organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-nitro­bi­phenyl-4,4′-di­carboxyl­ate

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: dmanke@umassd.edu

(Received 17 February 2014; accepted 23 February 2014; online 28 February 2014)

The title compound, C16H13NO6, exhibits a biphenyl unit with a dihedral angle between the two aryl rings of 56.01 (5)°. The two ester groups vary slightly from planarity, with ar­yl–ester dihedral angles of 4.57 (5) and 16.73 (5)°. The nitro group is turned from the aromatic unit with an ar­yl–nitro dihedral angle of 48.66 (4)°. In the crystal, mol­ecules are connected by weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Olkhovik et al. (2008[Olkhovik, V. K., Vasilevskii, D. A., Pap, A. A., Kalechyts, G. V., Matveienko, Y. V., Baran, A. G., Halinouski, N. A. & Petushok, V. G. (2008). ARKIVOC, ix, 69-93.]). For coordination polymers featuring the 2-nitro­biphenyl-4,4′-di­carboxyl­ate linker, see: Jing et al. (2012[Jing, X.-H., Yi, X.-C., Gao, E.-Q. & Blatov, V. A. (2012). Dalton Trans. 41, 14316-14328.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO6

  • Mr = 315.27

  • Monoclinic, C 2/c

  • a = 20.3958 (17) Å

  • b = 8.3334 (6) Å

  • c = 18.9386 (14) Å

  • β = 118.342 (7)°

  • V = 2833.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 90 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 19059 measured reflections

  • 2918 independent reflections

  • 2360 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.04

  • 2918 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O6i 0.95 2.50 3.3405 (16) 148
C13—H13A⋯O2ii 0.95 2.39 3.2435 (16) 150
C14—H14A⋯O4iii 0.95 2.59 3.3954 (16) 143
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl-4,4'-dicarboxylate and its derivatives have become prevalent linkers in the preparation of metal-organic frameworks (MOFs). The ability to incorporate different functional groups into the pores of MOFs is one advantage of this class of materials. As a part of our efforts in this arena, we prepared the previously reported dimethyl 2-nitrobiphenyl-4,4'-dicarboxylate (Olkhovik et al. 2008) and report its structure herein.

The structure of the title compound is shown in Figure 1. The structure has a torsion angle of 56.01 (5)° between the two aryl rings. The ester groups vary slightly from the planes of the aromatic rings, with aryl-ester dihedral angles of 4.57 (5)° and 16.73 (5)°. The nitro group shows an aryl-nitro torsion angle of 48.66 (4)°. No π-π interactions were noted between the aromatic rings. The packing for the title compound is shown in Figure 2.

Related literature top

For the synthesis of the title compound, see: Olkhovik et al. (2008). For coordination polymers featuring the 2-nitrobiphenyl-4,4'-dicarboxylate linker, see: Jing et al. (2012).

Experimental top

The compound was prepared by literature procedure (Olkhovik et al. 2008). Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of an ethanol solution.

Refinement top

Data corrected for absorption with SADABS (Bruker, 2005) and structure solved by direct methods (SHELXS) and all non-hydrogen atoms refined anisotropically by full matrix least squares on F2 (SHELXL (Sheldrick, 2008)). All hydrogen atoms were placed in calculated positions and then refined with riding model with C—H lengths of 0.95 Å for (CH) and 0.98 Å for (CH3) and with isotropic displacement parameters set to 1.20 and 1.50 times Ueq of the parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound.
Dimethyl 2-nitrobiphenyl-4,4'-dicarboxylate top
Crystal data top
C16H13NO6F(000) = 1312
Mr = 315.27Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7800 reflections
a = 20.3958 (17) Åθ = 2.4–26.4°
b = 8.3334 (6) ŵ = 0.12 mm1
c = 18.9386 (14) ÅT = 90 K
β = 118.342 (7)°Block, colorless
V = 2833.1 (4) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2918 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 26.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2525
Tmin = 0.972, Tmax = 0.983k = 1010
19059 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.4779P]
where P = (Fo2 + 2Fc2)/3
2918 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13NO6V = 2833.1 (4) Å3
Mr = 315.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.3958 (17) ŵ = 0.12 mm1
b = 8.3334 (6) ÅT = 90 K
c = 18.9386 (14) Å0.25 × 0.20 × 0.15 mm
β = 118.342 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2360 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.029
19059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2918 reflectionsΔρmin = 0.22 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20578 (5)0.35494 (11)0.07049 (6)0.0225 (2)
O20.19389 (5)0.61983 (11)0.04893 (6)0.0241 (2)
O30.43918 (5)0.91646 (12)0.14067 (6)0.0294 (3)
O40.48248 (5)0.82157 (11)0.06479 (5)0.0231 (2)
O50.81617 (5)0.57857 (12)0.26263 (6)0.0250 (2)
O60.78697 (5)0.47958 (13)0.14129 (6)0.0304 (3)
N10.44911 (6)0.80702 (13)0.10372 (6)0.0197 (3)
C10.12899 (7)0.35323 (17)0.05505 (9)0.0239 (3)
H1A0.11250.24200.05270.036*
H1B0.09740.40640.00380.036*
H1C0.12510.41010.09820.036*
C20.23120 (7)0.49999 (15)0.06615 (8)0.0186 (3)
C30.31111 (7)0.49867 (15)0.08548 (7)0.0182 (3)
C40.34421 (7)0.64598 (16)0.08921 (7)0.0179 (3)
H4A0.31690.74280.08070.022*
C50.41786 (7)0.64881 (16)0.10550 (7)0.0178 (3)
C60.46139 (7)0.51142 (16)0.12059 (8)0.0191 (3)
C70.42667 (7)0.36580 (16)0.11802 (8)0.0210 (3)
H7A0.45460.26930.12890.025*
C80.35235 (7)0.35825 (16)0.10001 (8)0.0206 (3)
H8A0.32970.25730.09760.025*
C90.54141 (7)0.51468 (16)0.14053 (8)0.0188 (3)
C100.59328 (7)0.60408 (16)0.20508 (8)0.0206 (3)
H10A0.57750.66540.23660.025*
C110.66769 (7)0.60418 (16)0.22374 (8)0.0201 (3)
H11A0.70300.66350.26850.024*
C120.69054 (7)0.51723 (15)0.17669 (8)0.0189 (3)
C130.63915 (7)0.42696 (16)0.11247 (8)0.0204 (3)
H13A0.65480.36710.08040.024*
C140.56517 (7)0.42431 (16)0.09521 (8)0.0197 (3)
H14A0.53040.36040.05210.024*
C150.76862 (7)0.52180 (16)0.19011 (8)0.0206 (3)
C160.89312 (7)0.58733 (19)0.27969 (9)0.0289 (3)
H16A0.92520.60080.33750.043*
H16B0.89970.67890.25120.043*
H16C0.90660.48820.26190.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0154 (5)0.0204 (5)0.0315 (5)0.0001 (4)0.0110 (4)0.0023 (4)
O20.0175 (5)0.0207 (5)0.0339 (5)0.0015 (4)0.0119 (4)0.0003 (4)
O30.0263 (5)0.0246 (5)0.0434 (6)0.0047 (4)0.0214 (5)0.0125 (5)
O40.0193 (5)0.0267 (5)0.0272 (5)0.0007 (4)0.0142 (4)0.0032 (4)
O50.0147 (4)0.0331 (6)0.0258 (5)0.0010 (4)0.0084 (4)0.0031 (4)
O60.0215 (5)0.0371 (6)0.0365 (6)0.0022 (4)0.0170 (5)0.0112 (5)
N10.0128 (5)0.0225 (6)0.0228 (6)0.0013 (4)0.0075 (4)0.0013 (5)
C10.0149 (6)0.0256 (7)0.0309 (7)0.0014 (5)0.0107 (6)0.0017 (6)
C20.0181 (6)0.0199 (7)0.0176 (6)0.0011 (5)0.0082 (5)0.0019 (5)
C30.0160 (6)0.0225 (7)0.0158 (6)0.0004 (5)0.0073 (5)0.0002 (5)
C40.0176 (6)0.0199 (7)0.0163 (6)0.0025 (5)0.0080 (5)0.0000 (5)
C50.0181 (6)0.0205 (7)0.0158 (6)0.0007 (5)0.0089 (5)0.0010 (5)
C60.0173 (6)0.0248 (7)0.0152 (6)0.0022 (5)0.0076 (5)0.0008 (5)
C70.0192 (6)0.0205 (7)0.0230 (7)0.0035 (5)0.0096 (5)0.0011 (5)
C80.0202 (6)0.0203 (7)0.0213 (7)0.0008 (5)0.0099 (5)0.0005 (5)
C90.0158 (6)0.0204 (7)0.0198 (7)0.0026 (5)0.0081 (5)0.0036 (5)
C100.0201 (6)0.0245 (7)0.0184 (6)0.0038 (5)0.0100 (5)0.0004 (5)
C110.0178 (6)0.0228 (7)0.0172 (6)0.0009 (5)0.0064 (5)0.0007 (5)
C120.0160 (6)0.0188 (7)0.0214 (7)0.0026 (5)0.0086 (5)0.0034 (5)
C130.0205 (6)0.0189 (7)0.0235 (7)0.0036 (5)0.0119 (5)0.0001 (5)
C140.0182 (6)0.0193 (7)0.0199 (6)0.0006 (5)0.0077 (5)0.0002 (5)
C150.0187 (6)0.0164 (7)0.0258 (7)0.0006 (5)0.0099 (6)0.0001 (5)
C160.0155 (6)0.0345 (8)0.0337 (8)0.0018 (6)0.0094 (6)0.0025 (7)
Geometric parameters (Å, º) top
O1—C21.3331 (16)C6—C91.4906 (17)
O1—C11.4504 (14)C7—C81.3883 (18)
O2—C21.2030 (16)C7—H7A0.9500
O3—N11.2235 (14)C8—H8A0.9500
O4—N11.2240 (14)C9—C141.3905 (19)
O5—C151.3364 (16)C9—C101.3932 (18)
O5—C161.4461 (15)C10—C111.3853 (17)
O6—C151.2030 (17)C10—H10A0.9500
N1—C51.4716 (17)C11—C121.3894 (18)
C1—H1A0.9800C11—H11A0.9500
C1—H1B0.9800C12—C131.3905 (18)
C1—H1C0.9800C12—C151.4891 (18)
C2—C31.4913 (17)C13—C141.3841 (17)
C3—C41.3866 (18)C13—H13A0.9500
C3—C81.3902 (18)C14—H14A0.9500
C4—C51.3828 (17)C16—H16A0.9800
C4—H4A0.9500C16—H16B0.9800
C5—C61.3928 (18)C16—H16C0.9800
C6—C71.3942 (19)
C2—O1—C1114.26 (10)C7—C8—H8A120.1
C15—O5—C16115.38 (11)C3—C8—H8A120.1
O3—N1—O4124.13 (11)C14—C9—C10119.29 (12)
O3—N1—C5117.62 (10)C14—C9—C6119.63 (11)
O4—N1—C5118.25 (10)C10—C9—C6121.06 (12)
O1—C1—H1A109.5C11—C10—C9120.51 (12)
O1—C1—H1B109.5C11—C10—H10A119.7
H1A—C1—H1B109.5C9—C10—H10A119.7
O1—C1—H1C109.5C10—C11—C12119.77 (12)
H1A—C1—H1C109.5C10—C11—H11A120.1
H1B—C1—H1C109.5C12—C11—H11A120.1
O2—C2—O1123.70 (11)C11—C12—C13120.00 (12)
O2—C2—C3123.34 (12)C11—C12—C15122.29 (12)
O1—C2—C3112.95 (11)C13—C12—C15117.66 (12)
C4—C3—C8120.06 (12)C14—C13—C12119.98 (12)
C4—C3—C2117.06 (11)C14—C13—H13A120.0
C8—C3—C2122.87 (11)C12—C13—H13A120.0
C5—C4—C3118.53 (11)C13—C14—C9120.40 (12)
C5—C4—H4A120.7C13—C14—H14A119.8
C3—C4—H4A120.7C9—C14—H14A119.8
C4—C5—C6123.42 (12)O6—C15—O5123.68 (12)
C4—C5—N1116.52 (11)O6—C15—C12123.98 (12)
C6—C5—N1120.03 (11)O5—C15—C12112.34 (12)
C5—C6—C7116.40 (12)O5—C16—H16A109.5
C5—C6—C9123.47 (12)O5—C16—H16B109.5
C7—C6—C9120.11 (11)H16A—C16—H16B109.5
C8—C7—C6121.69 (12)O5—C16—H16C109.5
C8—C7—H7A119.2H16A—C16—H16C109.5
C6—C7—H7A119.2H16B—C16—H16C109.5
C7—C8—C3119.86 (12)
C1—O1—C2—O21.86 (18)C2—C3—C8—C7179.73 (11)
C1—O1—C2—C3177.73 (10)C5—C6—C9—C14125.48 (14)
O2—C2—C3—C44.93 (19)C7—C6—C9—C1455.96 (17)
O1—C2—C3—C4174.66 (11)C5—C6—C9—C1056.00 (18)
O2—C2—C3—C8175.54 (13)C7—C6—C9—C10122.56 (14)
O1—C2—C3—C84.87 (18)C14—C9—C10—C110.48 (19)
C8—C3—C4—C51.65 (19)C6—C9—C10—C11179.01 (12)
C2—C3—C4—C5178.80 (11)C9—C10—C11—C121.38 (19)
C3—C4—C5—C61.81 (19)C10—C11—C12—C131.77 (19)
C3—C4—C5—N1176.20 (11)C10—C11—C12—C15175.57 (12)
O3—N1—C5—C448.64 (15)C11—C12—C13—C140.28 (19)
O4—N1—C5—C4130.48 (12)C15—C12—C13—C14177.17 (12)
O3—N1—C5—C6133.27 (12)C12—C13—C14—C91.60 (19)
O4—N1—C5—C647.60 (16)C10—C9—C14—C131.98 (19)
C4—C5—C6—C70.46 (19)C6—C9—C14—C13179.47 (12)
N1—C5—C6—C7177.48 (11)C16—O5—C15—O60.21 (19)
C4—C5—C6—C9178.14 (12)C16—O5—C15—C12179.65 (11)
N1—C5—C6—C93.91 (19)C11—C12—C15—O6162.42 (13)
C5—C6—C7—C81.06 (19)C13—C12—C15—O615.0 (2)
C9—C6—C7—C8179.72 (12)C11—C12—C15—O517.44 (18)
C6—C7—C8—C31.2 (2)C13—C12—C15—O5165.16 (12)
C4—C3—C8—C70.20 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O6i0.952.503.3405 (16)148
C13—H13A···O2ii0.952.393.2435 (16)150
C14—H14A···O4iii0.952.593.3954 (16)143
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O6i0.952.503.3405 (16)147.6
C13—H13A···O2ii0.952.393.2435 (16)150.1
C14—H14A···O4iii0.952.593.3954 (16)142.5
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y+1, z.
 

Acknowledgements

VCMV thanks the the UMass Dartmouth Office of Undergraduate Research Award and the Urban Massachusetts Louis Stokes Alliance for Minority Participation (UMLSAMP) for funding. DRM gratefully acknowledges support from the National Science Foundation (CHE-1229339).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJing, X.-H., Yi, X.-C., Gao, E.-Q. & Blatov, V. A. (2012). Dalton Trans. 41, 14316–14328.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOlkhovik, V. K., Vasilevskii, D. A., Pap, A. A., Kalechyts, G. V., Matveienko, Y. V., Baran, A. G., Halinouski, N. A. & Petushok, V. G. (2008). ARKIVOC, ix, 69–93.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds