organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o235-o236

2-[(E)-(4-Bromo­phenyl)imino­methyl]-4-chloro­phenol

aDepartment of Chemistry, Taiyuan Normal College, Taiyuan, Shanxi 030031, People's Republic of China, and bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

(Received 12 November 2013; accepted 15 January 2014; online 5 February 2014)

In the title compound, C13H9BrClNO, the dihedral angle between the substituted benzene rings is 44.25 (11)°. There are strong intra­molecular O—H⋯N hydrogen bonds, which generate S(6) rings, and also inter­molecular Cl⋯Cl [3.431 (3) Å] and Br⋯ Br [3.846 (1) Å] contacts. The crystal packing a C—H⋯O and C—H⋯π inter­actions.

Related literature

For background to the biological activity of Schiff bases, see: Akmal et al. (2007[Akmal, S. G., Mohsen, S. A., Atiat, S. B. & Said, M. T. (2007). Spectrochim. Acta Part A, 67, 114-121.]); Li et al. (2007[Li, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881-2889.], 2011[Li, Y., Lu, L.-P., Zhu, M.-L., Wang, Q.-M., Yuan, C.-X., Xing, S., Fu, X.-Q. & Mei, Y.-H. (2011). BioMetals, 24, 993-1004.]); Lu et al. (2011[Lu, L.-P., Yue, J.-J., Yuan, C.-X., Zhu, M.-L., Han, H., Liu, Z.-W. & Guo, M.-L. (2011). J. Inorg. Biochem. 105, 1323-1328.]); Ma et al. (2011[Ma, L., Lu, L.-P., Zhu, M.-L., Wang, Q.-M., Li, Y., Xing, S., Fu, X.-Q., Gao, Z.-Q. & Dong, Y.-H. (2011). Dalton Trans. 40, 6532-6540.]); Rehmana et al. (2008[Rehmana, W., Samana, F. & Ahmadb, I. (2008). Russ. J. Coord. Chem. 34, 678-682.]); Ritter et al. (2009[Ritter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241-249.]); Vanco et al. (2008[Vanco, J., Marek, J., Travnicek, Z., Racanska, E., Muselik, J. & Svajlenova, O. (2008). J. Inorg. Biochem. 102, 595-605.]); Yuan et al. (2009[Yuan, C., Lu, L., Gao, X., Wu, Y., Guo, M., Li, Y., Fu, X. & Zhu, M. (2009). J. Biol. Inorg. Chem. 14, 841-851.], 2010[Yuan, C., Lu, L., Wu, Y., Liu, Z., Guo, M., Xing, S., Fu, X. & Zhu, M. (2010). J. Inorg. Biochem. 104, 978-986.]). For related structures, see: Ardakani et al. (2011[Ardakani, A. A., Kia, R., Kargar, H. & Tahir, M. N. (2011). Acta Cryst. E67, o597.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrClNO

  • Mr = 310.57

  • Orthorhombic, P c c n

  • a = 6.9964 (15) Å

  • b = 55.786 (12) Å

  • c = 6.1443 (14) Å

  • V = 2398.1 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.409, Tmax = 0.530

  • 30095 measured reflections

  • 3013 independent reflections

  • 2056 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.128

  • S = 1.14

  • 3013 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.593 (4) 147
C2—H2⋯Cg1i 0.93 2.82 3.489 (5) 129
C5—H5⋯Cg1ii 0.93 2.85 3.513 (5) 129
C10—H10⋯Cg2iii 0.93 2.75 3.460 (5) 133
C13—H13⋯Cg2iv 0.93 2.78 3.473 (5) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y, z-{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z-{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases are condensed by primary amines and carbonyl compounds, containing strong electronegative with atoms O and N, thus it is easy to coordinate with the metal ions to form stable complexes (Akmal et al., 2007; Rehmana et al., 2008). It is reported that metal complexes of Schiff base derivatives have a variety of important biological activities, such as anti-bacterial, anti-cancer, anti-tumor, hypoglycemic and so on (Vanco et al., 2008; Li et al., 2007; Ritter et al., 2009). Our reports indicated that copper and vanadium complexes of Schiff bases are potential inhitors over protein tyrosine phosphatases (Li et al., 2011; Lu et al., 2011; Ma et al., 2011; Yuan et al., 2009, 2010).

We report here the synthesis and characterization a potentially bidentate Schiff base derivative, (I), and prepared from the condensation reaction of an equimolar proportion of 5-chloro-salicylaldehyde and 4-bromo-aniline in absolute ethanol. The molecular structure is depicted in Fig. 1. X-ray structural analysis confirmed that in the title compound, (I), the dihedral angle between the substituted benzene rings is nearly 44.25 (11)°, similar to the compound 4-bromo-2-[(E)-(4-chlorophenyl)iminomethyl]phenol (Ardakani et al., 2011). In the crystal, there are strong intramolecular O—H···N hydrogen bonds with a distance of 2.593 (5) Å between donor and acceptor, which generate S(6) ring and intermolecular Cl1···Cl1i [3.430 (2) Å, i -x, -y, -z] as well as Br1···Br1ii [3.846 (1) Å, ii 2 - x, -y, -z] contacts. The crystal packing is further stabilized by intermolecular C—H···O and C—H···π interactions (Table 1).

Related literature top

For background to the biological activity of Schiff bases, see: Akmal et al. (2007); Li et al. (2007, 2011); Lu et al. (2011); Ma et al. (2011); Rehmana et al. (2008); Ritter et al. (2009); Vanco et al. (2008); Yuan et al. (2009, 2010). For related structures, see: Ardakani et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A 0.1566 g (1.0 mmol) 5-chloro-salicylaldehyde in 15 ml of absolute ethanol was heated until thoroughly dissolved and 0.1720 g (1.0 mmol) of 4-bromo-aniline in 5 ml of absolute ethanol was added dropwise with a constant stirring. The reaction mixture was heated under refluxing for 3 h. After cooling slowly, the orange powder was separated out. Orange–red crystal was obtained from filter after two weeks.

Refinement top

H atoms attached to C and O of (I) were placed in geometrically idealized positions with Csp2—H = 0.93 Å and O—H = 0.84 Å and constrained to refine with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen-bonding interaction.
[Figure 2] Fig. 2. The packing diagram of the title compound, showing the intermolecular O—H···N and intermolecular Cl···Cl, Br···Br and C—H···O interactions (dotted lines).
2-[(E)-(4-Bromophenyl)iminomethyl]-4-chlorophenol top
Crystal data top
C13H9BrClNOF(000) = 1232
Mr = 310.57Dx = 1.720 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4170 reflections
a = 6.9964 (15) Åθ = 2.2–22.6°
b = 55.786 (12) ŵ = 3.63 mm1
c = 6.1443 (14) ÅT = 298 K
V = 2398.1 (9) Å3Block, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3013 independent reflections
Radiation source: fine-focus sealed tube2056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 99
Tmin = 0.409, Tmax = 0.530k = 7474
30095 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.027P)2 + 7.4937P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.95 e Å3
Crystal data top
C13H9BrClNOV = 2398.1 (9) Å3
Mr = 310.57Z = 8
Orthorhombic, PccnMo Kα radiation
a = 6.9964 (15) ŵ = 3.63 mm1
b = 55.786 (12) ÅT = 298 K
c = 6.1443 (14) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3013 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2056 reflections with I > 2σ(I)
Tmin = 0.409, Tmax = 0.530Rint = 0.061
30095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.14Δρmax = 0.42 e Å3
3013 reflectionsΔρmin = 0.95 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03618 (9)0.228348 (8)0.07815 (11)0.0634 (2)
C10.0360 (6)0.08714 (7)0.5859 (7)0.0339 (8)
C20.0711 (6)0.06455 (8)0.6715 (7)0.0404 (10)
H20.11860.06310.81230.049*
C30.0364 (6)0.04435 (7)0.5506 (8)0.0426 (11)
H30.06090.02930.60920.051*
C40.0346 (6)0.04637 (7)0.3425 (7)0.0372 (10)
C50.0691 (6)0.06843 (7)0.2537 (7)0.0333 (9)
H50.11690.06950.11290.040*
C60.0332 (6)0.08932 (7)0.3722 (6)0.0306 (8)
C70.0538 (6)0.11247 (7)0.2675 (7)0.0335 (9)
H70.08970.11320.12190.040*
C80.0157 (5)0.15412 (7)0.2599 (7)0.0304 (8)
C90.0626 (6)0.15603 (7)0.0518 (7)0.0335 (9)
H90.10440.14240.02090.040*
C100.0780 (6)0.17821 (7)0.0459 (7)0.0359 (9)
H100.13150.17950.18390.043*
C110.0140 (6)0.19838 (7)0.0610 (8)0.0392 (10)
C120.0610 (6)0.19682 (7)0.2681 (8)0.0401 (10)
H120.10130.21060.34020.048*
C130.0759 (6)0.17470 (7)0.3676 (7)0.0352 (9)
H130.12650.17360.50720.042*
Cl10.0736 (2)0.02081 (2)0.1879 (2)0.0614 (4)
N10.0235 (5)0.13186 (6)0.3721 (5)0.0322 (7)
O10.0721 (5)0.10666 (5)0.7096 (5)0.0474 (8)
H10.04700.11880.64010.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0722 (4)0.0352 (2)0.0829 (4)0.0069 (2)0.0019 (3)0.0149 (3)
C10.035 (2)0.038 (2)0.029 (2)0.0004 (18)0.0007 (18)0.0038 (17)
C20.036 (2)0.053 (3)0.032 (2)0.004 (2)0.002 (2)0.007 (2)
C30.046 (2)0.034 (2)0.048 (3)0.0034 (19)0.000 (2)0.0120 (19)
C40.039 (2)0.0318 (19)0.041 (2)0.0016 (18)0.001 (2)0.0023 (17)
C50.037 (2)0.0304 (19)0.032 (2)0.0017 (17)0.0008 (19)0.0019 (16)
C60.030 (2)0.0345 (19)0.028 (2)0.0024 (17)0.0034 (17)0.0023 (15)
C70.034 (2)0.038 (2)0.029 (2)0.0013 (17)0.0027 (19)0.0018 (17)
C80.029 (2)0.0299 (18)0.032 (2)0.0004 (15)0.0030 (17)0.0019 (16)
C90.039 (2)0.0289 (18)0.033 (2)0.0029 (17)0.0012 (19)0.0041 (16)
C100.033 (2)0.038 (2)0.037 (2)0.0031 (17)0.0000 (19)0.0019 (18)
C110.036 (2)0.0315 (19)0.050 (3)0.0041 (17)0.006 (2)0.0035 (19)
C120.042 (2)0.0299 (19)0.048 (3)0.0017 (18)0.003 (2)0.0077 (18)
C130.033 (2)0.037 (2)0.036 (2)0.0005 (17)0.0029 (18)0.0080 (17)
Cl10.0858 (10)0.0333 (5)0.0652 (8)0.0007 (6)0.0074 (8)0.0081 (6)
N10.0343 (18)0.0305 (15)0.0318 (18)0.0003 (14)0.0008 (15)0.0009 (14)
O10.069 (2)0.0394 (16)0.0342 (17)0.0003 (16)0.0096 (17)0.0042 (13)
Geometric parameters (Å, º) top
Br1—C111.884 (4)C7—H70.9300
C1—O11.352 (5)C8—C131.390 (5)
C1—C21.387 (6)C8—C91.395 (6)
C1—C61.405 (6)C8—N11.422 (5)
C2—C31.371 (6)C9—C101.379 (5)
C2—H20.9300C9—H90.9300
C3—C41.377 (6)C10—C111.378 (6)
C3—H30.9300C10—H100.9300
C4—C51.367 (6)C11—C121.379 (7)
C4—Cl11.735 (4)C12—C131.381 (6)
C5—C61.397 (5)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—C71.450 (5)O1—H10.8200
C7—N11.276 (5)
O1—C1—C2119.1 (4)C13—C8—C9119.5 (4)
O1—C1—C6121.3 (4)C13—C8—N1118.6 (4)
C2—C1—C6119.6 (4)C9—C8—N1121.7 (3)
C3—C2—C1120.6 (4)C10—C9—C8119.8 (4)
C3—C2—H2119.7C10—C9—H9120.1
C1—C2—H2119.7C8—C9—H9120.1
C2—C3—C4120.0 (4)C11—C10—C9120.0 (4)
C2—C3—H3120.0C11—C10—H10120.0
C4—C3—H3120.0C9—C10—H10120.0
C5—C4—C3120.5 (4)C10—C11—C12120.8 (4)
C5—C4—Cl1119.6 (3)C10—C11—Br1118.8 (3)
C3—C4—Cl1119.9 (3)C12—C11—Br1120.4 (3)
C4—C5—C6120.8 (4)C11—C12—C13119.6 (4)
C4—C5—H5119.6C11—C12—H12120.2
C6—C5—H5119.6C13—C12—H12120.2
C5—C6—C1118.5 (4)C12—C13—C8120.3 (4)
C5—C6—C7119.6 (4)C12—C13—H13119.9
C1—C6—C7121.7 (4)C8—C13—H13119.9
N1—C7—C6121.0 (4)C7—N1—C8120.2 (3)
N1—C7—H7119.5C1—O1—H1109.5
C6—C7—H7119.5
O1—C1—C2—C3179.9 (4)C1—C6—C7—N15.4 (6)
C6—C1—C2—C30.9 (6)C13—C8—C9—C100.6 (6)
C1—C2—C3—C40.3 (7)N1—C8—C9—C10176.0 (4)
C2—C3—C4—C50.8 (7)C8—C9—C10—C110.7 (6)
C2—C3—C4—Cl1178.6 (4)C9—C10—C11—C121.8 (6)
C3—C4—C5—C60.1 (6)C9—C10—C11—Br1179.7 (3)
Cl1—C4—C5—C6178.0 (3)C10—C11—C12—C131.4 (7)
C4—C5—C6—C11.1 (6)Br1—C11—C12—C13179.9 (3)
C4—C5—C6—C7174.2 (4)C11—C12—C13—C80.0 (6)
O1—C1—C6—C5179.5 (4)C9—C8—C13—C121.0 (6)
C2—C1—C6—C51.6 (6)N1—C8—C13—C12176.6 (4)
O1—C1—C6—C75.3 (6)C6—C7—N1—C8170.4 (3)
C2—C1—C6—C7173.6 (4)C13—C8—N1—C7148.7 (4)
C5—C6—C7—N1179.4 (4)C9—C8—N1—C735.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.593 (4)147
C2—H2···Cg1i0.932.823.489 (5)129
C5—H5···Cg1ii0.932.853.513 (5)129
C10—H10···Cg2iii0.932.753.460 (5)133
C13—H13···Cg2iv0.932.783.473 (5)132
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y, z3/2; (iii) x+1/2, y, z3/2; (iv) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.593 (4)147
C2—H2···Cg1i0.932.823.489 (5)129
C5—H5···Cg1ii0.932.853.513 (5)129
C10—H10···Cg2iii0.932.753.460 (5)133
C13—H13···Cg2iv0.932.783.473 (5)132
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y, z3/2; (iii) x+1/2, y, z3/2; (iv) x+3/2, y, z1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 21001070 and 21171109), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20111401110002) and the Natural Science Foundation of Shanxi Province (grant Nos. 2010011011-2, 2011011009-1 and 2011021006-2).

References

First citationAkmal, S. G., Mohsen, S. A., Atiat, S. B. & Said, M. T. (2007). Spectrochim. Acta Part A, 67, 114–121.  Google Scholar
First citationArdakani, A. A., Kia, R., Kargar, H. & Tahir, M. N. (2011). Acta Cryst. E67, o597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Lu, L.-P., Zhu, M.-L., Wang, Q.-M., Yuan, C.-X., Xing, S., Fu, X.-Q. & Mei, Y.-H. (2011). BioMetals, 24, 993–1004.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881–2889.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, L.-P., Yue, J.-J., Yuan, C.-X., Zhu, M.-L., Han, H., Liu, Z.-W. & Guo, M.-L. (2011). J. Inorg. Biochem. 105, 1323–1328.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, L., Lu, L.-P., Zhu, M.-L., Wang, Q.-M., Li, Y., Xing, S., Fu, X.-Q., Gao, Z.-Q. & Dong, Y.-H. (2011). Dalton Trans. 40, 6532–6540.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRehmana, W., Samana, F. & Ahmadb, I. (2008). Russ. J. Coord. Chem. 34, 678–682.  Google Scholar
First citationRitter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241–249.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanco, J., Marek, J., Travnicek, Z., Racanska, E., Muselik, J. & Svajlenova, O. (2008). J. Inorg. Biochem. 102, 595–605.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, C., Lu, L., Gao, X., Wu, Y., Guo, M., Li, Y., Fu, X. & Zhu, M. (2009). J. Biol. Inorg. Chem. 14, 841–851.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, C., Lu, L., Wu, Y., Liu, Z., Guo, M., Xing, S., Fu, X. & Zhu, M. (2010). J. Inorg. Biochem. 104, 978–986.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o235-o236
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds