organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o315-o316

Ethyl 3-(9-chloro-10-oxo-9,10-di­hydro­anthracen-9-yl)-5-methyl­isoxazole-4-carboxyl­ate

aDepartment of Pharmaceutical & Biomedical Science, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA, and bDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY, 14850, USA
*Correspondence e-mail: nicholas.natale@mso.umt.edu

(Received 21 January 2014; accepted 10 February 2014; online 19 February 2014)

The asymmetric unit of the title compound, C21H16ClNO4, contains two independent mol­ecules (A and B), each adopting a conformation wherein the isoxazole ring is roughly orthogonal to the anthrone ring. The dihedral angle between the mean plane of the isoxazole (all atoms) and the mean plane of the anthrone (all atoms) is 88.48 (3)° in one mol­ecule and 89.92 (4)° in the other. The ester is almost coplanar with the isoxazole ring, with mean-plane dihedral angles of 2.48 (15) and 8.62 (5)°. In both mol­ecules, the distance between the ester carbonyl O atom and the anthrone ketone C atom is about 3.3 Å. The anthrone ring is virtually planar (r.m.s. deviations of 0.070 and 0.065 Å) and adopts a shallow boat conformation in each mol­ecule, as evidenced by the sum of the six intra-B-ring torsion angles [41.43 (15) and 34.38 (15)° for molecules A and B, respectively]. The closest separation between the benzene moieties of anthrones A and B is 5.1162 (7) Å, with an angle of 57.98 (5)°, consistent with an edge-to-face π-stacking inter­action. In the crystal, weak C—H⋯O and C—H⋯N inter­actions link the mol­ecules, forming a three-dimensional network.

Related literature

For the synthesis of anthryl isoxazoles, see: Mosher & Natale (1995[Mosher, M. D. & Natale, N. R. (1995). J. Heterocycl. Chem. 32, 779-781.]); Zhou et al. (1997[Zhou, P., Mosher, M. D., Taylor, W. D., Crawford, G. A. & Natale, N. R. (1997). Bioorg. Med. Chem. Lett. 7, 2455-2456.]); Han & Natale, (2001[Han, X. & Natale, N. R. (2001). J. Heterocycl. Chem. 38, 415-418.]); Rider et al. (2010[Rider, K. C., Burkhart, D. J., Li, C., McKenzie, A. R., Nelson, J. K. & Natale, N. R. (2010). ARKIVOC, part viii, 97-107.]); Mirzaei et al. (2012[Mirzaei, Y. R., Weaver, M. W., Steiger, S. A., Kearns, A. K., Gajewski, M. P., Rider, K. C., Beall, H. D. & Natale, N. R. (2012). Tetrahedron, 68, 10360-10364.]). For previous studies on anthryl isoxazole crystallography, see: Mosher et al. (1996[Mosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513-2515.]); Han et al. (2002[Han, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673-7677.], 2003[Han, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539-545.]); Li et al. (2006[Li, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854-o856.], 2008[Li, C., Twamley, B. & Natale, N. R. (2008). J. Heterocycl. Chem. 45, 259-264.]). For the anti­tumor activity of aryl isoxazole amides (AIMs), see: Han et al. (2009[Han, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671-1680.]); Gajewski et al. (2009[Gajewski, M. P., Beall, H., Schnieder, M., Stranahan, S. M., Mosher, M. D., Rider, K. C. & Natale, N. R. (2009). Bioorg. Med. Chem. Lett. 19, 4067-4069.]). For a previous report of a 9′-Br-9′-heterocyclic anthrone crystal structure, see: Riant et al. (1994[Riant, O., Kagan, H. B. & Ricard, L. (1994). Tetrahedron, 50, 4543-4554.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16ClNO4

  • Mr = 381.80

  • Triclinic, [P \overline 1]

  • a = 10.0121 (3) Å

  • b = 12.6146 (4) Å

  • c = 14.9503 (4) Å

  • α = 77.9547 (14)°

  • β = 73.4361 (13)°

  • γ = 89.1187 (13)°

  • V = 1768.04 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.47 × 0.37 × 0.23 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.89, Tmax = 0.95

  • 48576 measured reflections

  • 8722 independent reflections

  • 8026 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.03

  • 8722 reflections

  • 491 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1′ 0.95 2.55 3.4902 (15) 171
C7—H7⋯N1′i 0.95 2.47 3.3294 (15) 151
C1′—H1′⋯O2′ii 0.95 2.57 3.4866 (12) 161
C2′—H2′⋯N1iii 0.95 2.47 3.3041 (18) 146
C6′—H6′⋯O3′iv 0.95 2.49 3.3224 (15) 146
C7′—H7′⋯O1v 0.95 2.50 3.4275 (17) 167
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and OLEX2.

Supporting information


Comment top

Isoxazolyl-anthracenyl amides (AIMs) have been found to possess significant antitumor activity (Han et al., 2009; Gajewski et al., 2009), and the title compound was isolated in the course of our continuing structure activity relationship studies. The edge-to-face π-stacking in the unit cell is noteworthy, as the current working hypothesis for the AIMs is that they exert their biological effect via an interaction with G-quadruplex DNA, by an analogous plausible stacking interaction. The title compound exhibited no cytotoxicity up to 25µM in an assay against human glioblastoma SNB-19 cells. However, the structural data in this report will be useful for interpretation of SAR studies with the AIMs that will be reported in due course.

The asymmetric unit of the title compound, C21H16NO4Cl, contains two independent molecules, each adopting a conformation wherein the isoxazole ring is roughly orthogonal to the anthrone ring. The angle between the mean plane of the isoxazole (all atoms) and the mean plane of the anthrone (all atoms) is 91.52 (3)° in one molecule and 90.08 (4)° in the other. The ester is almost co-planar with the isoxazole, with the mean plane angles of 2.48 (15)° and 8.62 (5)°. In both molecules, the distances between isoxazolyl ester carbonyl oxygen and the anthrone carbon of the ketone are about 3.3 Å in distance (O3-C10 and O3'-C10'). The anthrone is virtually planar, and adopts a shallow boat conformation, as evidenced by the sum of the six intra- B-ring torsional angles. The smallest intermolecular distance between the anthrone H2 of one molecule of the title compound is 3.1192 (13) Å from C5' of the second molecule, also the closest centroids of the two anthrone A rings is 5.1162 (7) Å in distance (ring C1-C2-C3-C4-C11-C12 and ring C5'-C6'-C7'-C8'-C13'-C14'), with an angle of 57.98 (5)°, consistent with an edge-to-face π-stacking interaction.

Related literature top

For the synthesis of anthryl isoxazoles, see: Mosher & Natale (1995); Zhou et al. (1997); Han & Natale, (2001); Rider et al. (2010); Mirzaei et al. (2012). For previous studies on anthryl isoxazole crystallography, see: Mosher et al. (1996); Han et al. (2002, 2003); Li et al. (2006, 2008). For the antitumor activity of aryl isoxazole amides (AIMs), see: Han et al. (2009); Gajewski et al. (2009). For a previous report of a 9'-Br-9'-heterocyclic anthrone crystal structure, see: Riant et al. (1994).

Experimental top

To a suspension of anthracene-9-carbaldehyde (4.0 g, 19.39 mmol; Sigma-Aldrich, 97%) in THF: Ethanol: H2O (54 mL: 27 mL: 27 mL) was dissolved sodium acetate (3.5 eq., 5.57 g, 67.89 mmol) and hydroxylamine hydrochloride (2 eq, 2.69 g, 38.71 mmol). The reaction was covered with a septa and let stir at room temperature until TLC showed no starting material remained (ca. 49 hours). The solution was then transferred to a separatory funnel and washed 4 x 200 mL Brine and the combined aqueous layers washed 2 x 50 mL CHCl3, dried over sodium sulfate, filtered, and the solvent removed under vacuum to yield anthracene-9-carbaldehyde oxime (99%).1H NMR(CDCl3) δ 9.22 (s, 1H), 8.51 (s, 1H), 8.42 (d, J=8.66 Hz, 2H), 8.03 (d, J=8.16 Hz, 2H), 7.50-7.59 (m, 4H).

The anthracene-9-carbaldehyde oxime (4.667 g, 21.09 mmol) was taken up in 120 mL of chloroform at room temperature, to which solution was added pyridine (10 mol%, 2.00 mL) and recrystallized NCS (1.1 eq, 3.098 g, 23.20 mmol). The solution brought to 45°C for 3.5 hours then cooled to room temperature. The organic layer was washed with 4 x 200 mL Brine and 2 x 150 mL H2O, then the aqueous layer washed 2 x 150 mL CHCl3, dried with sodium sulfate, filtered, and the solvent removed under reduced pressure to yield the nitrile oxide. The intermediate was purified only through extractive isolation using brine and CHCl3 and taken on to the next reaction as is. To a solution of the nitrile oxide in absolute ethanol (100 mL) was added 1.4 equivalents of ethylacetoacetate (3.8425 g, 29.53 mmol). In a separate round bottom was added 50 mL absolute ethanol and 1.018 g Na(s). Once the sodium dissociation had completed, the warm solution was added to the nitrile oxide and the mixture was allowed to stir at room temperature under argon for 21.5 hours until TLC in 4:1 Hex/EtOAc revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid dissolved in CHCl3, washed 4 x 200 mL Brine, and the aqueous layer washed 2 x 150 mL CHCl3, dried sodium sulfate, and concentrated under reduced pressure. The solid was then chromatographed using 4:1 Hex/EtOAc. Ethyl 3-(anthracen-9-yl)-5-methylisoxazole-4-carboxylate. Yield 93%.1H NMR(400 MHz, CDCl3) δ 8.59 (s, 1H), 8.06 (d, J=7.91, 2H), 7.66 (d, J=8.16 Hz, 2H), 7.41-7.50 (m, 4H), 3.70 (q, J=7.15 Hz, 2H), 2.93 (s, 3H), 0.33 (t, J=7.15 Hz, 3H). Spectral data are in accord with those reported previously. (Mirzaei, et al., 2012)

The carboxylate (0.300 g, 0.905 mmol) was taken up in 10 mL DMF to which was added a solution over 10 minutes of N-Chlorosuccinimide (NCS) (1.2 eq, 0.1461 g, 1.094 mmol) dissolved in 5 mL DMF. The solution was brought to 43°C and let stir for 4 hours whereupon the solution was poured into 50 mL ice/water which was allowed to stir for 1 hour, in which the 10-Cl carboxylate precipitated out, filtered and washed with 2 x 25 mL water. Yield 96%.1H NMR(400 MHz, CDCl3) δ 8.59 (d, J=8.91 Hz, 2H), 7.59-7.66 (m, 4H), 7.46-7.50 (m, 2H), 3.72 (q, J=7.15 Hz, 2H), 2.93 (s, 3H), 0.39 (t, J=7.15 Hz, 3H). Spectral data are in accord with those reported previously. (Mirzaei, et al., 2012).

The 10-Cl carboxylate (0.3312 g, 0.905 mmol) was taken up in 5 mL DMF to which was added a solution over 10 minutes of N-Chlorosuccinimide (NCS) (1.2 eq, 0.1451 g, 1.087 mmol) dissolved in 5 mL DMF. The solution was brought to 30°C and let stir for 43 hours whereupon the solution was poured into 50 mL ice/water which was allowed to stir for 1.5 hours, in which the product precipitated out. Product was filtered and washed with water. The solid was dissolved in minimal CH2Cl2 and placed on a wet silica column prepared with hexanes. The solvent polarity increased using a stepwise elution of 10:1, 6:1, and finally 4:1 until all product collected. Ethyl 3-(9-chloro-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-χarboxylate. Single crystals with sufficient quality for X-ray crystallographic analysis were prepared by a slow recrystallization from a chloroform/pentane (3:1) solution. Yield 29%, 1H NMR(CDCl3) δ 8.38 (dd, J=1.38, 7.65 Hz, 2H), 7.51-7.61 (m, 4H), 7.34 (dd, J=1.13, 7.91 Hz, 2H), 3.56 (q, J=7.15 Hz, 2H), 2.70 (s, 3H), 0.65 (t, J=7.03 Hz, 3H); 13C NMR(CDCl3) δ 182.58, 178.50,162.69, 159.76, 142.41, 133.92, 129.85, 129.13, 127.84, 127.58, 107.92, 62.51, 60.43, 13.78, 13.47. MS (EI) m/z 346(100, M-Cl), 347(28.33, M-Cl)+, 348(8.42, M-Cl)+2.

Refinement top

All H atoms were placed at geometrically calculated positions and included in the refinement in the riding model approximation, with C—H lengths of 0.93 (aromatic CH), 0.96 (CH3) and 0.97 (CH2) Å. Uiso of the H atoms was set at 1.5Ueq of the parent C atom for the methyl group and at 1.2Ueq for the remaining H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Ethyl 3-(9-chloro-10-oxo-9,10-dihydroanthracen-9-yl)-5-methylisoxazole-4-carboxylate top
Crystal data top
C21H16ClNO4Z = 4
Mr = 381.80F(000) = 792
Triclinic, P1Dx = 1.434 Mg m3
a = 10.0121 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6146 (4) ÅCell parameters from 3126 reflections
c = 14.9503 (4) ŵ = 0.24 mm1
α = 77.9547 (14)°T = 100 K
β = 73.4361 (13)°Prism, translucent white
γ = 89.1187 (13)°0.47 × 0.37 × 0.23 mm
V = 1768.04 (9) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
8722 independent reflections
Radiation source: 2 kW sealed X-ray tube, 2 kW sealed X-ray tube8026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 1.5°
φ and ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1616
Tmin = 0.89, Tmax = 0.95l = 019
48576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.9406P]
where P = (Fo2 + 2Fc2)/3
8722 reflections(Δ/σ)max = 0.001
491 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H16ClNO4γ = 89.1187 (13)°
Mr = 381.80V = 1768.04 (9) Å3
Triclinic, P1Z = 4
a = 10.0121 (3) ÅMo Kα radiation
b = 12.6146 (4) ŵ = 0.24 mm1
c = 14.9503 (4) ÅT = 100 K
α = 77.9547 (14)°0.47 × 0.37 × 0.23 mm
β = 73.4361 (13)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
8722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8026 reflections with I > 2σ(I)
Tmin = 0.89, Tmax = 0.95Rint = 0.023
48576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
8722 reflectionsΔρmin = 0.22 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14668 (12)0.69710 (9)0.77157 (9)0.0171 (2)
H10.23220.68740.72670.021*
C20.08750 (13)0.61345 (10)0.84944 (9)0.0199 (2)
H20.13210.54650.85720.024*
C30.03702 (13)0.62764 (10)0.91595 (9)0.0194 (2)
H30.07740.57040.96910.023*
C40.10204 (12)0.72499 (10)0.90473 (8)0.0161 (2)
H40.18660.73470.95060.019*
C50.11310 (12)1.10305 (9)0.72727 (9)0.0162 (2)
H50.20031.11080.77140.019*
C60.05040 (13)1.19009 (9)0.65439 (9)0.0190 (2)
H60.09571.25680.64750.023*
C70.07903 (13)1.17969 (10)0.59119 (9)0.0192 (2)
H70.12361.24010.54260.023*
C80.14296 (12)1.08127 (9)0.59904 (8)0.0163 (2)
H80.23111.07440.55560.02*
C90.14299 (11)0.88266 (9)0.67070 (8)0.0121 (2)
C100.11608 (11)0.91308 (9)0.81700 (8)0.0137 (2)
C110.04392 (11)0.80947 (9)0.82605 (8)0.0128 (2)
C120.08113 (11)0.79510 (9)0.75903 (8)0.0127 (2)
C130.07843 (11)0.99208 (9)0.67055 (8)0.0125 (2)
C140.04852 (11)1.00370 (9)0.73628 (8)0.0126 (2)
C150.30024 (11)0.89485 (8)0.64771 (8)0.0121 (2)
C160.37774 (11)0.93407 (9)0.70223 (8)0.0130 (2)
C170.51406 (12)0.93268 (9)0.64969 (8)0.0140 (2)
C180.65071 (12)0.96354 (10)0.65966 (9)0.0191 (2)
H90.72080.91390.63450.029*
H110.64240.95910.72730.029*
H100.67911.03790.62380.029*
C190.31997 (12)0.96906 (9)0.79302 (8)0.0139 (2)
C200.36925 (12)1.05664 (10)0.90633 (8)0.0167 (2)
H120.33490.99560.96190.02*
H130.29241.10620.90310.02*
C210.49282 (13)1.11622 (10)0.91531 (9)0.0189 (2)
H140.57051.06770.91330.028*
H160.46711.140.97610.028*
H150.52111.17960.86240.028*
C1'0.65302 (12)0.38133 (10)0.59466 (8)0.0169 (2)
H1'0.73940.41180.55140.02*
C2'0.59357 (13)0.28905 (10)0.58200 (9)0.0195 (2)
H2'0.63960.25630.53040.023*
C3'0.46644 (13)0.24425 (10)0.64482 (9)0.0193 (2)
H3'0.42420.18240.6350.023*
C4'0.40195 (12)0.29011 (9)0.72152 (9)0.0163 (2)
H4'0.31610.25870.7650.02*
C5'0.40299 (12)0.56283 (10)0.91808 (8)0.0172 (2)
H5'0.32220.52680.96460.021*
C6'0.46182 (13)0.65393 (10)0.93270 (9)0.0198 (2)
H6'0.42150.68040.9890.024*
C7'0.58021 (13)0.70657 (10)0.86465 (9)0.0201 (2)
H7'0.61950.77010.87380.024*
C8'0.64117 (12)0.66661 (10)0.78341 (9)0.0180 (2)
H8'0.72340.70180.73810.022*
C9'0.64736 (11)0.53627 (8)0.67675 (8)0.0119 (2)
C10'0.39380 (12)0.42679 (9)0.82106 (8)0.0142 (2)
C11'0.46221 (11)0.38264 (9)0.73568 (8)0.0128 (2)
C12'0.58679 (11)0.42963 (9)0.67049 (8)0.0125 (2)
C13'0.58229 (11)0.57506 (9)0.76802 (8)0.0128 (2)
C14'0.46152 (11)0.52325 (9)0.83524 (8)0.0132 (2)
C15'0.80463 (11)0.53349 (9)0.65468 (8)0.0124 (2)
C16'0.88436 (11)0.46614 (9)0.70831 (8)0.0129 (2)
C17'1.01975 (12)0.49193 (9)0.65518 (8)0.0147 (2)
C18'1.15761 (12)0.45330 (10)0.66295 (9)0.0201 (2)
H11'1.18760.39920.62380.03*
H10'1.15010.42050.72980.03*
H9'1.22610.51470.64050.03*
C19'0.82856 (12)0.38530 (9)0.79801 (8)0.0136 (2)
C20'0.88427 (13)0.24866 (10)0.91601 (9)0.0195 (2)
H12'0.8040.20510.91420.023*
H13'0.85550.2810.97310.023*
C21'1.00659 (13)0.17823 (10)0.91951 (9)0.0215 (2)
H14'1.03010.1430.86480.032*
H16'0.98210.12270.97890.032*
H15'1.0870.22320.91710.032*
Cl10.10081 (3)0.83526 (2)0.573222 (19)0.01709 (7)
Cl1'0.60533 (3)0.63770 (2)0.58213 (2)0.01801 (7)
N10.38204 (10)0.87205 (8)0.56959 (7)0.01485 (19)
N1'0.88548 (10)0.59449 (8)0.57680 (7)0.01584 (19)
O10.22728 (9)0.92378 (7)0.87479 (6)0.02125 (18)
O20.51896 (8)0.89548 (7)0.57090 (6)0.01550 (16)
O30.19812 (9)0.95794 (8)0.83804 (6)0.02023 (18)
O40.41820 (8)1.01639 (7)0.81836 (6)0.01672 (17)
O1'0.28444 (9)0.38481 (7)0.87812 (6)0.02227 (19)
O2'1.02297 (8)0.56851 (7)0.57716 (6)0.01688 (17)
O3'0.70532 (9)0.36690 (7)0.83742 (6)0.01982 (18)
O4'0.92966 (9)0.33385 (7)0.82938 (6)0.01871 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0149 (5)0.0158 (5)0.0182 (6)0.0020 (4)0.0012 (4)0.0031 (4)
C20.0197 (6)0.0150 (5)0.0230 (6)0.0021 (4)0.0053 (5)0.0008 (4)
C30.0184 (6)0.0173 (5)0.0185 (6)0.0025 (4)0.0041 (4)0.0034 (4)
C40.0131 (5)0.0190 (5)0.0143 (5)0.0016 (4)0.0023 (4)0.0014 (4)
C50.0151 (5)0.0160 (5)0.0194 (6)0.0020 (4)0.0059 (4)0.0067 (4)
C60.0232 (6)0.0138 (5)0.0226 (6)0.0030 (4)0.0105 (5)0.0043 (4)
C70.0240 (6)0.0150 (5)0.0180 (6)0.0022 (4)0.0076 (5)0.0003 (4)
C80.0163 (5)0.0167 (5)0.0143 (5)0.0013 (4)0.0032 (4)0.0012 (4)
C90.0127 (5)0.0134 (5)0.0105 (5)0.0005 (4)0.0027 (4)0.0045 (4)
C100.0123 (5)0.0147 (5)0.0146 (5)0.0007 (4)0.0036 (4)0.0049 (4)
C110.0121 (5)0.0136 (5)0.0129 (5)0.0011 (4)0.0038 (4)0.0031 (4)
C120.0124 (5)0.0126 (5)0.0131 (5)0.0017 (4)0.0035 (4)0.0025 (4)
C130.0136 (5)0.0127 (5)0.0125 (5)0.0002 (4)0.0055 (4)0.0031 (4)
C140.0123 (5)0.0128 (5)0.0139 (5)0.0004 (4)0.0050 (4)0.0039 (4)
C150.0128 (5)0.0108 (5)0.0117 (5)0.0003 (4)0.0020 (4)0.0023 (4)
C160.0126 (5)0.0131 (5)0.0125 (5)0.0001 (4)0.0030 (4)0.0023 (4)
C170.0145 (5)0.0130 (5)0.0136 (5)0.0008 (4)0.0031 (4)0.0020 (4)
C180.0118 (5)0.0250 (6)0.0201 (6)0.0002 (4)0.0039 (4)0.0048 (5)
C190.0145 (5)0.0152 (5)0.0119 (5)0.0002 (4)0.0043 (4)0.0021 (4)
C200.0157 (5)0.0235 (6)0.0131 (5)0.0019 (4)0.0043 (4)0.0085 (4)
C210.0190 (6)0.0225 (6)0.0182 (6)0.0002 (4)0.0076 (4)0.0077 (4)
C1'0.0156 (5)0.0202 (5)0.0150 (5)0.0025 (4)0.0030 (4)0.0057 (4)
C2'0.0224 (6)0.0210 (6)0.0184 (6)0.0058 (5)0.0072 (5)0.0100 (5)
C3'0.0236 (6)0.0147 (5)0.0233 (6)0.0019 (4)0.0112 (5)0.0063 (4)
C4'0.0153 (5)0.0134 (5)0.0203 (6)0.0008 (4)0.0065 (4)0.0018 (4)
C5'0.0138 (5)0.0214 (6)0.0146 (5)0.0024 (4)0.0005 (4)0.0050 (4)
C6'0.0180 (6)0.0247 (6)0.0184 (6)0.0041 (5)0.0032 (4)0.0116 (5)
C7'0.0180 (6)0.0202 (6)0.0246 (6)0.0006 (4)0.0052 (5)0.0112 (5)
C8'0.0149 (5)0.0177 (5)0.0202 (6)0.0013 (4)0.0016 (4)0.0061 (4)
C9'0.0118 (5)0.0114 (5)0.0108 (5)0.0017 (4)0.0023 (4)0.0004 (4)
C10'0.0127 (5)0.0136 (5)0.0148 (5)0.0017 (4)0.0026 (4)0.0019 (4)
C11'0.0123 (5)0.0126 (5)0.0138 (5)0.0027 (4)0.0046 (4)0.0021 (4)
C12'0.0124 (5)0.0125 (5)0.0131 (5)0.0023 (4)0.0049 (4)0.0026 (4)
C13'0.0119 (5)0.0130 (5)0.0135 (5)0.0033 (4)0.0032 (4)0.0037 (4)
C14'0.0123 (5)0.0132 (5)0.0137 (5)0.0025 (4)0.0029 (4)0.0031 (4)
C15'0.0127 (5)0.0111 (5)0.0127 (5)0.0011 (4)0.0021 (4)0.0034 (4)
C16'0.0120 (5)0.0134 (5)0.0132 (5)0.0014 (4)0.0030 (4)0.0034 (4)
C17'0.0146 (5)0.0140 (5)0.0149 (5)0.0006 (4)0.0028 (4)0.0042 (4)
C18'0.0119 (5)0.0253 (6)0.0222 (6)0.0023 (4)0.0030 (4)0.0057 (5)
C19'0.0141 (5)0.0152 (5)0.0122 (5)0.0023 (4)0.0039 (4)0.0041 (4)
C20'0.0178 (6)0.0216 (6)0.0152 (5)0.0019 (4)0.0037 (4)0.0032 (4)
C21'0.0222 (6)0.0218 (6)0.0215 (6)0.0057 (5)0.0098 (5)0.0019 (5)
Cl10.01746 (13)0.02050 (13)0.01522 (13)0.00197 (10)0.00467 (10)0.00783 (10)
Cl1'0.01790 (13)0.01718 (13)0.01622 (13)0.00446 (10)0.00449 (10)0.00158 (10)
N10.0111 (4)0.0161 (4)0.0167 (5)0.0013 (3)0.0018 (4)0.0051 (4)
N1'0.0107 (4)0.0161 (4)0.0174 (5)0.0014 (3)0.0004 (4)0.0016 (4)
O10.0162 (4)0.0198 (4)0.0222 (4)0.0021 (3)0.0029 (3)0.0042 (3)
O20.0117 (4)0.0176 (4)0.0167 (4)0.0004 (3)0.0016 (3)0.0061 (3)
O30.0139 (4)0.0301 (5)0.0175 (4)0.0022 (3)0.0015 (3)0.0106 (4)
O40.0138 (4)0.0241 (4)0.0140 (4)0.0007 (3)0.0032 (3)0.0087 (3)
O1'0.0176 (4)0.0215 (4)0.0219 (4)0.0054 (3)0.0042 (3)0.0053 (3)
O2'0.0110 (4)0.0172 (4)0.0184 (4)0.0004 (3)0.0001 (3)0.0009 (3)
O3'0.0132 (4)0.0248 (4)0.0165 (4)0.0020 (3)0.0016 (3)0.0025 (3)
O4'0.0134 (4)0.0216 (4)0.0171 (4)0.0019 (3)0.0040 (3)0.0040 (3)
Geometric parameters (Å, º) top
C1—H10.95C1'—C2'1.3866 (17)
C1—C21.3903 (16)C1'—C12'1.3940 (15)
C1—C121.3938 (15)C2'—H2'0.95
C2—H20.95C2'—C3'1.3931 (18)
C2—C31.3913 (17)C3'—H3'0.95
C3—H30.95C3'—C4'1.3820 (17)
C3—C41.3826 (17)C4'—H4'0.95
C4—H40.95C4'—C11'1.4031 (15)
C4—C111.4012 (15)C5'—H5'0.95
C5—H50.95C5'—C6'1.3835 (17)
C5—C61.3852 (17)C5'—C14'1.4007 (16)
C5—C141.4004 (15)C6'—H6'0.95
C6—H60.95C6'—C7'1.3913 (17)
C6—C71.3920 (18)C7'—H7'0.95
C7—H70.95C7'—C8'1.3875 (17)
C7—C81.3865 (17)C8'—H8'0.95
C8—H80.95C8'—C13'1.3941 (16)
C8—C131.3975 (15)C9'—C12'1.5153 (15)
C9—C121.5144 (15)C9'—C13'1.5125 (15)
C9—C131.5150 (15)C9'—C15'1.5154 (15)
C9—C151.5157 (15)C9'—Cl1'1.8392 (11)
C9—Cl11.8390 (11)C10'—C11'1.4816 (15)
C10—C111.4837 (15)C10'—C14'1.4834 (15)
C10—C141.4843 (15)C10'—O1'1.2263 (14)
C10—O11.2247 (14)C11'—C12'1.3948 (15)
C11—C121.3993 (15)C13'—C14'1.3986 (15)
C13—C141.3947 (15)C15'—C16'1.4358 (15)
C15—C161.4324 (15)C15'—N1'1.3080 (14)
C15—N11.3058 (14)C16'—C17'1.3660 (15)
C16—C171.3689 (15)C16'—C19'1.4732 (15)
C16—C191.4718 (15)C17'—C18'1.4844 (16)
C17—C181.4840 (16)C17'—O2'1.3431 (14)
C17—O21.3443 (14)C18'—H11'0.98
C18—H90.98C18'—H10'0.98
C18—H110.98C18'—H9'0.98
C18—H100.98C19'—O3'1.2086 (14)
C19—O31.2078 (14)C19'—O4'1.3376 (13)
C19—O41.3387 (13)C20'—H12'0.99
C20—H120.99C20'—H13'0.99
C20—H130.99C20'—C21'1.5085 (17)
C20—C211.5096 (16)C20'—O4'1.4620 (14)
C20—O41.4598 (13)C21'—H14'0.98
C21—H140.98C21'—H16'0.98
C21—H160.98C21'—H15'0.98
C21—H150.98N1—O21.4132 (12)
C1'—H1'0.95N1'—O2'1.4114 (12)
C2—C1—H1119.8C1'—C2'—H2'119.9
C2—C1—C12120.35 (11)C1'—C2'—C3'120.12 (11)
C12—C1—H1119.8C3'—C2'—H2'119.9
C1—C2—H2120.0C2'—C3'—H3'120.1
C1—C2—C3120.05 (11)C4'—C3'—C2'119.75 (11)
C3—C2—H2120.0C4'—C3'—H3'120.1
C2—C3—H3120.0C3'—C4'—H4'119.7
C4—C3—C2120.04 (11)C3'—C4'—C11'120.54 (11)
C4—C3—H3120.0C11'—C4'—H4'119.7
C3—C4—H4119.8C6'—C5'—H5'119.7
C3—C4—C11120.36 (11)C6'—C5'—C14'120.54 (11)
C11—C4—H4119.8C14'—C5'—H5'119.7
C6—C5—H5119.8C5'—C6'—H6'120.1
C6—C5—C14120.31 (11)C5'—C6'—C7'119.75 (11)
C14—C5—H5119.8C7'—C6'—H6'120.1
C5—C6—H6120.0C6'—C7'—H7'119.9
C5—C6—C7119.91 (11)C8'—C7'—C6'120.25 (11)
C7—C6—H6120.0C8'—C7'—H7'119.9
C6—C7—H7120.0C7'—C8'—H8'119.8
C8—C7—C6120.10 (11)C7'—C8'—C13'120.32 (11)
C8—C7—H7120.0C13'—C8'—H8'119.8
C7—C8—H8119.8C12'—C9'—C15'110.41 (9)
C7—C8—C13120.35 (11)C12'—C9'—Cl1'104.74 (7)
C13—C8—H8119.8C13'—C9'—C12'115.68 (9)
C12—C9—C13115.60 (9)C13'—C9'—C15'111.79 (9)
C12—C9—C15111.79 (9)C13'—C9'—Cl1'105.16 (7)
C12—C9—Cl1104.99 (7)C15'—C9'—Cl1'108.46 (7)
C13—C9—C15110.64 (9)C11'—C10'—C14'117.98 (10)
C13—C9—Cl1104.61 (7)O1'—C10'—C11'120.91 (10)
C15—C9—Cl1108.58 (7)O1'—C10'—C14'121.11 (10)
C11—C10—C14117.91 (10)C4'—C11'—C10'119.18 (10)
O1—C10—C11121.04 (10)C12'—C11'—C4'119.46 (10)
O1—C10—C14121.05 (10)C12'—C11'—C10'121.34 (10)
C4—C11—C10118.76 (10)C1'—C12'—C9'119.00 (10)
C12—C11—C4119.60 (10)C1'—C12'—C11'119.64 (10)
C12—C11—C10121.63 (10)C11'—C12'—C9'121.26 (10)
C1—C12—C9119.43 (10)C8'—C13'—C9'119.14 (10)
C1—C12—C11119.59 (10)C8'—C13'—C14'119.61 (10)
C11—C12—C9120.91 (10)C14'—C13'—C9'121.21 (10)
C8—C13—C9119.07 (10)C5'—C14'—C10'119.01 (10)
C14—C13—C8119.54 (10)C13'—C14'—C5'119.49 (10)
C14—C13—C9121.25 (10)C13'—C14'—C10'121.50 (10)
C5—C14—C10119.02 (10)C16'—C15'—C9'127.97 (10)
C13—C14—C5119.70 (10)N1'—C15'—C9'120.52 (10)
C13—C14—C10121.27 (10)N1'—C15'—C16'111.46 (10)
C16—C15—C9127.17 (10)C15'—C16'—C19'126.54 (10)
N1—C15—C9121.03 (10)C17'—C16'—C15'104.15 (10)
N1—C15—C16111.76 (10)C17'—C16'—C19'129.26 (10)
C15—C16—C19126.63 (10)C16'—C17'—C18'135.17 (11)
C17—C16—C15104.16 (10)O2'—C17'—C16'109.33 (10)
C17—C16—C19129.20 (10)O2'—C17'—C18'115.47 (10)
C16—C17—C18135.08 (11)C17'—C18'—H11'109.5
O2—C17—C16109.11 (10)C17'—C18'—H10'109.5
O2—C17—C18115.80 (10)C17'—C18'—H9'109.5
C17—C18—H9109.5H11'—C18'—H10'109.5
C17—C18—H11109.5H11'—C18'—H9'109.5
C17—C18—H10109.5H10'—C18'—H9'109.5
H9—C18—H11109.5O3'—C19'—C16'123.46 (10)
H9—C18—H10109.5O3'—C19'—O4'124.30 (10)
H11—C18—H10109.5O4'—C19'—C16'112.24 (9)
O3—C19—C16123.82 (10)H12'—C20'—H13'108.6
O3—C19—O4124.34 (10)C21'—C20'—H12'110.3
O4—C19—C16111.82 (9)C21'—C20'—H13'110.3
H12—C20—H13108.6O4'—C20'—H12'110.3
C21—C20—H12110.5O4'—C20'—H13'110.3
C21—C20—H13110.5O4'—C20'—C21'107.02 (10)
O4—C20—H12110.5C20'—C21'—H14'109.5
O4—C20—H13110.5C20'—C21'—H16'109.5
O4—C20—C21106.38 (9)C20'—C21'—H15'109.5
C20—C21—H14109.5H14'—C21'—H16'109.5
C20—C21—H16109.5H14'—C21'—H15'109.5
C20—C21—H15109.5H16'—C21'—H15'109.5
H14—C21—H16109.5C15—N1—O2105.32 (9)
H14—C21—H15109.5C15'—N1'—O2'105.48 (9)
H16—C21—H15109.5C17—O2—N1109.65 (8)
C2'—C1'—H1'119.8C19—O4—C20115.53 (9)
C2'—C1'—C12'120.42 (11)C17'—O2'—N1'109.57 (8)
C12'—C1'—H1'119.8C19'—O4'—C20'116.25 (9)
C1—C2—C3—C40.03 (19)C7'—C8'—C13'—C14'0.29 (17)
C2—C1—C12—C9176.44 (11)C8'—C13'—C14'—C5'1.28 (16)
C2—C1—C12—C110.85 (17)C8'—C13'—C14'—C10'178.91 (10)
C2—C3—C4—C110.61 (18)C9'—C13'—C14'—C5'178.84 (10)
C3—C4—C11—C10179.42 (11)C9'—C13'—C14'—C10'1.35 (16)
C3—C4—C11—C120.45 (17)C9'—C15'—C16'—C17'177.03 (11)
C4—C11—C12—C10.28 (16)C9'—C15'—C16'—C19'0.75 (18)
C4—C11—C12—C9176.97 (10)C9'—C15'—N1'—O2'177.67 (9)
C5—C6—C7—C82.26 (18)C10'—C11'—C12'—C1'175.55 (10)
C6—C5—C14—C10178.02 (10)C10'—C11'—C12'—C9'8.31 (16)
C6—C5—C14—C131.02 (16)C11'—C10'—C14'—C5'176.52 (10)
C6—C7—C8—C130.29 (18)C11'—C10'—C14'—C13'3.30 (16)
C7—C8—C13—C9173.37 (10)C12'—C1'—C2'—C3'0.40 (18)
C7—C8—C13—C142.33 (17)C12'—C9'—C13'—C8'173.61 (10)
C8—C13—C14—C52.97 (16)C12'—C9'—C13'—C14'8.82 (15)
C8—C13—C14—C10176.04 (10)C12'—C9'—C15'—C16'65.23 (14)
C9—C13—C14—C5172.63 (10)C12'—C9'—C15'—N1'111.96 (11)
C9—C13—C14—C108.35 (15)C13'—C9'—C12'—C1'171.48 (10)
C9—C15—C16—C17177.95 (10)C13'—C9'—C12'—C11'12.35 (14)
C9—C15—C16—C191.07 (18)C13'—C9'—C15'—C16'65.06 (14)
C9—C15—N1—O2178.44 (9)C13'—C9'—C15'—N1'117.75 (11)
C10—C11—C12—C1178.66 (10)C14'—C5'—C6'—C7'0.10 (18)
C10—C11—C12—C94.09 (16)C14'—C10'—C11'—C4'178.70 (10)
C11—C10—C14—C5178.71 (10)C14'—C10'—C11'—C12'0.25 (15)
C11—C10—C14—C130.31 (15)C15'—C9'—C12'—C1'43.29 (13)
C12—C1—C2—C30.70 (19)C15'—C9'—C12'—C11'140.54 (10)
C12—C9—C13—C8170.17 (10)C15'—C9'—C13'—C8'46.10 (13)
C12—C9—C13—C1414.20 (14)C15'—C9'—C13'—C14'136.33 (10)
C12—C9—C15—C1667.49 (14)C15'—C16'—C17'—C18'177.22 (13)
C12—C9—C15—N1114.81 (11)C15'—C16'—C17'—O2'0.65 (12)
C13—C9—C12—C1170.74 (10)C15'—C16'—C19'—O3'0.30 (18)
C13—C9—C12—C1112.01 (14)C15'—C16'—C19'—O4'178.59 (10)
C13—C9—C15—C1662.90 (14)C15'—N1'—O2'—C17'0.47 (12)
C13—C9—C15—N1114.80 (11)C16'—C15'—N1'—O2'0.06 (12)
C14—C5—C6—C71.60 (17)C16'—C17'—O2'—N1'0.72 (12)
C14—C10—C11—C4176.47 (10)C16'—C19'—O4'—C20'177.48 (9)
C14—C10—C11—C122.47 (15)C17'—C16'—C19'—O3'177.53 (12)
C15—C9—C12—C142.96 (13)C17'—C16'—C19'—O4'1.37 (17)
C15—C9—C12—C11139.79 (10)C18'—C17'—O2'—N1'177.61 (9)
C15—C9—C13—C841.83 (13)C19'—C16'—C17'—C18'0.5 (2)
C15—C9—C13—C14142.55 (10)C19'—C16'—C17'—O2'178.35 (10)
C15—C16—C17—C18178.51 (12)C21'—C20'—O4'—C19'161.23 (10)
C15—C16—C17—O20.33 (12)Cl1—C9—C12—C174.57 (11)
C15—C16—C19—O38.13 (18)Cl1—C9—C12—C11102.68 (10)
C15—C16—C19—O4170.64 (10)Cl1—C9—C13—C874.92 (11)
C15—N1—O2—C170.62 (11)Cl1—C9—C13—C14100.71 (10)
C16—C15—N1—O20.41 (12)Cl1—C9—C15—C16177.16 (9)
C16—C17—O2—N10.60 (12)Cl1—C9—C15—N10.54 (13)
C16—C19—O4—C20178.23 (9)Cl1'—C9'—C12'—C1'73.28 (11)
C17—C16—C19—O3173.10 (12)Cl1'—C9'—C12'—C11'102.89 (10)
C17—C16—C19—O48.13 (16)Cl1'—C9'—C13'—C8'71.39 (11)
C18—C17—O2—N1178.50 (9)Cl1'—C9'—C13'—C14'106.18 (10)
C19—C16—C17—C180.5 (2)Cl1'—C9'—C15'—C16'179.45 (9)
C19—C16—C17—O2179.31 (10)Cl1'—C9'—C15'—N1'2.27 (13)
C21—C20—O4—C19174.29 (10)N1—C15—C16—C170.07 (13)
C1'—C2'—C3'—C4'2.02 (18)N1—C15—C16—C19178.95 (10)
C2'—C1'—C12'—C9'174.16 (10)N1'—C15'—C16'—C17'0.36 (13)
C2'—C1'—C12'—C11'2.07 (17)N1'—C15'—C16'—C19'178.15 (10)
C2'—C3'—C4'—C11'1.17 (17)O1—C10—C11—C42.90 (16)
C3'—C4'—C11'—C10'177.19 (10)O1—C10—C11—C12178.15 (11)
C3'—C4'—C11'—C12'1.29 (17)O1—C10—C14—C50.67 (16)
C4'—C11'—C12'—C1'2.90 (16)O1—C10—C14—C13179.69 (11)
C4'—C11'—C12'—C9'173.24 (10)O3—C19—O4—C200.53 (16)
C5'—C6'—C7'—C8'1.49 (19)O1'—C10'—C11'—C4'1.38 (16)
C6'—C5'—C14'—C10'178.70 (11)O1'—C10'—C11'—C12'179.83 (11)
C6'—C5'—C14'—C13'1.49 (17)O1'—C10'—C14'—C5'3.56 (17)
C6'—C7'—C8'—C13'1.69 (19)O1'—C10'—C14'—C13'176.62 (11)
C7'—C8'—C13'—C9'177.32 (11)O3'—C19'—O4'—C20'1.40 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.952.553.4902 (15)171
C7—H7···N1i0.952.473.3294 (15)151
C1—H1···O2ii0.952.573.4866 (12)161
C2—H2···N1iii0.952.473.3041 (18)146
C6—H6···O3iv0.952.493.3224 (15)146
C7—H7···O1v0.952.503.4275 (17)167
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1'0.952.553.4902 (15)171
C7—H7···N1'i0.952.473.3294 (15)151.1
C1'—H1'···O2'ii0.952.573.4866 (12)161.1
C2'—H2'···N1iii0.952.473.3041 (18)146.3
C6'—H6'···O3'iv0.952.493.3224 (15)146.3
C7'—H7'···O1v0.952.503.4275 (17)167
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+1, y, z.
 

Acknowledgements

The Bruker single-crystal X-ray diffractometry facility at Ithaca College was established in 2012. The authors thank Dr Janet Hunting for helpful guidance and detailed discussions on the crystallography. NRN, HDB, AKK and NSD thank the National Institutes of Health for grants NINDS P20RR015583 Center for Structural and Functional Neuroscience (CSFN) and P20 RR017670 Center for Environmental Health Sciences (CEHS), and the Skaggs Family Foundation for generous support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGajewski, M. P., Beall, H., Schnieder, M., Stranahan, S. M., Mosher, M. D., Rider, K. C. & Natale, N. R. (2009). Bioorg. Med. Chem. Lett. 19, 4067–4069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, X., Li, C., Mosher, M. D., Rider, K. C., Zhou, P., Crawford, R. L., Fusco, W., Paszczynski, A. & Natale, N. R. (2009). Bioorg. Med. Chem. 17, 1671–1680.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, X., Li, C., Rider, K. C., Blumenfeld, A., Twamley, B. & Natale, N. R. (2002). Tetrahedron Lett. 43, 7673–7677.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, X. & Natale, N. R. (2001). J. Heterocycl. Chem. 38, 415–418.  CrossRef CAS Google Scholar
First citationHan, X., Twamley, B. & Natale, N. R. (2003). J. Heterocycl. Chem. 40, 539–545.  CrossRef CAS Google Scholar
First citationLi, C., Twamley, B. & Natale, N. R. (2006). Acta Cryst. E62, o854–o856.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, C., Twamley, B. & Natale, N. R. (2008). J. Heterocycl. Chem. 45, 259–264.  CrossRef CAS Google Scholar
First citationMirzaei, Y. R., Weaver, M. W., Steiger, S. A., Kearns, A. K., Gajewski, M. P., Rider, K. C., Beall, H. D. & Natale, N. R. (2012). Tetrahedron, 68, 10360–10364.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMosher, M. D. & Natale, N. R. (1995). J. Heterocycl. Chem. 32, 779–781.  CrossRef CAS Google Scholar
First citationMosher, M. D., Natale, N. R. & Vij, A. (1996). Acta Cryst. C52, 2513–2515.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRiant, O., Kagan, H. B. & Ricard, L. (1994). Tetrahedron, 50, 4543–4554.  CSD CrossRef CAS Web of Science Google Scholar
First citationRider, K. C., Burkhart, D. J., Li, C., McKenzie, A. R., Nelson, J. K. & Natale, N. R. (2010). ARKIVOC, part viii, 97–107.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, P., Mosher, M. D., Taylor, W. D., Crawford, G. A. & Natale, N. R. (1997). Bioorg. Med. Chem. Lett. 7, 2455–2456.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o315-o316
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds