organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-Furan-2-ylmethyl­­idene]-4-hy­droxy­benzohydrazide

aDepartment of Chemistry, Christ University, Hosur Road, Bangalore 560 029, India, bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and cDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India
*Correspondence e-mail: eesans@yahoo.com

(Received 13 December 2013; accepted 25 January 2014; online 5 February 2014)

The title compound, C12H10N2O3, exists in the E conformation. The five-membered ring and the phenyl rings form dihedral angles of 36.73 (10) and 12.22 (10)°, respectively, with the central C(=O)N2C unit. The crystal packing is dominated by strong N—H⋯O and O—H⋯N hydrogen bonds. Together with weaker C—H⋯O inter­actions, these establish a three-dimensional supra­molecular network.

Related literature

For biological applications of benzohydrazones and derivatives, see: Sreeja et al. (2004[Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575-581.]); Rakha et al. (1996[Rakha, T. H., Ibrahim, K. M., Abdallah, A. M. & Hassanian, M. M. (1996). Synth. React. Inorg. Met. Org. Chem. 26, 1113-1123.]). For the synthesis of related compounds, see: Emmanuel et al. (2011[Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.]). For a related structure, see: Datta et al. (2013[Datta, R., Ramya, V., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1549.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3

  • Mr = 230.22

  • Orthorhombic, P n a 21

  • a = 9.5934 (3) Å

  • b = 11.1939 (4) Å

  • c = 10.3332 (3) Å

  • V = 1109.66 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.984

  • 3425 measured reflections

  • 1014 independent reflections

  • 992 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.05

  • 1014 reflections

  • 163 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯O2i 0.88 (1) 2.09 (1) 2.9187 (19) 157 (2)
O3—H3′⋯N1ii 0.85 (1) 2.13 (1) 2.971 (2) 169 (3)
C5—H5⋯O2i 0.93 2.35 3.160 (2) 145
C11—H11⋯O3iii 0.93 2.42 3.202 (2) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+2, -y+2, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND . Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazones and their derivatives show excellent biological activities (Sreeja et al., 2004). The great potential applications of aryl- hydrazones as antineoplastic, antiviral and antiinflammatory agents, hammered on the investigations of their derivatives (Rakha et al., 1996). As a continuous work on hydrazone compounds, a new hydrazone derivative, N'-[(E)-4,5-dihydrofuran-2-ylmethylidene]-4-hydroxybenzohydrazide, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in orthorhombic space group Pna21. This molecule adopts an E configuration with respect to the C5=N1 bond and it exists in the amido form with a C6=O2 bond length of 1.232 (2) Å which is very close to the reported C=O bond length of similar structure (Datta et al., 2013). The O2 and N1 atoms are in Z configuration with respect to C6–N2 having a torsion angle of 3.7 (3)°. The central C(=O)N2C unit has dihedral angles of 36.73 (10) and 12.22 (10)°, respectively with the five-membered ring and the phenyl ring.

There are two classical intermolecular N2–H2'···O2 and O3–H3'···N1 hydrogen bond interactions (Fig. 2) between the neighbouring molecule with D···A distances of 2.9187 (19) and 2.971 (2) Å respectively (Table 1). Two weak C–H···O hydrogen bond interactions (Fig. 3) between the H atoms attached at the C5 & C11 and O2 & O3 atoms of neighbouring molecules with D···A distances of 3.160 (2) and 3.202 (2) Å respectively, also promote the classical hydrogen bond interactions forming a supramolecular three-dimensional-hydrogen bonding network in the lattice. Notwithstanding that there are very weak short ring interactions found in the crystal system, they are not significant to support the network since centroid-centroid distances are above 4 Å. Fig. 4 shows a packing diagram of the title compound viewed along a axis.

Related literature top

For biological applications of benzohydrazones and derivatives, see: Sreeja et al. (2004); Rakha et al. (1996). For the synthesis of related compounds, see: Emmanuel et al. (2011). For a related structure, see: Datta et al. (2013).

Experimental top

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011). A solution of furan-2-carbaldehyde (0.096 g, 1 mmol) in methanol/DMF 2:1 (10 ml) was mixed with a methanol/DMF solution (10 ml) of 4-hydroxybenzhydrazide (0.152 g, 1 mmol). The mixture was refluxed for 6 h and then cooled to room temperature. Light orange colored crystals were formed which were recrystallized in methanol/DMF (2:1 v/v). Block shaped crystals, suitable for SXRD studies, were obtained after slow evaporation of the solution in air for a few days.

Refinement top

The atoms H2' and H3' were located from a difference Fourier map and N2—H2' and O3—H3' distances are restrained to 0.88±0.01 and 0.84±0.01 Å respectively. All the other H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93 Å. H atoms were assigned as Uiso(H)=1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Classical hydrogen-bonding interactions in the crystal structure of C12H10N2O3.
[Figure 3] Fig. 3. Hydrogen-bonding interactions in the crystal structure of C12H10N2O3.
[Figure 4] Fig. 4. Packing diagram of the compound along the a axis.
N'-[(E)-Furan-2-ylmethylidene]-4-hydroxybenzohydrazide top
Crystal data top
C12H10N2O3F(000) = 480
Mr = 230.22Dx = 1.378 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nθ = 2.7–28.4°
a = 9.5934 (3) ŵ = 0.10 mm1
b = 11.1939 (4) ÅT = 298 K
c = 10.3332 (3) ÅBlock, light orange
V = 1109.66 (6) Å30.25 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1014 independent reflections
Radiation source: fine-focus sealed tube992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.7°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 139
Tmin = 0.975, Tmax = 0.984l = 1012
3425 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.1774P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1014 reflectionsΔρmax = 0.13 e Å3
163 parametersΔρmin = 0.10 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (5)
Crystal data top
C12H10N2O3V = 1109.66 (6) Å3
Mr = 230.22Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.5934 (3) ŵ = 0.10 mm1
b = 11.1939 (4) ÅT = 298 K
c = 10.3332 (3) Å0.25 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1014 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
992 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.984Rint = 0.015
3425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0243 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
1014 reflectionsΔρmin = 0.10 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.10537 (16)0.44042 (12)0.85962 (16)0.0487 (4)
O21.15292 (13)0.82491 (12)0.64988 (16)0.0454 (4)
O30.79142 (15)1.25293 (13)0.43449 (17)0.0509 (4)
N11.00354 (16)0.64857 (13)0.74734 (17)0.0346 (4)
N20.94150 (15)0.74797 (14)0.69195 (18)0.0357 (4)
C11.1354 (3)0.3230 (2)0.8813 (3)0.0609 (7)
H11.21190.29560.92790.073*
C21.0401 (3)0.2529 (2)0.8265 (3)0.0655 (7)
H21.03900.16980.82710.079*
C30.9410 (3)0.32850 (19)0.7673 (3)0.0528 (6)
H30.86140.30540.72240.063*
C40.9853 (2)0.44092 (17)0.7889 (2)0.0394 (5)
C50.9330 (2)0.55207 (17)0.7401 (2)0.0389 (5)
H50.84520.55390.70190.047*
C61.02519 (18)0.83589 (16)0.64733 (19)0.0332 (4)
C70.95845 (19)0.94475 (16)0.5952 (2)0.0327 (4)
C80.81588 (19)0.96915 (18)0.6015 (2)0.0422 (5)
H80.75660.91560.64280.051*
C90.7622 (2)1.07164 (18)0.5474 (2)0.0464 (5)
H90.66701.08660.55250.056*
C100.8484 (2)1.15259 (16)0.48562 (19)0.0363 (5)
C110.9907 (2)1.13042 (17)0.4805 (2)0.0400 (5)
H111.05021.18500.44100.048*
C121.04335 (19)1.02759 (17)0.5340 (2)0.0383 (5)
H121.13871.01310.52910.046*
H2'0.8518 (11)0.7474 (18)0.676 (2)0.041 (6)*
H3'0.853 (2)1.288 (2)0.389 (2)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0473 (8)0.0475 (9)0.0515 (9)0.0037 (7)0.0047 (7)0.0042 (8)
O20.0233 (6)0.0449 (8)0.0679 (10)0.0008 (5)0.0012 (7)0.0128 (8)
O30.0378 (8)0.0491 (9)0.0657 (11)0.0131 (7)0.0115 (9)0.0196 (8)
N10.0280 (7)0.0328 (8)0.0428 (9)0.0011 (6)0.0003 (7)0.0026 (7)
N20.0235 (7)0.0349 (8)0.0488 (10)0.0005 (6)0.0024 (8)0.0037 (7)
C10.0719 (16)0.0551 (15)0.0556 (14)0.0205 (13)0.0011 (14)0.0138 (12)
C20.098 (2)0.0364 (12)0.0621 (15)0.0059 (13)0.0102 (16)0.0116 (12)
C30.0609 (14)0.0396 (11)0.0578 (14)0.0100 (10)0.0026 (12)0.0031 (11)
C40.0360 (9)0.0397 (10)0.0426 (11)0.0017 (8)0.0032 (9)0.0006 (9)
C50.0302 (9)0.0388 (10)0.0478 (12)0.0020 (7)0.0008 (10)0.0004 (9)
C60.0261 (8)0.0356 (9)0.0380 (10)0.0006 (7)0.0014 (8)0.0012 (8)
C70.0271 (9)0.0337 (9)0.0372 (10)0.0006 (7)0.0001 (9)0.0020 (8)
C80.0283 (9)0.0430 (10)0.0554 (12)0.0004 (8)0.0087 (10)0.0099 (11)
C90.0260 (9)0.0519 (12)0.0614 (13)0.0090 (8)0.0089 (11)0.0101 (12)
C100.0328 (10)0.0362 (10)0.0399 (12)0.0054 (8)0.0017 (9)0.0015 (9)
C110.0295 (10)0.0416 (10)0.0488 (13)0.0036 (8)0.0037 (9)0.0084 (10)
C120.0227 (9)0.0419 (10)0.0504 (13)0.0010 (7)0.0001 (9)0.0044 (9)
Geometric parameters (Å, º) top
O1—C41.364 (3)C3—H30.9300
O1—C11.364 (3)C4—C51.433 (3)
O2—C61.232 (2)C5—H50.9300
O3—C101.356 (2)C6—C71.478 (2)
O3—H3'0.847 (10)C7—C121.387 (2)
N1—C51.277 (2)C7—C81.396 (3)
N1—N21.386 (2)C8—C91.376 (3)
N2—C61.351 (2)C8—H80.9300
N2—H2'0.876 (10)C9—C101.383 (3)
C1—C21.331 (4)C9—H90.9300
C1—H10.9300C10—C111.389 (3)
C2—C31.412 (4)C11—C121.373 (3)
C2—H20.9300C11—H110.9300
C3—C41.347 (3)C12—H120.9300
C4—O1—C1105.67 (19)O2—C6—N2120.73 (17)
C10—O3—H3'108.7 (18)O2—C6—C7121.39 (16)
C5—N1—N2115.31 (16)N2—C6—C7117.87 (15)
C6—N2—N1118.08 (14)C12—C7—C8117.77 (17)
C6—N2—H2'121.6 (14)C12—C7—C6117.59 (15)
N1—N2—H2'119.6 (14)C8—C7—C6124.63 (17)
C2—C1—O1110.7 (2)C9—C8—C7120.71 (19)
C2—C1—H1124.7C9—C8—H8119.6
O1—C1—H1124.7C7—C8—H8119.6
C1—C2—C3107.1 (2)C8—C9—C10120.64 (17)
C1—C2—H2126.5C8—C9—H9119.7
C3—C2—H2126.5C10—C9—H9119.7
C4—C3—C2106.0 (2)O3—C10—C9118.77 (17)
C4—C3—H3127.0O3—C10—C11121.97 (18)
C2—C3—H3127.0C9—C10—C11119.24 (18)
C3—C4—O1110.59 (19)C12—C11—C10119.74 (18)
C3—C4—C5129.9 (2)C12—C11—H11120.1
O1—C4—C5119.19 (18)C10—C11—H11120.1
N1—C5—C4121.89 (19)C11—C12—C7121.88 (16)
N1—C5—H5119.1C11—C12—H12119.1
C4—C5—H5119.1C7—C12—H12119.1
C5—N1—N2—C6152.8 (2)N2—C6—C7—C12171.64 (19)
C4—O1—C1—C20.4 (3)O2—C6—C7—C8172.9 (2)
O1—C1—C2—C30.9 (3)N2—C6—C7—C87.4 (3)
C1—C2—C3—C41.0 (3)C12—C7—C8—C90.7 (3)
C2—C3—C4—O10.8 (3)C6—C7—C8—C9178.4 (2)
C2—C3—C4—C5173.0 (2)C7—C8—C9—C100.0 (4)
C1—O1—C4—C30.2 (3)C8—C9—C10—O3179.5 (2)
C1—O1—C4—C5174.3 (2)C8—C9—C10—C111.1 (3)
N2—N1—C5—C4177.85 (18)O3—C10—C11—C12179.84 (19)
C3—C4—C5—N1164.8 (3)C9—C10—C11—C121.5 (3)
O1—C4—C5—N18.5 (3)C10—C11—C12—C70.8 (3)
N1—N2—C6—O23.7 (3)C8—C7—C12—C110.3 (3)
N1—N2—C6—C7176.57 (16)C6—C7—C12—C11178.9 (2)
O2—C6—C7—C128.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.88 (1)2.09 (1)2.9187 (19)157 (2)
O3—H3···N1ii0.85 (1)2.13 (1)2.971 (2)169 (3)
C5—H5···O2i0.932.353.160 (2)145
C11—H11···O3iii0.932.423.202 (2)142
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y+2, z1/2; (iii) x+1/2, y+5/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···O2i0.876 (10)2.090 (12)2.9187 (19)157.4 (18)
O3—H3'···N1ii0.847 (10)2.134 (12)2.971 (2)169 (3)
C5—H5···O2i0.93002.353.160 (2)145
C11—H11···O3iii0.93002.423.202 (2)142
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y+2, z1/2; (iii) x+1/2, y+5/2, z.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, IIT Madras, Chennai, India, for providing the single-crystal X-ray diffraction data. RV and RD thank Christ University, Hosur Road, Bangalore 560029, India, for financial support.

References

First citationBrandenburg, K. (2010). DIAMOND . Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, R., Ramya, V., Sithambaresan, M. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1549.  CSD CrossRef IUCr Journals Google Scholar
First citationEmmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRakha, T. H., Ibrahim, K. M., Abdallah, A. M. & Hassanian, M. M. (1996). Synth. React. Inorg. Met. Org. Chem. 26, 1113–1123.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds