organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Di­methyl-2,2′-[imidazolidine-1,3-diyl­bis­(methyl­ene)]diphenol

aDepartamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Cra 30 No. 45-03, Bogotá, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

(Received 17 January 2014; accepted 29 January 2014; online 5 February 2014)

In the title compound, C19H24N2O2, a di-Mannich base derived from 2-methyl­phenol and 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane, the imidazolidine ring adopts a twist conformation, with a twist about the ring N—C bond [C—N—C—C torsion angle = −44.34 (14)°]. The two 2-hy­droxy-3-methyl­benzyl groups are located in trans positions with respect to the imidazolidine fragment. The structure displays two intra­molecular O—H⋯N hydrogen bonds, which each form an S(6) ring motif. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions with a bifurcated acceptor, forming a three-dimensional network.

Related literature

For the original synthesis of the title compound, see: Rivera et al. (1993[Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921-2929.]). For related structures, see: Rivera et al. (2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.], 2012a[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170-o171.],b[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043-o3044.],c[Rivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.], 2013[Rivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bifurcated-acceptor hydrogen-bond conformations, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5-6. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24N2O2

  • Mr = 312.40

  • Monoclinic, P 21 /c

  • a = 12.6271 (11) Å

  • b = 13.5780 (9) Å

  • c = 10.1997 (9) Å

  • β = 107.940 (7)°

  • V = 1663.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.33 × 0.13 × 0.12 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.974, Tmax = 0.990

  • 16285 measured reflections

  • 3207 independent reflections

  • 2803 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.07

  • 3207 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.91 (2) 1.90 (2) 2.7115 (16) 146 (2)
O2—H2⋯N2 0.98 (2) 1.70 (2) 2.6202 (16) 155 (2)
C5—H5B⋯O2i 0.99 2.43 3.4012 (18) 167
C27—H27A⋯O2ii 0.98 2.50 3.1789 (19) 126
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title molecule with the atom-numbering scheme is shown in Fig 1. The 2-hydroxy-3-methylbenzyl substituents are arranged in trans configuration with respect to the imidazolidine ring. The imidazolidine ring adopts a twist conformation, with a C1—N1—C2—C3 torsion angle equal to -44.34 (14)° (Cremer & Pople, 1975).

The structure of the title compound shows the presence of two intramolecular O—H···N hydrogen bonds. These bond take part in the S(6) graph set motifs (Bernstein et al., 1995). These motifs occur in the related 2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol compounds (Rivera et al. 2011, 2012a, b, c, 2013), too. The two intramolecular hydrogen bonds are different in their length (Table 1), although both nitrogen atoms are connected to the same atomic species. In the crystal, the molecules are linked to each other by weak C—H···O interactions (Desiraju & Steiner, 1999) C5—H5B···O2i···H27Aiii—C27iii with a bifurcated acceptor O2i where (i): -x, -y, -z+1; (iii): -x, y-1/2, -z+3/2. (For the hydrogen bonds and interactions, see Table 1.)

Related literature top

For the original synthesis of the title compound, see: Rivera et al. (1993). For related structures, see: Rivera et al. (2011, 2012a,b,c, 2013). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see Cremer & Pople (1975). For bifurcated-acceptor hydrogen-bond terminology, see: Desiraju & Steiner (1999).

Experimental top

For the original synthesis of the title compound, see Rivera et al. (1993). Single crystals in the form of needles that were shorter than 1 mm were obtained by slow evaporation of 0.01 M ethanol solution at room temperature. Melting point: 403-404 K.

Refinement top

All the H atoms were located in the difference electron density map. The hydroxyl H atoms were refined freely, however, the H atoms bonded to C atoms were situated into the idealized positions and refined using a riding model approximation. The applied constraints were as follows: Cmethylene—H = 0.99Å, Cmethyl—H = 0.98Å and Caryl—H = 0.95Å. Uiso(Haryl/methylene) = 1.2Ueq(Caryl/methylene) except for Uiso(Hmethyl) = 1.5Ueq(Cmethyl). The methyl groups were allowed to rotate during the refinement by application of the command AFIX 137 (SHELXL97 (Sheldrick, 2008)).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme·The displacement ellipsoids are shown at the 50% probability level. The hydrogen bonds are drawn as dashed lines.
6,6'-Dimethyl-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol top
Crystal data top
C19H24N2O2Dx = 1.247 Mg m3
Mr = 312.40Melting point = 403–404 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6271 (11) ÅCell parameters from 17856 reflections
b = 13.5780 (9) Åθ = 3.4–26.3°
c = 10.1997 (9) ŵ = 0.08 mm1
β = 107.940 (7)°T = 173 K
V = 1663.7 (2) Å3Needle, brown
Z = 40.33 × 0.13 × 0.12 mm
F(000) = 672
Data collection top
Stoe IPDS II two-circle
diffractometer
3207 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source2803 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.072
ω scansθmax = 25.9°, θmin = 3.4°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1515
Tmin = 0.974, Tmax = 0.990k = 1614
16285 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.053P)2 + 0.4801P]
whereP = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3207 reflectionsΔρmax = 0.20 e Å3
219 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.017 (3)
Crystal data top
C19H24N2O2V = 1663.7 (2) Å3
Mr = 312.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6271 (11) ŵ = 0.08 mm1
b = 13.5780 (9) ÅT = 173 K
c = 10.1997 (9) Å0.33 × 0.13 × 0.12 mm
β = 107.940 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3207 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2803 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.072
16285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
3207 reflectionsΔρmin = 0.17 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52432 (9)0.10588 (7)0.59144 (11)0.0354 (3)
H10.460 (2)0.1024 (17)0.519 (2)0.067 (7)*
O20.00181 (8)0.17557 (8)0.53718 (10)0.0326 (3)
H20.047 (2)0.1533 (18)0.485 (2)0.070 (7)*
N10.32247 (9)0.16347 (9)0.42350 (11)0.0268 (3)
N20.16437 (9)0.10080 (9)0.46722 (12)0.0290 (3)
C10.25284 (12)0.17521 (11)0.51349 (15)0.0317 (3)
H1A0.22070.24230.50460.038*
H1B0.29690.16390.61090.038*
C20.24302 (12)0.13405 (12)0.29153 (14)0.0344 (3)
H2A0.28120.10470.22950.041*
H2B0.19700.19040.24470.041*
C30.17414 (13)0.05850 (13)0.33757 (15)0.0382 (4)
H3A0.10000.05050.26820.046*
H3B0.21220.00620.35420.046*
C40.38508 (12)0.25297 (11)0.41628 (15)0.0306 (3)
H4A0.33290.30890.38640.037*
H4B0.42470.24400.34710.037*
C50.16693 (12)0.02503 (11)0.57129 (15)0.0314 (3)
H5A0.24440.00130.61120.038*
H5B0.12080.03160.52550.038*
C110.46819 (11)0.27610 (10)0.55457 (15)0.0282 (3)
C120.53386 (11)0.20167 (10)0.63485 (15)0.0278 (3)
C130.61017 (11)0.22221 (11)0.76376 (15)0.0311 (3)
C140.62035 (12)0.31874 (12)0.80964 (17)0.0381 (4)
H140.67290.33410.89620.046*
C150.55590 (13)0.39346 (12)0.73245 (19)0.0424 (4)
H150.56360.45910.76620.051*
C160.48010 (12)0.37156 (11)0.60557 (17)0.0356 (3)
H160.43560.42270.55260.043*
C170.67528 (13)0.14002 (13)0.85113 (17)0.0411 (4)
H17A0.72040.16640.94020.062*
H17B0.72400.10970.80420.062*
H17C0.62370.09040.86590.062*
C210.12514 (11)0.06119 (10)0.68633 (14)0.0272 (3)
C220.04162 (11)0.13237 (10)0.66313 (13)0.0261 (3)
C230.00336 (12)0.16134 (11)0.76666 (15)0.0296 (3)
C240.03670 (13)0.11608 (11)0.89454 (15)0.0335 (3)
H240.00660.13390.96580.040*
C250.11964 (14)0.04555 (11)0.92013 (15)0.0368 (4)
H250.14610.01551.00840.044*
C260.16402 (12)0.01877 (11)0.81681 (15)0.0330 (3)
H260.22160.02910.83520.040*
C270.09425 (13)0.23731 (12)0.73391 (17)0.0391 (4)
H27A0.11770.24910.81560.059*
H27B0.15780.21360.65840.059*
H27C0.06650.29880.70630.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (6)0.0253 (5)0.0376 (6)0.0031 (4)0.0076 (5)0.0018 (4)
O20.0313 (5)0.0376 (6)0.0286 (5)0.0036 (4)0.0090 (4)0.0072 (4)
N10.0281 (6)0.0290 (6)0.0252 (6)0.0013 (5)0.0109 (5)0.0026 (4)
N20.0299 (6)0.0310 (6)0.0269 (6)0.0058 (5)0.0097 (5)0.0056 (5)
C10.0318 (7)0.0343 (8)0.0332 (7)0.0078 (6)0.0163 (6)0.0096 (6)
C20.0354 (7)0.0427 (9)0.0262 (7)0.0025 (6)0.0111 (6)0.0060 (6)
C30.0414 (8)0.0431 (9)0.0312 (7)0.0104 (7)0.0128 (6)0.0131 (6)
C40.0300 (7)0.0311 (7)0.0329 (7)0.0001 (6)0.0130 (6)0.0059 (6)
C50.0308 (7)0.0277 (7)0.0350 (8)0.0012 (6)0.0090 (6)0.0020 (6)
C110.0241 (6)0.0285 (7)0.0354 (7)0.0028 (5)0.0141 (6)0.0021 (6)
C120.0257 (6)0.0264 (7)0.0345 (7)0.0014 (5)0.0142 (6)0.0003 (6)
C130.0252 (7)0.0340 (8)0.0361 (7)0.0024 (6)0.0126 (6)0.0007 (6)
C140.0295 (7)0.0380 (9)0.0443 (9)0.0083 (6)0.0076 (6)0.0062 (7)
C150.0374 (8)0.0278 (8)0.0600 (10)0.0073 (6)0.0119 (7)0.0095 (7)
C160.0311 (7)0.0254 (7)0.0507 (9)0.0015 (6)0.0130 (6)0.0026 (6)
C170.0380 (8)0.0424 (9)0.0385 (8)0.0014 (7)0.0055 (7)0.0039 (7)
C210.0269 (6)0.0237 (7)0.0297 (7)0.0060 (5)0.0068 (5)0.0015 (5)
C220.0260 (6)0.0247 (7)0.0261 (6)0.0073 (5)0.0057 (5)0.0007 (5)
C230.0292 (7)0.0281 (7)0.0316 (7)0.0076 (5)0.0095 (6)0.0041 (5)
C240.0418 (8)0.0325 (8)0.0280 (7)0.0102 (6)0.0137 (6)0.0047 (6)
C250.0471 (9)0.0335 (8)0.0259 (7)0.0064 (7)0.0053 (6)0.0045 (6)
C260.0333 (7)0.0275 (7)0.0333 (7)0.0018 (6)0.0031 (6)0.0028 (6)
C270.0373 (8)0.0414 (9)0.0400 (8)0.0013 (7)0.0140 (7)0.0039 (7)
Geometric parameters (Å, º) top
O1—C121.3673 (17)C12—C131.398 (2)
O1—H10.91 (2)C13—C141.384 (2)
O2—C221.3643 (16)C13—C171.505 (2)
O2—H20.98 (2)C14—C151.384 (2)
N1—C11.4622 (17)C14—H140.9500
N1—C41.4639 (18)C15—C161.384 (2)
N1—C21.4650 (18)C15—H150.9500
N2—C51.4714 (19)C16—H160.9500
N2—C11.4719 (17)C17—H17A0.9800
N2—C31.4813 (18)C17—H17B0.9800
C1—H1A0.9900C17—H17C0.9800
C1—H1B0.9900C21—C261.393 (2)
C2—C31.510 (2)C21—C221.396 (2)
C2—H2A0.9900C22—C231.401 (2)
C2—H2B0.9900C23—C241.389 (2)
C3—H3A0.9900C23—C271.502 (2)
C3—H3B0.9900C24—C251.383 (2)
C4—C111.509 (2)C24—H240.9500
C4—H4A0.9900C25—C261.386 (2)
C4—H4B0.9900C25—H250.9500
C5—C211.509 (2)C26—H260.9500
C5—H5A0.9900C27—H27A0.9800
C5—H5B0.9900C27—H27B0.9800
C11—C161.388 (2)C27—H27C0.9800
C11—C121.400 (2)
C12—O1—H1106.2 (15)C13—C12—C11121.23 (13)
C22—O2—H2103.8 (14)C14—C13—C12118.17 (14)
C1—N1—C4112.31 (11)C14—C13—C17121.68 (14)
C1—N1—C2103.44 (11)C12—C13—C17120.11 (14)
C4—N1—C2114.07 (11)C13—C14—C15121.64 (15)
C5—N2—C1113.75 (11)C13—C14—H14119.2
C5—N2—C3112.55 (12)C15—C14—H14119.2
C1—N2—C3106.78 (11)C16—C15—C14119.36 (15)
N1—C1—N2105.53 (11)C16—C15—H15120.3
N1—C1—H1A110.6C14—C15—H15120.3
N2—C1—H1A110.6C15—C16—C11121.00 (14)
N1—C1—H1B110.6C15—C16—H16119.5
N2—C1—H1B110.6C11—C16—H16119.5
H1A—C1—H1B108.8C13—C17—H17A109.5
N1—C2—C3101.34 (11)C13—C17—H17B109.5
N1—C2—H2A111.5H17A—C17—H17B109.5
C3—C2—H2A111.5C13—C17—H17C109.5
N1—C2—H2B111.5H17A—C17—H17C109.5
C3—C2—H2B111.5H17B—C17—H17C109.5
H2A—C2—H2B109.3C26—C21—C22118.27 (13)
N2—C3—C2103.21 (12)C26—C21—C5120.23 (13)
N2—C3—H3A111.1C22—C21—C5121.36 (12)
C2—C3—H3A111.1O2—C22—C21121.39 (12)
N2—C3—H3B111.1O2—C22—C23116.77 (12)
C2—C3—H3B111.1C21—C22—C23121.83 (12)
H3A—C3—H3B109.1C24—C23—C22117.96 (14)
N1—C4—C11110.89 (11)C24—C23—C27123.03 (13)
N1—C4—H4A109.5C22—C23—C27118.99 (13)
C11—C4—H4A109.5C25—C24—C23121.28 (14)
N1—C4—H4B109.5C25—C24—H24119.4
C11—C4—H4B109.5C23—C24—H24119.4
H4A—C4—H4B108.1C24—C25—C26119.87 (13)
N2—C5—C21113.46 (12)C24—C25—H25120.1
N2—C5—H5A108.9C26—C25—H25120.1
C21—C5—H5A108.9C25—C26—C21120.79 (14)
N2—C5—H5B108.9C25—C26—H26119.6
C21—C5—H5B108.9C21—C26—H26119.6
H5A—C5—H5B107.7C23—C27—H27A109.5
C16—C11—C12118.60 (13)C23—C27—H27B109.5
C16—C11—C4120.58 (13)H27A—C27—H27B109.5
C12—C11—C4120.82 (13)C23—C27—H27C109.5
O1—C12—C13117.43 (13)H27A—C27—H27C109.5
O1—C12—C11121.33 (13)H27B—C27—H27C109.5
C4—N1—C1—N2156.96 (11)C12—C13—C14—C151.2 (2)
C2—N1—C1—N233.51 (15)C17—C13—C14—C15176.34 (15)
C5—N2—C1—N1115.88 (13)C13—C14—C15—C160.7 (2)
C3—N2—C1—N18.89 (15)C14—C15—C16—C110.3 (2)
C1—N1—C2—C344.34 (14)C12—C11—C16—C150.6 (2)
C4—N1—C2—C3166.63 (12)C4—C11—C16—C15179.84 (14)
C5—N2—C3—C2143.72 (12)N2—C5—C21—C26152.12 (12)
C1—N2—C3—C218.22 (16)N2—C5—C21—C2232.45 (18)
N1—C2—C3—N238.30 (15)C26—C21—C22—O2178.73 (12)
C1—N1—C4—C1165.00 (15)C5—C21—C22—O23.2 (2)
C2—N1—C4—C11177.72 (11)C26—C21—C22—C230.2 (2)
C1—N2—C5—C2174.79 (14)C5—C21—C22—C23175.35 (12)
C3—N2—C5—C21163.60 (11)O2—C22—C23—C24177.86 (12)
N1—C4—C11—C16135.44 (13)C21—C22—C23—C240.8 (2)
N1—C4—C11—C1243.76 (17)O2—C22—C23—C270.48 (19)
C16—C11—C12—O1178.67 (13)C21—C22—C23—C27179.12 (13)
C4—C11—C12—O10.5 (2)C22—C23—C24—C250.9 (2)
C16—C11—C12—C130.1 (2)C27—C23—C24—C25179.21 (14)
C4—C11—C12—C13179.28 (12)C23—C24—C25—C260.2 (2)
O1—C12—C13—C14179.60 (13)C24—C25—C26—C210.8 (2)
C11—C12—C13—C140.8 (2)C22—C21—C26—C251.0 (2)
O1—C12—C13—C172.0 (2)C5—C21—C26—C25174.60 (13)
C11—C12—C13—C17176.75 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (2)1.90 (2)2.7115 (16)146 (2)
O2—H2···N20.98 (2)1.70 (2)2.6202 (16)155 (2)
C5—H5B···O2i0.992.433.4012 (18)167
C27—H27A···O2ii0.982.503.1789 (19)126
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (2)1.90 (2)2.7115 (16)146 (2)
O2—H2···N20.98 (2)1.70 (2)2.6202 (16)155 (2)
C5—H5B···O2i0.992.433.4012 (18)167.3
C27—H27A···O2ii0.982.503.1789 (19)126.1
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work. LSN thanks COLCIENCIAS for a fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5–6. New York: Oxford University Press.  Google Scholar
First citationRivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Nerio, L. S. & Bolte, M. (2013). Acta Cryst. E69, o1166.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o170–o171.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Kučeráková, M. & Dušek, M. (2012b). Acta Cryst. E68, o3043–o3044.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012c). Acta Cryst. E68, o3172.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds