organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,2′-di­nitro­bi­phenyl-4,4′-di­carboxyl­ate

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: dmanke@umassd.edu

(Received 3 February 2014; accepted 10 February 2014; online 15 February 2014)

The title compound, C16H12N2O8, exhibits two near-planar aromatic ester groups with ar­yl–ester dihedral angles of 2.1 (2) and 4.2 (3)°. The dihedral angle between the aromatic rings is 58.0 (1)°. The two nitro groups are tilted slightly from the plane of the aromatic rings, making dihedral angles of 14.1 (1) and 8.2 (2)°. In the crystal, mol­ecules are connected by weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Ol'khovik et al. (2008[Ol'khovik, V. K., Pap, A. A., Vasilevskii, V. A., Galinovskii, N. A. & Tereshki, S. N. (2008). Russ. J. Org. Chem. 44, 1172-1179.]). For the structure of 2,2′-di­nitro­biphenyl-4,4′-di­carb­oxy­lic acid, see: Wu et al. (2010[Wu, R. F., Zhang, T. L. & Qiao, X. J. (2010). Chin. Chem. Lett. 21, 1007-1010.]). For metal-organic frameworks and coordination polymers featuring this linker, see: Qu (2007[Qu, Z. (2007). Chin. J. Inorg. Chem. 23, 1837-1839.]); Li, Zhou et al. (2011[Li, B., Zhou, X., Zhou, Q., Li, G., Hua, J., Bi, Y., Li, Y., Shi, Z. & Feng, S. (2011). CrystEngComm, 13, 4592-4598.]); Li, Li et al. (2011[Li, B., Li, G., Liu, D., Peng, Y., Zhou, X., Hua, J., Shi, Z. & Feng, S. (2011). CrystEngComm, 13, 1291-1298.]); Li, Zhang et al. (2011[Li, B., Zhang, Y., Li, G., Liu, D., Chen, Y., Hu, W., Shi, Z. & Feng, S. (2011). CrystEngComm, 13, 2457-2463.]); Zhang, Ma et al. (2011[Zhang, J.-Y., Ma, Y., Cheng, A.-L., Sun, Q. & Gao, E.-Q. (2011). Dalton Trans. 40, 7219-7227.]); Zhang, Jing et al. (2011[Zhang, J.-Y., Jing, X.-H., Ma, Y., Cheng, A.-L. & Gao, E.-Q. (2011). Cryst. Growth Des. 11, 3681-3685.]); Li, Yang et al. (2012[Li, B., Yang, F., Zhang, Y., Li, G., Zhou, Q., Hua, J., Shi, Z. & Feng, S. (2012). Dalton Trans. 41, 2677-2684.]); Zhang, Li et al. (2012[Zhang, J.-Y., Li, X.-B., Wang, K., Ma, Y., Cheng, A.-L. & Gao, E.-Q. (2012). Dalton Trans. 41, 12192-12199.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O8

  • Mr = 360.28

  • Triclinic, [P \overline 1]

  • a = 8.0520 (5) Å

  • b = 10.4193 (7) Å

  • c = 10.5310 (11) Å

  • α = 108.423 (4)°

  • β = 95.142 (4)°

  • γ = 111.617 (3)°

  • V = 757.71 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 90 K

  • 0.28 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.981

  • 9906 measured reflections

  • 2787 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.02

  • 2787 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.98 2.50 3.253 (2) 134
C1—H1C⋯O2ii 0.98 2.57 3.5214 (19) 164
C14—H14A⋯O2iii 0.95 2.47 3.2399 (19) 138
C8—H8A⋯O3iv 0.95 2.41 3.3239 (19) 162
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y, -z+2; (iii) -x, -y, -z+1; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl-4,4'-dicarboxylate and its derivatives are widely used in metal-organic frameworks (MOFs) as linkers. One of the many advantages of MOFs is the ability to incorporate different functional groups within their pores. As a part of our efforts in this field, we prepared the previously reported dimethyl 2,2'-dinitrobiphenyl-4,4'-dicarboxylate (Ol'khovik et al. 2008) and report its structure herein.

The molecular structure of the title compound is shown in Figure 1. The structure demonstrates two near planar aromatic ester groups with aryl-ester dihedral angles of 2.1 (2)° and 4.2 (3)°. The two aromatic rings demonstrate a dihedral angle of 58.0 (1)°. The nitro groups are skewed slightly with aryl-nitro dihedral angles of 8.2 (2)° and 14.1 (1)°. No π-π interactions were noted between the aromatic rings. The packing for the title compound is shown in Figure 2.

Related literature top

For the synthesis of the title compound, see: Ol'khovik et al. (2008). For the structure of 2,2'-dinitrobiphenyl-4,4'-dicarboxylic acid, see: Wu et al. (2010). For metal-organic frameworks and coordination polymers featuring this linker, see: Qu (2007); Li, Zhou et al. (2011); Li, Li et al. (2011); Li, Zhang et al. (2011); Zhang, Ma et al. (2011); Zhang, Jing et al. (2011); Li, Yang et al. (2012); Zhang, Li et al. (2012).

Experimental top

The compound was prepared by literature procedure (Ol'khovik et al. 2008). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of an ethanol solution.

Refinement top

All non-hydrogen atoms refined anisotropically by full matrix least squares on F2. All hydrogen atoms were placed in calculated positions and then refined with riding model with C—H lengths of 0.95 Å for (CH) and 0.98 Å for (CH3) and with isotropic displacement parameters set to 1.20 and 1.50 times Ueq of the parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound.
Dimethyl 2,2'-dinitrobiphenyl-4,4'-dicarboxylate top
Crystal data top
C16H12N2O8Z = 2
Mr = 360.28F(000) = 372
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0520 (5) ÅCell parameters from 5153 reflections
b = 10.4193 (7) Åθ = 2.8–25.4°
c = 10.5310 (11) ŵ = 0.13 mm1
α = 108.423 (4)°T = 90 K
β = 95.142 (4)°BLOCK, yellow
γ = 111.617 (3)°0.28 × 0.20 × 0.15 mm
V = 757.71 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2787 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.965, Tmax = 0.981k = 1212
9906 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.234P]
where P = (Fo2 + 2Fc2)/3
2787 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H12N2O8γ = 111.617 (3)°
Mr = 360.28V = 757.71 (11) Å3
Triclinic, P1Z = 2
a = 8.0520 (5) ÅMo Kα radiation
b = 10.4193 (7) ŵ = 0.13 mm1
c = 10.5310 (11) ÅT = 90 K
α = 108.423 (4)°0.28 × 0.20 × 0.15 mm
β = 95.142 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2297 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.981Rint = 0.026
9906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
2787 reflectionsΔρmin = 0.20 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28379 (14)0.04398 (11)0.86338 (10)0.0223 (3)
O20.02811 (15)0.01405 (13)0.81152 (11)0.0283 (3)
O30.80395 (15)0.15657 (14)0.70622 (13)0.0350 (3)
O40.80373 (15)0.23016 (13)0.53753 (11)0.0283 (3)
O50.72326 (16)0.49239 (12)0.69694 (11)0.0327 (3)
O60.93059 (15)0.61445 (13)0.61157 (11)0.0323 (3)
O70.80462 (15)0.55730 (12)0.14341 (11)0.0292 (3)
O80.56913 (17)0.35679 (13)0.01199 (11)0.0355 (3)
N10.72907 (16)0.18850 (13)0.62186 (13)0.0196 (3)
N20.78359 (17)0.51402 (14)0.59936 (12)0.0206 (3)
C10.1936 (2)0.12748 (18)0.94307 (16)0.0253 (4)
H1A0.28290.14670.99490.038*
H1B0.09430.22240.88100.038*
H1C0.14270.06981.00720.038*
C20.1814 (2)0.00368 (16)0.79992 (15)0.0199 (3)
C30.2780 (2)0.07985 (15)0.71294 (14)0.0181 (3)
C40.4574 (2)0.10299 (15)0.70668 (14)0.0182 (3)
H4A0.52340.07170.76060.022*
C50.53980 (19)0.17125 (15)0.62247 (15)0.0179 (3)
C60.4489 (2)0.21904 (15)0.53960 (15)0.0181 (3)
C70.2683 (2)0.19281 (16)0.54750 (15)0.0199 (3)
H7A0.20040.22140.49190.024*
C80.1845 (2)0.12668 (16)0.63336 (15)0.0201 (3)
H8A0.06220.11320.63790.024*
C90.5175 (2)0.28358 (16)0.43647 (15)0.0186 (3)
C100.6699 (2)0.41620 (16)0.45972 (15)0.0187 (3)
C110.7209 (2)0.46404 (16)0.35496 (15)0.0196 (3)
H11A0.82840.55240.37400.024*
C120.6138 (2)0.38191 (16)0.22211 (15)0.0208 (3)
C130.4585 (2)0.25263 (17)0.19660 (16)0.0232 (3)
H13A0.38330.19670.10600.028*
C140.4123 (2)0.20443 (16)0.30184 (15)0.0217 (3)
H14A0.30600.11490.28190.026*
C150.6575 (2)0.42811 (17)0.10439 (16)0.0239 (4)
C160.8490 (3)0.6119 (2)0.03466 (17)0.0354 (4)
H16A0.95640.70830.07290.053*
H16B0.74430.62400.00620.053*
H16C0.87650.54040.03620.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (6)0.0248 (6)0.0241 (6)0.0100 (5)0.0094 (4)0.0154 (5)
O20.0227 (6)0.0362 (7)0.0344 (7)0.0134 (5)0.0140 (5)0.0205 (5)
O30.0253 (6)0.0526 (8)0.0442 (7)0.0200 (6)0.0117 (5)0.0348 (6)
O40.0251 (6)0.0383 (7)0.0328 (6)0.0153 (5)0.0158 (5)0.0230 (6)
O50.0419 (7)0.0275 (6)0.0197 (6)0.0035 (5)0.0098 (5)0.0099 (5)
O60.0255 (6)0.0306 (6)0.0274 (6)0.0018 (5)0.0033 (5)0.0109 (5)
O70.0336 (7)0.0274 (6)0.0213 (6)0.0032 (5)0.0068 (5)0.0140 (5)
O80.0512 (8)0.0268 (6)0.0189 (6)0.0071 (6)0.0035 (5)0.0088 (5)
N10.0185 (7)0.0177 (6)0.0228 (7)0.0066 (5)0.0056 (5)0.0087 (5)
N20.0227 (7)0.0186 (6)0.0208 (7)0.0072 (6)0.0059 (5)0.0095 (5)
C10.0312 (9)0.0242 (8)0.0245 (8)0.0097 (7)0.0113 (7)0.0149 (7)
C20.0200 (8)0.0174 (7)0.0190 (8)0.0060 (6)0.0042 (6)0.0050 (6)
C30.0196 (8)0.0153 (7)0.0173 (7)0.0064 (6)0.0051 (6)0.0042 (6)
C40.0207 (8)0.0158 (7)0.0170 (7)0.0074 (6)0.0029 (6)0.0057 (6)
C50.0168 (7)0.0160 (7)0.0194 (7)0.0065 (6)0.0050 (6)0.0049 (6)
C60.0213 (8)0.0130 (7)0.0173 (7)0.0054 (6)0.0044 (6)0.0045 (6)
C70.0195 (8)0.0194 (8)0.0228 (8)0.0094 (6)0.0041 (6)0.0090 (6)
C80.0184 (8)0.0191 (8)0.0223 (8)0.0080 (6)0.0066 (6)0.0065 (6)
C90.0198 (8)0.0174 (7)0.0223 (8)0.0106 (6)0.0069 (6)0.0083 (6)
C100.0200 (8)0.0180 (7)0.0183 (8)0.0086 (6)0.0042 (6)0.0062 (6)
C110.0210 (8)0.0160 (7)0.0233 (8)0.0078 (6)0.0069 (6)0.0087 (6)
C120.0263 (8)0.0187 (8)0.0203 (8)0.0113 (7)0.0069 (6)0.0083 (6)
C130.0272 (8)0.0191 (8)0.0203 (8)0.0074 (7)0.0021 (6)0.0073 (6)
C140.0218 (8)0.0173 (7)0.0248 (8)0.0068 (6)0.0040 (6)0.0087 (6)
C150.0309 (9)0.0197 (8)0.0223 (9)0.0111 (7)0.0069 (7)0.0089 (7)
C160.0409 (10)0.0378 (10)0.0272 (9)0.0071 (8)0.0099 (8)0.0225 (8)
Geometric parameters (Å, º) top
O1—C21.3363 (18)C5—C61.405 (2)
O1—C11.4469 (17)C6—C71.393 (2)
O2—C21.2024 (18)C6—C91.494 (2)
O3—N11.2256 (16)C7—C81.381 (2)
O4—N11.2188 (16)C7—H7A0.9500
O5—N21.2239 (16)C8—H8A0.9500
O6—N21.2197 (16)C9—C141.392 (2)
O7—C151.3315 (19)C9—C101.399 (2)
O7—C161.4486 (18)C10—C111.383 (2)
O8—C151.1995 (19)C11—C121.384 (2)
N1—C51.4682 (18)C11—H11A0.9500
N2—C101.4708 (19)C12—C131.385 (2)
C1—H1A0.9800C12—C151.491 (2)
C1—H1B0.9800C13—C141.381 (2)
C1—H1C0.9800C13—H13A0.9500
C2—C31.485 (2)C14—H14A0.9500
C3—C81.387 (2)C16—H16A0.9800
C3—C41.385 (2)C16—H16B0.9800
C4—C51.374 (2)C16—H16C0.9800
C4—H4A0.9500
C2—O1—C1115.18 (11)C6—C7—H7A118.9
C15—O7—C16115.00 (12)C3—C8—C7120.31 (14)
O4—N1—O3122.78 (12)C3—C8—H8A119.8
O4—N1—C5119.80 (12)C7—C8—H8A119.8
O3—N1—C5117.40 (12)C14—C9—C10116.34 (13)
O6—N2—O5123.65 (13)C14—C9—C6115.67 (13)
O6—N2—C10118.19 (12)C10—C9—C6127.94 (13)
O5—N2—C10118.13 (12)C11—C10—C9122.64 (13)
O1—C1—H1A109.5C11—C10—N2116.29 (13)
O1—C1—H1B109.5C9—C10—N2121.07 (13)
H1A—C1—H1B109.5C12—C11—C10119.37 (14)
O1—C1—H1C109.5C12—C11—H11A120.3
H1A—C1—H1C109.5C10—C11—H11A120.3
H1B—C1—H1C109.5C11—C12—C13119.30 (14)
O2—C2—O1123.67 (14)C11—C12—C15122.49 (14)
O2—C2—C3124.01 (14)C13—C12—C15118.20 (14)
O1—C2—C3112.32 (12)C14—C13—C12120.55 (14)
C8—C3—C4118.93 (13)C14—C13—H13A119.7
C8—C3—C2118.95 (13)C12—C13—H13A119.7
C4—C3—C2122.11 (13)C13—C14—C9121.72 (14)
C5—C4—C3120.01 (14)C13—C14—H14A119.1
C5—C4—H4A120.0C9—C14—H14A119.1
C3—C4—H4A120.0O8—C15—O7124.10 (14)
C4—C5—C6122.65 (13)O8—C15—C12123.56 (14)
C4—C5—N1115.70 (13)O7—C15—C12112.33 (13)
C6—C5—N1121.64 (13)O7—C16—H16A109.5
C7—C6—C5115.81 (13)O7—C16—H16B109.5
C7—C6—C9116.20 (13)H16A—C16—H16B109.5
C5—C6—C9127.81 (13)O7—C16—H16C109.5
C8—C7—C6122.27 (14)H16A—C16—H16C109.5
C8—C7—H7A118.9H16B—C16—H16C109.5
C1—O1—C2—O23.3 (2)C7—C6—C9—C10122.53 (16)
C1—O1—C2—C3176.29 (11)C5—C6—C9—C1062.6 (2)
O2—C2—C3—C83.9 (2)C14—C9—C10—C113.2 (2)
O1—C2—C3—C8175.74 (12)C6—C9—C10—C11179.48 (14)
O2—C2—C3—C4177.44 (14)C14—C9—C10—N2175.83 (13)
O1—C2—C3—C42.96 (19)C6—C9—C10—N21.5 (2)
C8—C3—C4—C50.1 (2)O6—N2—C10—C1112.78 (19)
C2—C3—C4—C5178.64 (13)O5—N2—C10—C11165.42 (13)
C3—C4—C5—C60.5 (2)O6—N2—C10—C9168.14 (13)
C3—C4—C5—N1179.15 (12)O5—N2—C10—C913.7 (2)
O4—N1—C5—C4170.63 (13)C9—C10—C11—C122.8 (2)
O3—N1—C5—C47.86 (19)N2—C10—C11—C12176.24 (13)
O4—N1—C5—C68.1 (2)C10—C11—C12—C130.6 (2)
O3—N1—C5—C6173.45 (13)C10—C11—C12—C15178.61 (13)
C4—C5—C6—C70.1 (2)C11—C12—C13—C141.1 (2)
N1—C5—C6—C7178.50 (12)C15—C12—C13—C14179.67 (13)
C4—C5—C6—C9174.94 (13)C12—C13—C14—C90.6 (2)
N1—C5—C6—C93.7 (2)C10—C9—C14—C131.4 (2)
C5—C6—C7—C81.2 (2)C6—C9—C14—C13179.09 (13)
C9—C6—C7—C8176.70 (13)C16—O7—C15—O82.6 (2)
C4—C3—C8—C71.2 (2)C16—O7—C15—C12177.15 (13)
C2—C3—C8—C7177.57 (13)C11—C12—C15—O8178.12 (15)
C6—C7—C8—C31.8 (2)C13—C12—C15—O82.7 (2)
C7—C6—C9—C1454.82 (18)C11—C12—C15—O72.1 (2)
C5—C6—C9—C14120.00 (16)C13—C12—C15—O7177.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.982.503.253 (2)134
C1—H1C···O2ii0.982.573.5214 (19)164
C14—H14A···O2iii0.952.473.2399 (19)138
C8—H8A···O3iv0.952.413.3239 (19)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+2; (iii) x, y, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.982.503.253 (2)133.6
C1—H1C···O2ii0.982.573.5214 (19)164.0
C14—H14A···O2iii0.952.473.2399 (19)138.2
C8—H8A···O3iv0.952.413.3239 (19)161.7
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+2; (iii) x, y, z+1; (iv) x1, y, z.
 

Acknowledgements

RLL thanks the Jean Dreyfus Boissevain Lectureship for Undergraduate Institutions, the UMass Dartmouth Office of Undergraduate Research Award and the UMass Dartmouth Honors Summer Research Grant for funding. DRM gratefully acknowledges the National Science Foundation (CHE-1229339).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, B., Li, G., Liu, D., Peng, Y., Zhou, X., Hua, J., Shi, Z. & Feng, S. (2011). CrystEngComm, 13, 1291–1298.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B., Yang, F., Zhang, Y., Li, G., Zhou, Q., Hua, J., Shi, Z. & Feng, S. (2012). Dalton Trans. 41, 2677–2684.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, B., Zhang, Y., Li, G., Liu, D., Chen, Y., Hu, W., Shi, Z. & Feng, S. (2011). CrystEngComm, 13, 2457–2463.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B., Zhou, X., Zhou, Q., Li, G., Hua, J., Bi, Y., Li, Y., Shi, Z. & Feng, S. (2011). CrystEngComm, 13, 4592–4598.  Web of Science CSD CrossRef CAS Google Scholar
First citationOl'khovik, V. K., Pap, A. A., Vasilevskii, V. A., Galinovskii, N. A. & Tereshki, S. N. (2008). Russ. J. Org. Chem. 44, 1172–1179.  CAS Google Scholar
First citationQu, Z. (2007). Chin. J. Inorg. Chem. 23, 1837–1839.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, R. F., Zhang, T. L. & Qiao, X. J. (2010). Chin. Chem. Lett. 21, 1007–1010.  Web of Science CrossRef CAS Google Scholar
First citationZhang, J.-Y., Jing, X.-H., Ma, Y., Cheng, A.-L. & Gao, E.-Q. (2011). Cryst. Growth Des. 11, 3681–3685.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J.-Y., Li, X.-B., Wang, K., Ma, Y., Cheng, A.-L. & Gao, E.-Q. (2012). Dalton Trans. 41, 12192–12199.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, J.-Y., Ma, Y., Cheng, A.-L., Sun, Q. & Gao, E.-Q. (2011). Dalton Trans. 40, 7219–7227.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds