4352 (2)0.0418 (6)
H13A0.11790.42510.44220.050*
H13B0.13020.34950.40930.050*
C140.1001 (3)0.39514 (12)0.35539 (18)0.0376 (5)
H14A0.04230.41080.28810.045*
H14B0.16060.35300.34140.045*
C150.8082 (3)0.58153 (12)0.03582 (18)0.0338 (5)
H15A0.90240.54980.05290.051*
H15B0.86570.62260.01290.051*
H15C0.72870.58950.09850.051*
C160.4887 (2)0.69432 (8)0.20708 (14)0.0183 (4)
C170.3458 (3)0.70484 (9)0.27279 (16)0.0247 (4)
H170.22910.68720.25470.030*
C180.3719 (3)0.74109 (11)0.36512 (17)0.0309 (5)
H180.27320.74860.40950.037*
C190.5423 (3)0.76600 (11)0.39179 (17)0.0294 (4)
H190.56030.79080.45470.035*
C200.6873 (3)0.75516 (9)0.32758 (16)0.0238 (4)
H200.80440.77200.34680.029*
C210.6602 (2)0.71964 (9)0.23533 (15)0.0199 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01868 (11)0.04310 (14)0.02774 (12)0.00582 (8)0.00347 (7)0.00653 (9)
S10.0179 (2)0.0223 (2)0.0181 (2)0.00098 (17)0.00338 (16)0.00055 (17)
O10.0245 (7)0.0260 (7)0.0458 (9)0.0041 (6)0.0011 (6)0.0110 (7)
O20.0184 (6)0.0298 (7)0.0302 (7)0.0002 (5)0.0059 (5)0.0027 (6)
O30.0303 (7)0.0325 (7)0.0201 (7)0.0014 (6)0.0016 (5)0.0038 (6)
C10.0216 (9)0.0209 (9)0.0220 (9)0.0001 (7)0.0043 (7)0.0052 (7)
C20.0234 (9)0.0187 (9)0.0248 (9)0.0003 (7)0.0081 (7)0.0037 (7)
C30.0265 (10)0.0192 (9)0.0252 (9)0.0020 (7)0.0057 (7)0.0022 (8)
C40.0329 (11)0.0216 (9)0.0275 (10)0.0027 (8)0.0095 (8)0.0005 (8)
C50.0410 (13)0.0195 (10)0.0493 (14)0.0003 (9)0.0127 (11)0.0044 (10)
C60.0340 (12)0.0202 (10)0.0568 (15)0.0068 (9)0.0104 (10)0.0058 (10)
C70.0235 (10)0.0226 (10)0.0382 (12)0.0012 (8)0.0054 (8)0.0080 (9)
C80.0219 (9)0.0268 (10)0.0306 (10)0.0007 (8)0.0030 (8)0.0100 (8)
C90.0426 (12)0.0226 (10)0.0285 (10)0.0037 (9)0.0075 (9)0.0061 (8)
C100.0571 (16)0.0402 (13)0.0355 (13)0.0230 (12)0.0200 (11)0.0145 (11)
C110.0709 (18)0.0395 (14)0.0323 (12)0.0198 (13)0.0125 (12)0.0155 (11)
C120.0569 (16)0.0409 (14)0.0441 (14)0.0172 (12)0.0077 (12)0.0185 (12)
C130.0422 (13)0.0407 (13)0.0417 (13)0.0104 (11)0.0076 (10)0.0078 (11)
C140.0373 (12)0.0395 (13)0.0350 (12)0.0069 (10)0.0093 (10)0.0001 (10)
C150.0268 (10)0.0424 (13)0.0327 (11)0.0029 (9)0.0062 (8)0.0138 (10)
C160.0193 (9)0.0164 (8)0.0189 (8)0.0017 (7)0.0020 (7)0.0006 (7)
C170.0196 (9)0.0269 (10)0.0277 (10)0.0004 (7)0.0019 (7)0.0016 (8)
C180.0290 (11)0.0335 (11)0.0307 (11)0.0017 (9)0.0071 (8)0.0079 (9)
C190.0351 (11)0.0274 (10)0.0258 (10)0.0004 (9)0.0019 (8)0.0082 (8)
C200.0236 (9)0.0207 (9)0.0267 (9)0.0021 (7)0.0041 (7)0.0013 (8)
C210.0192 (9)0.0188 (9)0.0217 (9)0.0012 (7)0.0005 (7)0.0019 (7)
Geometric parameters (Å, º) top
Br1—C211.8887 (19)C10—H10B0.9900
Br1—O2i3.2793 (14)C11—C121.521 (3)
S1—O31.4372 (15)C11—H11A0.9900
S1—O21.4395 (14)C11—H11B0.9900
S1—C11.7342 (19)C12—C131.522 (3)
S1—C161.7823 (19)C12—H12A0.9900
O1—C81.367 (3)C12—H12B0.9900
O1—C71.379 (3)C13—C141.525 (3)
C1—C81.361 (3)C13—H13A0.9900
C1—C21.456 (3)C13—H13B0.9900
C2—C71.392 (3)C14—H14A0.9900
C2—C31.399 (3)C14—H14B0.9900
C3—C41.395 (3)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.410 (3)C15—H15C0.9800
C4—C91.515 (3)C16—C171.386 (3)
C5—C61.374 (4)C16—C211.396 (3)
C5—H50.9500C17—C181.392 (3)
C6—C71.375 (3)C17—H170.9500
C6—H60.9500C18—C191.381 (3)
C8—C151.482 (3)C18—H180.9500
C9—C141.527 (3)C19—C201.387 (3)
C9—C101.537 (3)C19—H190.9500
C9—H91.0000C20—C211.384 (3)
C10—C111.522 (4)C20—H200.9500
C10—H10A0.9900
C21—Br1—O2i157.43 (6)C10—C11—H11A109.4
O3—S1—O2118.40 (8)C12—C11—H11B109.4
O3—S1—C1109.92 (9)C10—C11—H11B109.4
O2—S1—C1107.81 (9)H11A—C11—H11B108.0
O3—S1—C16108.97 (9)C11—C12—C13111.9 (2)
O2—S1—C16105.89 (9)C11—C12—H12A109.2
C1—S1—C16104.99 (8)C13—C12—H12A109.2
C8—O1—C7107.19 (16)C11—C12—H12B109.2
C8—C1—C2107.91 (17)C13—C12—H12B109.2
C8—C1—S1127.25 (16)H12A—C12—H12B107.9
C2—C1—S1124.83 (15)C12—C13—C14111.4 (2)
C7—C2—C3119.02 (18)C12—C13—H13A109.3
C7—C2—C1103.90 (18)C14—C13—H13A109.3
C3—C2—C1137.08 (18)C12—C13—H13B109.3
C4—C3—C2119.10 (18)C14—C13—H13B109.3
C4—C3—H3120.5H13A—C13—H13B108.0
C2—C3—H3120.5C13—C14—C9112.0 (2)
C3—C4—C5119.1 (2)C13—C14—H14A109.2
C3—C4—C9120.63 (19)C9—C14—H14A109.2
C5—C4—C9120.23 (19)C13—C14—H14B109.2
C6—C5—C4122.5 (2)C9—C14—H14B109.2
C6—C5—H5118.7H14A—C14—H14B107.9
C4—C5—H5118.7C8—C15—H15A109.5
C5—C6—C7116.8 (2)C8—C15—H15B109.5
C5—C6—H6121.6H15A—C15—H15B109.5
C7—C6—H6121.6C8—C15—H15C109.5
C6—C7—O1125.7 (2)H15A—C15—H15C109.5
C6—C7—C2123.4 (2)H15B—C15—H15C109.5
O1—C7—C2110.87 (18)C17—C16—C21119.25 (17)
C1—C8—O1110.13 (18)C17—C16—S1116.89 (14)
C1—C8—C15135.8 (2)C21—C16—S1123.85 (15)
O1—C8—C15114.07 (18)C16—C17—C18120.49 (18)
C4—C9—C14111.76 (18)C16—C17—H17119.8
C4—C9—C10113.20 (19)C18—C17—H17119.8
C14—C9—C10109.66 (18)C19—C18—C17119.56 (19)
C4—C9—H9107.3C19—C18—H18120.2
C14—C9—H9107.3C17—C18—H18120.2
C10—C9—H9107.3C18—C19—C20120.64 (19)
C11—C10—C9111.0 (2)C18—C19—H19119.7
C11—C10—H10A109.4C20—C19—H19119.7
C9—C10—H10A109.4C21—C20—C19119.59 (18)
C11—C10—H10B109.4C21—C20—H20120.2
C9—C10—H10B109.4C19—C20—H20120.2
H10A—C10—H10B108.0C20—C21—C16120.47 (18)
C12—C11—C10111.3 (2)C20—C21—Br1116.43 (14)
C12—C11—H11A109.4C16—C21—Br1123.06 (14)
O3—S1—C1—C84.1 (2)C3—C4—C9—C14106.7 (2)
O2—S1—C1—C8134.53 (17)C5—C4—C9—C1471.7 (2)
C16—S1—C1—C8112.91 (18)C3—C4—C9—C10128.9 (2)
O3—S1—C1—C2174.52 (15)C5—C4—C9—C1052.7 (3)
O2—S1—C1—C244.14 (17)C4—C9—C10—C11177.3 (2)
C16—S1—C1—C268.42 (17)C14—C9—C10—C1157.2 (3)
C8—C1—C2—C70.1 (2)C9—C10—C11—C1256.7 (3)
S1—C1—C2—C7178.84 (14)C10—C11—C12—C1354.5 (3)
C8—C1—C2—C3179.6 (2)C11—C12—C13—C1453.1 (3)
S1—C1—C2—C30.7 (3)C12—C13—C14—C954.6 (3)
C7—C2—C3—C40.9 (3)C4—C9—C14—C13177.32 (19)
C1—C2—C3—C4178.6 (2)C10—C9—C14—C1356.3 (3)
C2—C3—C4—C50.0 (3)O3—S1—C16—C17129.89 (15)
C2—C3—C4—C9178.36 (17)O2—S1—C16—C171.52 (17)
C3—C4—C5—C60.4 (3)C1—S1—C16—C17112.40 (15)
C9—C4—C5—C6178.8 (2)O3—S1—C16—C2148.82 (18)
C4—C5—C6—C70.0 (3)O2—S1—C16—C21177.19 (15)
C5—C6—C7—O1179.2 (2)C1—S1—C16—C2168.89 (17)
C5—C6—C7—C20.9 (3)C21—C16—C17—C181.0 (3)
C8—O1—C7—C6178.2 (2)S1—C16—C17—C18177.78 (16)
C8—O1—C7—C20.4 (2)C16—C17—C18—C190.8 (3)
C3—C2—C7—C61.3 (3)C17—C18—C19—C200.1 (3)
C1—C2—C7—C6178.32 (19)C18—C19—C20—C210.7 (3)
C3—C2—C7—O1179.89 (16)C19—C20—C21—C160.5 (3)
C1—C2—C7—O10.3 (2)C19—C20—C21—Br1178.13 (15)
C2—C1—C8—O10.2 (2)C17—C16—C21—C200.4 (3)
S1—C1—C8—O1179.02 (13)S1—C16—C21—C20178.32 (14)
C2—C1—C8—C15179.3 (2)C17—C16—C21—Br1177.12 (14)
S1—C1—C8—C150.5 (3)S1—C16—C21—Br14.2 (2)
C7—O1—C8—C10.3 (2)O2i—Br1—C21—C2080.7 (2)
C7—O1—C8—C15179.30 (17)O2i—Br1—C21—C1696.9 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···O2ii0.952.613.487 (2)155
C20—H20···O3ii0.952.563.382 (2)144
C15—H15C···Cg1iii0.982.693.531 (2)144
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.952.613.487 (2)155
C20—H20···O3i0.952.563.382 (2)144
C15—H15C···Cg1ii0.982.693.531 (2)144
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o1068.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds