organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o321-o322

2,9-Bis(5-sulfanyl­idene-4,5-di­hydro-1,3,4-oxa­diazol-2-yl)-1,10-phenanthroline di­methyl sulfoxide disolvate

aDepartment of Chemistry, Boswell Science Complex, Tennessee State University, Nashville, 3500 John A. Merritt Blvd, Nashville, TN 37209, USA, bDepartment of Chemistry, Iowa State University, Ames, IA 50011-3111, USA, and cAgilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA
*Correspondence e-mail: tsiddiqu@tnstate.edu

(Received 29 January 2014; accepted 13 February 2014; online 22 February 2014)

In the title compound, C16H8N6O2S2·2C2H6OS, the phenanthroline mol­ecule resides on a twofold axis, and the asymmetric unit also contains a slightly disordered [occupancy ratio for S atom of 0.95 (3):0.047 (3)] mol­ecule of dimethyl sulfoxide. The O atoms of the solvent mol­ecule accept hydrogen bonds from the N—H groups of the five-membered 2,3-di­hydro-1,3,4-oxa­diazole-2-thione ring. This ring is nearly coplanar with the phenanthroline ring, with a dihedral angle between their least-squares planes of 8.86 (6)°. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions.

Related literature

For the biological activity of the oxa­diazole unit, see: Chen et al. (2000[Chen, H., Li, Z. & Han, Y. (2000). J. Agric. Food Chem. 48, 5312-5316.]); Sun et al. (2013[Sun, J., Zhu, H., Yang, Z. M. & Zhu, H. L. (2013). Eur. J. Med. Chem. 60, 23-28.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A. & Al-Omar, M. (2004). Bioorg. Med. Chem. 12, 5107-5113.]). For their anti­cancer activity, see: Zhang et al. (2011[Zhang, X.-M., Qiu, M., Sun, J., Zhang, Y.-B., Yang, Y.-S., Wang, X.-L., Tang, J.-F. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 6518-6524.]); Gudipati et al. (2011[Gudipati, R., Anreddy, R. N. R. & Man, S. (2011). Saudi Pharm. J. 19, 153-158.]); Abou-Seri (2010[Abou-Seri, S. M. (2010). Eur. J. Med. Chem. 45, 4113-4121.]). For related structures, see: Saeed et al. (2010[Saeed, A., Akram, M., Rauf, A. & Bolte, M. (2010). Acta Cryst. E66, o1911.]); Fun et al. (2011[Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.]); El-Emam et al. (2012[El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.], 2013[El-Emam, A. A., Al-Omar, M. A., Al-Obaid, A.-R. M., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o684.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8N6O2S2·2C2H6OS

  • Mr = 536.66

  • Monoclinic, C 2/c

  • a = 14.113 (11) Å

  • b = 11.161 (8) Å

  • c = 16.708 (12) Å

  • β = 112.837 (14)°

  • V = 2425 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 277 K

  • 0.42 × 0.26 × 0.15 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Pflugrath, 1999[Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.]) Tmin = 0.840, Tmax = 0.938

  • 5592 measured reflections

  • 2741 independent reflections

  • 1691 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.171

  • S = 1.03

  • 2741 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.89 (4) 1.73 (4) 2.617 (4) 172 (4)
C9—H9C⋯O1i 0.96 2.62 3.399 (7) 138
C10—H10B⋯O2ii 0.96 2.57 3.317 (6) 135
N2—H2⋯S2B 0.89 (4) 2.36 (5) 3.10 (3) 140 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Pflugrath, 1999[Pflugrath, J. W. (1999). Acta Cryst. D55, 1718-1725.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds containing the oxadiazol moieties are known for their antimicrobial and anticancer activities. The title compound was prepared and characterized with the aim of synthesizing a series of compounds that are potentially active. These compounds were synthesized by a new process.

The title compound crystallized as a dimethyl sulfoxide (DMSO) solvate. The O atoms of the solvent form strong hydrogen bonds with the N—H centers of the diazole moiety.

The molecules are essentially planar, although the plane of the oxadiazolic five membered thionyl groups are slightly rotated from the phenanthrolene plane (the two least-squares planes form an angle of 8.86 (5)°). The molecules are arranged in planar sheets, with each pair of thiol S atoms pointing at the two apical hydrogen atoms on the adjacent phenanthroline groups.

Related literature top

For the biological activity of oxadiazols [OK?], see: Chen et al. (2000); Sun et al. (2013); El-Emam et al. (2004). For their anticancer activity, see: Zhang et al. (2011); Gudipati et al. (2011); Abou-Seri (2010). For related structures, see: Saeed et al. (2010); Fun et al. (2011); El-Emam et al. (2012, 2013). [Scheme should show the solvent molecules]

Experimental top

1,10-Phenanthroline-2,9-Di-S-methylhydrazinecarbodithioate (0.100 g, 0.21 mmol) was dissolved in THF (30 mL) with heat until a clear solution was formed. Then a solution of ZnCl2 (0.015 g, 0.11 mmol) in THF (5 mL) was added drop-wise to the carbodithioate solution. The resulting mixture was refluxed for 2–4 hrs. After completion of the reaction, as indicated by TLC, the reaction mixture was allowed to cool to room temperature. The solvent was evaporated under reduced pressure. The product was washed with ether and dried under vacuum. Recrystallization from DMSO yielded white crystals suitable for diffraction (0.076 g, 95%Y). 1HNMR (DMSO-d6, p.p.m.): δH 8.8 (d, 2H), 8.4(d, 2H), 8.2 (s, 2H). 13CNMR (DMSO-d6, p.p.m.): δC 178, 159, 144, 141, 138, 130, 128, 122. IR ν (cm-1): 3230 (N—H), 1196 (C—O), 3100–3000(C—H), 1600–1500 (aromatic C=C), 1373 (C=S).

Refinement top

One large residual peak near the DMSO solvent molecule appears to indicate an alternate position of the S atom (an inversion of the DMSO pyramid). The disorder of the S atom was refined to an occupancy of less than 5% for the minor position; the minor occupancy of the lighter atoms of the solvent molecule were not included in the model.

Non-hydrogen atoms were refined with anisotropic thermal parameters, and hydrogen atoms were included in calculated positions (riding model) with Uiso set to 1.2 times the Ueq of the parent atom. Refinement on F2 by full-matrix least-squares resulted in R1 = 0.0727 and wR2 = 0.1729 for 2742 reflections with I > 2σ (I).

Computing details top

Data collection: CrystalClear (Pflugrath, 1999); cell refinement: CrystalClear (Pflugrath, 1999); data reduction: CrystalClear (Pflugrath, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. DMSO molecules are not shown
[Figure 2] Fig. 2. Hydrogen bonding interaction with a DMSO solvent molecule
[Figure 3] Fig. 3. Packing diagram viewed along the normal to (101). Note the solvent molecules are positioned between two compounds making hydrogen bonding feasible
2,9-Bis(4,5-dihydro-1,3,4-oxadiazol-2-yl)-1,10-phenanthroline dimethyl sulfoxide disolvate top
Crystal data top
C16H8N6O2S2·2C2H6OSF(000) = 1112
Mr = 536.66Dx = 1.47 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 2562 reflections
a = 14.113 (11) Åθ = 3–27.7°
b = 11.161 (8) ŵ = 0.43 mm1
c = 16.708 (12) ÅT = 277 K
β = 112.837 (14)°Prism, white
V = 2425 (3) Å30.42 × 0.26 × 0.15 mm
Z = 4
Data collection top
Rigaku XtaLAB mini
diffractometer
1691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Pflugrath, 1999)
h = 1816
Tmin = 0.840, Tmax = 0.938k = 1014
5592 measured reflectionsl = 2117
2741 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 6.1166P]
where P = (Fo2 + 2Fc2)/3
2741 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C16H8N6O2S2·2C2H6OSV = 2425 (3) Å3
Mr = 536.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.113 (11) ŵ = 0.43 mm1
b = 11.161 (8) ÅT = 277 K
c = 16.708 (12) Å0.42 × 0.26 × 0.15 mm
β = 112.837 (14)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2741 independent reflections
Absorption correction: multi-scan
(CrystalClear; Pflugrath, 1999)
1691 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.938Rint = 0.039
5592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
2741 reflectionsΔρmin = 0.59 e Å3
164 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.26830 (13)1.33767 (13)0.77108 (7)0.0922 (6)0.953 (3)
S2B0.265 (2)1.355 (3)0.695 (2)0.092*0.047 (3)
O20.1971 (2)1.2428 (2)0.72136 (16)0.0647 (8)
C90.3844 (4)1.3093 (7)0.7638 (4)0.140 (3)
H9A0.41901.24590.80310.211*
H9B0.42601.38030.77870.211*
H9C0.37301.28580.70550.211*
C100.2382 (6)1.4660 (5)0.7056 (4)0.130 (2)
H10A0.23091.44490.64780.195*
H10B0.29221.52380.72910.195*
H10C0.17481.49940.70410.195*
S10.10833 (14)1.36039 (10)0.46674 (8)0.1039 (6)
O10.0925 (2)1.1303 (2)0.42720 (15)0.0574 (7)
N20.1421 (3)1.1611 (3)0.56291 (19)0.0557 (8)
N10.1384 (2)1.0401 (2)0.55250 (17)0.0506 (7)
N30.0448 (2)0.9170 (2)0.33922 (16)0.0397 (6)
C10.1091 (3)1.0258 (3)0.4711 (2)0.0444 (8)
C60.0494 (3)0.7019 (3)0.3399 (2)0.0520 (9)
C40.1181 (3)0.8082 (3)0.4726 (2)0.0548 (9)
H40.15060.81060.53280.066*
C70.0238 (4)0.5931 (3)0.2927 (2)0.0690 (12)
H70.04090.52060.32230.083*
C50.0973 (3)0.7028 (3)0.4299 (2)0.0614 (11)
H50.11480.63110.46060.074*
C20.1163 (3)1.2176 (3)0.4891 (2)0.0598 (10)
C80.0250 (3)0.8122 (3)0.2969 (2)0.0425 (7)
C30.0899 (3)0.9131 (3)0.4245 (2)0.0439 (8)
H20.164 (3)1.195 (3)0.616 (3)0.062 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.1324 (13)0.1011 (10)0.0456 (6)0.0709 (9)0.0373 (7)0.0308 (6)
O20.0782 (19)0.0651 (16)0.0492 (14)0.0269 (14)0.0228 (13)0.0169 (12)
C90.090 (4)0.188 (7)0.113 (5)0.065 (5)0.007 (4)0.027 (5)
C100.185 (7)0.066 (3)0.157 (6)0.052 (4)0.085 (5)0.023 (4)
S10.1906 (17)0.0392 (6)0.0635 (7)0.0070 (7)0.0292 (9)0.0048 (5)
O10.0884 (19)0.0388 (13)0.0382 (13)0.0047 (12)0.0170 (13)0.0007 (10)
N20.081 (2)0.0418 (16)0.0369 (16)0.0088 (15)0.0144 (15)0.0045 (13)
N10.069 (2)0.0379 (14)0.0381 (15)0.0046 (14)0.0135 (14)0.0010 (11)
N30.0452 (16)0.0351 (14)0.0379 (14)0.0002 (11)0.0151 (12)0.0014 (10)
C10.052 (2)0.0377 (17)0.0382 (18)0.0035 (15)0.0123 (15)0.0050 (13)
C60.069 (2)0.0350 (17)0.0465 (19)0.0037 (16)0.0168 (17)0.0037 (14)
C40.069 (3)0.050 (2)0.0354 (18)0.0045 (18)0.0087 (17)0.0039 (15)
C70.109 (4)0.0306 (17)0.058 (2)0.004 (2)0.022 (2)0.0056 (15)
C50.088 (3)0.0379 (19)0.047 (2)0.0087 (19)0.014 (2)0.0112 (15)
C20.085 (3)0.044 (2)0.044 (2)0.0051 (19)0.0176 (19)0.0021 (15)
C80.051 (2)0.0338 (16)0.0416 (17)0.0002 (14)0.0163 (15)0.0008 (13)
C30.053 (2)0.0374 (17)0.0399 (17)0.0011 (15)0.0162 (16)0.0014 (13)
Geometric parameters (Å, º) top
S2—O21.474 (3)N1—C11.269 (4)
S2—C91.719 (7)N3—C31.317 (4)
S2—C101.751 (6)N3—C81.338 (4)
C9—H9A0.9600C1—C31.449 (4)
C9—H9B0.9600C6—C51.389 (5)
C9—H9C0.9600C6—C81.400 (4)
C10—H10A0.9600C6—C71.416 (5)
C10—H10B0.9600C4—C51.348 (5)
C10—H10C0.9600C4—C31.387 (5)
S1—C21.631 (4)C4—H40.9300
O1—C11.348 (4)C7—C7i1.321 (8)
O1—C21.365 (4)C7—H70.9300
N2—C21.305 (5)C5—H50.9300
N2—N11.360 (4)C8—C8i1.448 (6)
N2—H20.89 (4)
O2—S2—C9106.7 (3)O1—C1—C3120.2 (3)
O2—S2—C10106.7 (3)C5—C6—C8118.0 (3)
C9—S2—C1096.5 (3)C5—C6—C7121.4 (3)
S2—C9—H9A109.5C8—C6—C7120.6 (3)
S2—C9—H9B109.5C5—C4—C3118.4 (3)
H9A—C9—H9B109.5C5—C4—H4120.8
S2—C9—H9C109.5C3—C4—H4120.8
H9A—C9—H9C109.5C7i—C7—C6121.0 (2)
H9B—C9—H9C109.5C7i—C7—H7119.5
S2—C10—H10A109.5C6—C7—H7119.5
S2—C10—H10B109.5C4—C5—C6119.6 (3)
H10A—C10—H10B109.5C4—C5—H5120.2
S2—C10—H10C109.5C6—C5—H5120.2
H10A—C10—H10C109.5N2—C2—O1105.5 (3)
H10B—C10—H10C109.5N2—C2—S1131.2 (3)
C1—O1—C2105.4 (3)O1—C2—S1123.3 (3)
C2—N2—N1112.1 (3)N3—C8—C6122.5 (3)
C2—N2—H2126 (2)N3—C8—C8i119.07 (17)
N1—N2—H2122 (2)C6—C8—C8i118.39 (19)
C1—N1—N2104.0 (3)N3—C3—C4124.3 (3)
C3—N3—C8117.2 (3)N3—C3—C1117.6 (3)
N1—C1—O1112.9 (3)C4—C3—C1118.1 (3)
N1—C1—C3126.8 (3)
C2—N2—N1—C10.5 (5)C3—N3—C8—C60.7 (5)
N2—N1—C1—O10.5 (4)C3—N3—C8—C8i179.7 (4)
N2—N1—C1—C3178.3 (3)C5—C6—C8—N30.9 (6)
C2—O1—C1—N11.3 (4)C7—C6—C8—N3177.8 (4)
C2—O1—C1—C3179.2 (3)C5—C6—C8—C8i180.0 (4)
C5—C6—C7—C7i178.4 (6)C7—C6—C8—C8i1.3 (6)
C8—C6—C7—C7i0.2 (8)C8—N3—C3—C40.2 (5)
C3—C4—C5—C60.5 (6)C8—N3—C3—C1178.3 (3)
C8—C6—C5—C40.3 (6)C5—C4—C3—N30.8 (6)
C7—C6—C5—C4178.4 (4)C5—C4—C3—C1177.7 (4)
N1—N2—C2—O11.2 (5)N1—C1—C3—N3169.7 (4)
N1—N2—C2—S1179.8 (4)O1—C1—C3—N37.9 (5)
C1—O1—C2—N21.5 (4)N1—C1—C3—C49.0 (6)
C1—O1—C2—S1179.8 (3)O1—C1—C3—C4173.4 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.89 (4)1.73 (4)2.617 (4)172 (4)
C9—H9C···O1ii0.962.623.399 (7)138
C10—H10B···O2iii0.962.573.317 (6)135
N2—H2···S2B0.89 (4)2.36 (5)3.10 (3)140 (3)
Symmetry codes: (ii) x+1/2, y+5/2, z+1; (iii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.89 (4)1.73 (4)2.617 (4)172 (4)
C9—H9C···O1i0.962.623.399 (7)138.4
C10—H10B···O2ii0.962.573.317 (6)135.3
N2—H2···S2B0.89 (4)2.36 (5)3.10 (3)140 (3)
Symmetry codes: (i) x+1/2, y+5/2, z+1; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

MK and TS acknowledge the US Department of Education for the purchase of a diffractometer.

References

First citationAbou-Seri, S. M. (2010). Eur. J. Med. Chem. 45, 4113–4121.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChen, H., Li, Z. & Han, Y. (2000). J. Agric. Food Chem. 48, 5312–5316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A. & Al-Omar, M. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Omar, M. A., Al-Obaid, A.-R. M., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o684.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGudipati, R., Anreddy, R. N. R. & Man, S. (2011). Saudi Pharm. J. 19, 153–158.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPflugrath, J. W. (1999). Acta Cryst. D55, 1718–1725.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Akram, M., Rauf, A. & Bolte, M. (2010). Acta Cryst. E66, o1911.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Zhu, H., Yang, Z. M. & Zhu, H. L. (2013). Eur. J. Med. Chem. 60, 23–28.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M., Qiu, M., Sun, J., Zhang, Y.-B., Yang, Y.-S., Wang, X.-L., Tang, J.-F. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 6518–6524.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o321-o322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds