organic compounds
Tetrakis(2-amino-5-chloropyridinium) dihydrogen cyclohexaphosphate
aChemistry Laboratory of Materials, Sciences Faculty of Bizerta, 7021 Jarzouna, Bizerta, Tunisia
*Correspondence e-mail: lamia.khederi@fsb.rnu.tn
In the 5H6ClN2+·H2P6O184−, the [H2P6O18]4− anions are interconnected by O—H⋯O hydrogen bonds, leading to the formation of infinite ribbons extending along the a-axis direction. These ribbons are linked to the organic cations, via N—H⋯O and C—H⋯O hydrogen bonds, into a three-dimensional network. The six P atoms of the [H2P6O18]4− anion form a chair conformation. The complete cyclohexaphosphate anion is generated by inversion symmetry.
of the title compound, 4CCCDC reference: 987420
Related literature
For properties of hybrid materials, see: Ozin (1992); Teraski et al. (1987). For related structures containing cyclohexaphosphate rings, see: Bel Haj Salah et al. (2014); Khedhiri et al. (2007, 2012); Amri et al. (2009); Abid et al. (2012). For bond lengths in pyridine, see: Bak et al. (1959); Hemissi et al. (2010); Toumi Akriche et al. (2010); Akriche & Rzaigui (2005); Janiak (2000). For the preparation of cyclohexaphosphoric acid, see: Schulke & Kayser (1985).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 987420
10.1107/S1600536814003584/fj2662sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814003584/fj2662Isup2.hkl
Single crystals of the title compound were prepared in two steps. In the first one, 50 ml of an aqueous solution of cyclohexaphosphoric acid was prepared by protonation of 4 g of Li6P6O18, obtained by the Schulke process (Schulke et al., 1985), with an ion exchange resin (Amberlite IR 120). In the second one, the frech acidic solution (20 ml, 2.6 mmol) was immediately neutralized with a solution of 2-amino-5-chloropyridine (2.8 mmol in 10 ml of ehanol) under continuous stirring. Good quality of prismatic-shaped crystals were obtained after a slow evaporation during few days at ambient temperature
All H atoms were found in difference Fourier synthesis and refined in isotropic approximation
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. ORTEP drawing of the cyclic anion [H2P6O18]4- and the two independent 2-amino-5-chloropyridinium cations. Displacement ellipsoids for non H-atoms are drawn at the 40% probability level. [Symmetry code: (i) x, y, z] | |
Fig. 2. Projection of the [H2P6O18]4- anions running along the a axis | |
Fig. 3. Projection of the structure along the a direction | |
Fig. 4. Projection of the structure along the b direction |
4C5H6ClN2+·H2O18P64− | Z = 1 |
Mr = 994.11 | F(000) = 504 |
Triclinic, P1 | Dx = 1.824 Mg m−3 |
Hall symbol: -P 1 | Ag Kα radiation, λ = 0.56087 Å |
a = 9.199 (3) Å | Cell parameters from 25 reflections |
b = 9.304 (2) Å | θ = 9–11° |
c = 11.327 (3) Å | µ = 0.35 mm−1 |
α = 74.98 (3)° | T = 293 K |
β = 85.17 (2)° | Rectangular, colorless |
γ = 75.20 (2)° | 0.32 × 0.22 × 0.15 mm |
V = 905.1 (5) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.020 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.1° |
Graphite monochromator | h = −15→15 |
non–profiled ω scans | k = −15→15 |
11291 measured reflections | l = −18→3 |
8865 independent reflections | 2 standard reflections every 120 min |
5387 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0798P)2 + 0.0876P] where P = (Fo2 + 2Fc2)/3 |
8865 reflections | (Δ/σ)max = 0.001 |
305 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
4C5H6ClN2+·H2O18P64− | γ = 75.20 (2)° |
Mr = 994.11 | V = 905.1 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.199 (3) Å | Ag Kα radiation, λ = 0.56087 Å |
b = 9.304 (2) Å | µ = 0.35 mm−1 |
c = 11.327 (3) Å | T = 293 K |
α = 74.98 (3)° | 0.32 × 0.22 × 0.15 mm |
β = 85.17 (2)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.020 |
11291 measured reflections | 2 standard reflections every 120 min |
8865 independent reflections | intensity decay: 1% |
5387 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.155 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.82 e Å−3 |
8865 reflections | Δρmin = −0.65 e Å−3 |
305 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.31788 (5) | 0.39966 (6) | 0.59770 (5) | 0.0246 (1) | |
P2 | 0.09221 (5) | 0.22559 (6) | 0.68658 (5) | 0.0249 (1) | |
P3 | 0.21377 (5) | 0.64715 (6) | 0.38126 (5) | 0.0261 (1) | |
O1 | 0.39658 (19) | 0.4679 (2) | 0.67218 (19) | 0.0454 (6) | |
O2 | 0.40900 (17) | 0.29457 (17) | 0.52877 (14) | 0.0335 (4) | |
O3 | 0.20301 (19) | 0.5379 (2) | 0.51466 (15) | 0.0455 (5) | |
O4 | 0.20430 (16) | 0.32887 (17) | 0.69374 (13) | 0.0297 (4) | |
O5 | 0.08853 (19) | 0.11700 (18) | 0.80701 (15) | 0.0375 (5) | |
O6 | 0.12380 (17) | 0.16793 (19) | 0.57518 (15) | 0.0353 (4) | |
O7 | 0.06189 (16) | 0.64266 (17) | 0.32794 (16) | 0.0359 (5) | |
O8 | 0.33616 (16) | 0.56632 (18) | 0.30855 (14) | 0.0333 (4) | |
O9 | 0.21174 (18) | 0.80107 (18) | 0.39100 (17) | 0.0407 (5) | |
Cl1 | 0.26706 (10) | 0.37124 (10) | −0.05308 (6) | 0.0606 (3) | |
N1 | 0.0267 (2) | 0.1302 (2) | 0.18049 (17) | 0.0341 (5) | |
N2 | −0.0748 (3) | 0.1321 (3) | 0.3732 (2) | 0.0430 (7) | |
C1 | 0.0017 (3) | 0.1920 (2) | 0.2777 (2) | 0.0319 (5) | |
C2 | 0.0596 (3) | 0.3211 (3) | 0.2711 (2) | 0.0382 (7) | |
C3 | 0.1390 (3) | 0.3761 (3) | 0.1712 (2) | 0.0396 (7) | |
C4 | 0.1628 (3) | 0.3061 (3) | 0.0732 (2) | 0.0377 (6) | |
C5 | 0.1044 (3) | 0.1844 (3) | 0.0791 (2) | 0.0376 (6) | |
Cl2 | 0.71034 (11) | 0.24071 (11) | −0.00108 (7) | 0.0685 (3) | |
N3 | 0.4844 (2) | 0.2016 (2) | 0.31254 (19) | 0.0370 (6) | |
N4 | 0.3444 (2) | 0.0352 (2) | 0.4197 (2) | 0.0387 (6) | |
C6 | 0.4320 (2) | 0.0752 (2) | 0.3261 (2) | 0.0298 (5) | |
C7 | 0.4751 (2) | −0.0097 (2) | 0.2364 (2) | 0.0325 (6) | |
C8 | 0.5622 (3) | 0.0394 (3) | 0.1400 (2) | 0.0373 (6) | |
C9 | 0.6083 (3) | 0.1751 (3) | 0.1271 (2) | 0.0405 (7) | |
C10 | 0.5705 (3) | 0.2533 (3) | 0.2150 (2) | 0.0434 (7) | |
H1A | 0.483 (5) | 0.441 (5) | 0.680 (4) | 0.113 (17)* | |
H1 | −0.010 (3) | 0.041 (3) | 0.186 (3) | 0.047 (8)* | |
H2 | 0.041 (3) | 0.362 (3) | 0.333 (3) | 0.053 (9)* | |
H2A | −0.089 (3) | 0.046 (4) | 0.382 (3) | 0.044 (8)* | |
H2B | −0.083 (4) | 0.164 (4) | 0.433 (3) | 0.055 (9)* | |
H3A | 0.174 (3) | 0.469 (4) | 0.162 (3) | 0.055 (9)* | |
H5 | 0.107 (3) | 0.139 (4) | 0.021 (3) | 0.053 (9)* | |
H3 | 0.457 (4) | 0.247 (4) | 0.363 (3) | 0.054 (9)* | |
H4A | 0.319 (3) | 0.082 (3) | 0.471 (2) | 0.033 (7)* | |
H4B | 0.312 (4) | −0.053 (5) | 0.425 (3) | 0.075 (11)* | |
H7 | 0.442 (3) | −0.106 (3) | 0.249 (3) | 0.044 (8)* | |
H8 | 0.592 (3) | −0.006 (3) | 0.082 (2) | 0.031 (6)* | |
H10 | 0.607 (4) | 0.340 (4) | 0.218 (3) | 0.058 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0202 (2) | 0.0277 (2) | 0.0285 (2) | −0.0090 (2) | 0.0034 (2) | −0.0097 (2) |
P2 | 0.0230 (2) | 0.0271 (2) | 0.0294 (2) | −0.0115 (2) | 0.0022 (2) | −0.0111 (2) |
P3 | 0.0231 (2) | 0.0274 (2) | 0.0304 (2) | −0.0090 (2) | −0.0001 (2) | −0.0093 (2) |
O1 | 0.0284 (7) | 0.0669 (11) | 0.0609 (12) | −0.0270 (8) | 0.0119 (7) | −0.0393 (10) |
O2 | 0.0306 (7) | 0.0335 (7) | 0.0360 (8) | −0.0039 (6) | 0.0058 (6) | −0.0135 (6) |
O3 | 0.0387 (8) | 0.0452 (9) | 0.0345 (8) | 0.0062 (7) | 0.0107 (7) | 0.0020 (7) |
O4 | 0.0297 (6) | 0.0388 (7) | 0.0294 (7) | −0.0210 (6) | 0.0047 (5) | −0.0129 (6) |
O5 | 0.0454 (9) | 0.0366 (8) | 0.0343 (8) | −0.0224 (7) | −0.0015 (7) | −0.0028 (6) |
O6 | 0.0351 (7) | 0.0438 (8) | 0.0376 (8) | −0.0184 (6) | 0.0078 (6) | −0.0226 (7) |
O7 | 0.0243 (6) | 0.0320 (7) | 0.0589 (10) | −0.0077 (5) | −0.0042 (6) | −0.0224 (7) |
O8 | 0.0254 (6) | 0.0452 (8) | 0.0339 (8) | −0.0124 (6) | 0.0046 (5) | −0.0158 (7) |
O9 | 0.0367 (8) | 0.0351 (8) | 0.0601 (11) | −0.0175 (6) | −0.0027 (7) | −0.0196 (7) |
Cl1 | 0.0841 (5) | 0.0739 (5) | 0.0387 (3) | −0.0499 (4) | 0.0169 (3) | −0.0155 (3) |
N1 | 0.0451 (10) | 0.0335 (8) | 0.0322 (9) | −0.0198 (8) | 0.0038 (7) | −0.0142 (7) |
N2 | 0.0648 (14) | 0.0380 (10) | 0.0362 (10) | −0.0264 (10) | 0.0150 (9) | −0.0182 (9) |
C1 | 0.0409 (10) | 0.0271 (8) | 0.0313 (10) | −0.0126 (8) | 0.0012 (8) | −0.0100 (7) |
C2 | 0.0574 (14) | 0.0313 (10) | 0.0330 (11) | −0.0199 (10) | 0.0031 (10) | −0.0127 (8) |
C3 | 0.0558 (14) | 0.0339 (10) | 0.0365 (11) | −0.0217 (10) | 0.0022 (10) | −0.0120 (9) |
C4 | 0.0482 (12) | 0.0406 (11) | 0.0300 (10) | −0.0220 (10) | 0.0017 (9) | −0.0086 (9) |
C5 | 0.0477 (12) | 0.0426 (11) | 0.0323 (10) | −0.0222 (10) | 0.0044 (9) | −0.0169 (9) |
Cl2 | 0.0848 (6) | 0.0781 (5) | 0.0483 (4) | −0.0413 (5) | 0.0239 (4) | −0.0125 (4) |
N3 | 0.0453 (10) | 0.0351 (9) | 0.0389 (10) | −0.0173 (8) | 0.0078 (8) | −0.0190 (8) |
N4 | 0.0389 (10) | 0.0384 (10) | 0.0450 (11) | −0.0143 (8) | 0.0103 (8) | −0.0197 (9) |
C6 | 0.0299 (9) | 0.0282 (8) | 0.0343 (10) | −0.0084 (7) | −0.0007 (7) | −0.0114 (7) |
C7 | 0.0354 (10) | 0.0296 (9) | 0.0368 (10) | −0.0082 (8) | −0.0022 (8) | −0.0147 (8) |
C8 | 0.0414 (11) | 0.0421 (11) | 0.0333 (11) | −0.0111 (9) | 0.0019 (9) | −0.0177 (9) |
C9 | 0.0447 (12) | 0.0461 (12) | 0.0333 (11) | −0.0171 (10) | 0.0064 (9) | −0.0107 (10) |
C10 | 0.0554 (14) | 0.0379 (11) | 0.0444 (13) | −0.0242 (10) | 0.0065 (11) | −0.0127 (10) |
Cl1—C4 | 1.718 (3) | N3—C6 | 1.350 (3) |
Cl2—C9 | 1.722 (3) | N3—C10 | 1.361 (3) |
P1—O2 | 1.4612 (17) | N4—C6 | 1.310 (3) |
P1—O1 | 1.501 (2) | N3—H3 | 0.78 (4) |
P1—O3 | 1.5816 (19) | N4—H4B | 0.93 (4) |
P1—O4 | 1.5804 (17) | N4—H4A | 0.80 (3) |
P2—O4 | 1.5981 (17) | C1—C2 | 1.416 (4) |
P2—O7i | 1.6082 (17) | C2—C3 | 1.352 (3) |
P2—O5 | 1.4758 (18) | C3—C4 | 1.402 (3) |
P2—O6 | 1.4744 (18) | C4—C5 | 1.357 (4) |
P3—O3 | 1.5989 (18) | C2—H2 | 0.87 (3) |
P3—O9 | 1.4599 (18) | C3—H3A | 0.98 (4) |
P3—O7 | 1.5823 (17) | C5—H5 | 0.87 (3) |
P3—O8 | 1.4979 (17) | C6—C7 | 1.415 (3) |
O1—H1A | 0.78 (5) | C7—C8 | 1.351 (3) |
N1—C5 | 1.353 (3) | C8—C9 | 1.401 (4) |
N1—C1 | 1.347 (3) | C9—C10 | 1.353 (4) |
N2—C1 | 1.317 (3) | C7—H7 | 0.99 (3) |
N1—H1 | 0.96 (3) | C8—H8 | 0.86 (2) |
N2—H2A | 0.82 (4) | C10—H10 | 0.96 (4) |
N2—H2B | 0.80 (3) | ||
O1—P1—O2 | 118.53 (10) | C6—N4—H4A | 123.5 (19) |
O1—P1—O3 | 106.68 (11) | C6—N4—H4B | 117 (2) |
O1—P1—O4 | 102.68 (10) | N1—C1—N2 | 119.7 (2) |
O2—P1—O3 | 112.61 (10) | N2—C1—C2 | 123.0 (2) |
O2—P1—O4 | 114.52 (10) | N1—C1—C2 | 117.3 (2) |
O3—P1—O4 | 99.74 (9) | C1—C2—C3 | 120.3 (2) |
O4—P2—O5 | 108.10 (10) | C2—C3—C4 | 119.9 (3) |
O4—P2—O6 | 110.40 (9) | C3—C4—C5 | 119.5 (2) |
O4—P2—O7i | 98.08 (9) | Cl1—C4—C3 | 120.7 (2) |
O5—P2—O6 | 119.81 (10) | Cl1—C4—C5 | 119.78 (19) |
O5—P2—O7i | 108.31 (10) | N1—C5—C4 | 119.6 (2) |
O6—P2—O7i | 109.93 (10) | C1—C2—H2 | 117.0 (19) |
O3—P3—O7 | 99.05 (10) | C3—C2—H2 | 123 (2) |
O3—P3—O8 | 109.32 (10) | C2—C3—H3A | 121.8 (19) |
O3—P3—O9 | 109.78 (11) | C4—C3—H3A | 118.2 (19) |
O7—P3—O8 | 105.20 (10) | C4—C5—H5 | 126 (2) |
O7—P3—O9 | 111.56 (10) | N1—C5—H5 | 114 (2) |
O8—P3—O9 | 119.86 (10) | N3—C6—C7 | 117.59 (19) |
P1—O3—P3 | 134.02 (13) | N3—C6—N4 | 120.0 (2) |
P1—O4—P2 | 132.54 (10) | N4—C6—C7 | 122.37 (18) |
P2i—O7—P3 | 126.34 (11) | C6—C7—C8 | 119.8 (2) |
P1—O1—H1A | 121 (3) | C7—C8—C9 | 120.5 (2) |
C1—N1—C5 | 123.4 (2) | C8—C9—C10 | 119.4 (2) |
C5—N1—H1 | 119.3 (19) | Cl2—C9—C8 | 119.51 (19) |
C1—N1—H1 | 117.3 (19) | Cl2—C9—C10 | 121.1 (2) |
C1—N2—H2A | 121 (2) | N3—C10—C9 | 119.5 (2) |
H2A—N2—H2B | 117 (3) | C6—C7—H7 | 117.6 (18) |
C1—N2—H2B | 119 (3) | C8—C7—H7 | 122.6 (18) |
C6—N3—C10 | 123.1 (2) | C7—C8—H8 | 124.7 (18) |
C6—N3—H3 | 115 (3) | C9—C8—H8 | 114.7 (18) |
C10—N3—H3 | 122 (3) | N3—C10—H10 | 116 (2) |
H4A—N4—H4B | 120 (3) | C9—C10—H10 | 125 (2) |
O1—P1—O3—P3 | 89.53 (18) | C5—N1—C1—C2 | 0.6 (4) |
O2—P1—O3—P3 | −42.1 (2) | C1—N1—C5—C4 | 0.8 (4) |
O4—P1—O3—P3 | −163.97 (16) | C10—N3—C6—N4 | −177.2 (2) |
O1—P1—O4—P2 | −174.03 (14) | C10—N3—C6—C7 | 2.8 (3) |
O2—P1—O4—P2 | −44.19 (17) | C6—N3—C10—C9 | −0.8 (4) |
O3—P1—O4—P2 | 76.27 (15) | N1—C1—C2—C3 | −1.3 (4) |
O5—P2—O4—P1 | 144.47 (14) | N2—C1—C2—C3 | 179.1 (3) |
O6—P2—O4—P1 | 11.66 (17) | C1—C2—C3—C4 | 0.7 (4) |
O7i—P2—O4—P1 | −103.18 (15) | C2—C3—C4—Cl1 | −178.5 (2) |
O4—P2—O7i—P3i | 159.29 (13) | C2—C3—C4—C5 | 0.7 (4) |
O5—P2—O7i—P3i | −88.53 (15) | Cl1—C4—C5—N1 | 177.8 (2) |
O6—P2—O7i—P3i | 44.08 (16) | C3—C4—C5—N1 | −1.4 (4) |
O7—P3—O3—P1 | 134.37 (16) | N3—C6—C7—C8 | −1.8 (3) |
O8—P3—O3—P1 | 24.7 (2) | N4—C6—C7—C8 | 178.1 (2) |
O9—P3—O3—P1 | −108.72 (17) | C6—C7—C8—C9 | −1.0 (4) |
O3—P3—O7—P2i | 102.22 (14) | C7—C8—C9—Cl2 | −176.3 (2) |
O8—P3—O7—P2i | −144.80 (13) | C7—C8—C9—C10 | 3.0 (4) |
O9—P3—O7—P2i | −13.34 (18) | Cl2—C9—C10—N3 | 177.2 (2) |
C5—N1—C1—N2 | −179.8 (3) | C8—C9—C10—N3 | −2.1 (4) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5ii | 0.96 (3) | 1.78 (3) | 2.736 (3) | 177 (3) |
O1—H1A···O8iii | 0.78 (5) | 1.66 (5) | 2.418 (3) | 165 (5) |
N2—H2A···O6ii | 0.82 (4) | 2.02 (4) | 2.844 (3) | 173 (3) |
N2—H2B···O9i | 0.80 (3) | 2.29 (3) | 3.000 (3) | 149 (4) |
N3—H3···O2 | 0.78 (4) | 2.03 (3) | 2.781 (3) | 161 (3) |
N4—H4A···O2 | 0.80 (3) | 2.57 (3) | 3.179 (3) | 134 (2) |
N4—H4A···O6 | 0.80 (3) | 2.16 (3) | 2.827 (3) | 142 (3) |
N4—H4B···O9iv | 0.93 (4) | 1.95 (4) | 2.852 (3) | 162 (3) |
C5—H5···O5v | 0.87 (3) | 2.51 (3) | 3.322 (3) | 157 (3) |
C10—H10···O1iii | 0.96 (4) | 2.42 (4) | 3.262 (3) | 146 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5i | 0.96 (3) | 1.78 (3) | 2.736 (3) | 177 (3) |
O1—H1A···O8ii | 0.78 (5) | 1.66 (5) | 2.418 (3) | 165 (5) |
N2—H2A···O6i | 0.82 (4) | 2.02 (4) | 2.844 (3) | 173 (3) |
N2—H2B···O9iii | 0.80 (3) | 2.29 (3) | 3.000 (3) | 149 (4) |
N3—H3···O2 | 0.78 (4) | 2.03 (3) | 2.781 (3) | 161 (3) |
N4—H4A···O2 | 0.80 (3) | 2.57 (3) | 3.179 (3) | 134 (2) |
N4—H4A···O6 | 0.80 (3) | 2.16 (3) | 2.827 (3) | 142 (3) |
N4—H4B···O9iv | 0.93 (4) | 1.95 (4) | 2.852 (3) | 162 (3) |
C5—H5···O5v | 0.87 (3) | 2.51 (3) | 3.322 (3) | 157 (3) |
C10—H10···O1ii | 0.96 (4) | 2.42 (4) | 3.262 (3) | 146 (3) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y−1, z; (v) x, y, z−1. |
References
Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, i62–i63. CrossRef CAS IUCr Journals Google Scholar
Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bak, B., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1959). J. Mol. Spectrosc. 2, 361–364. CrossRef Web of Science Google Scholar
Bel Haj Salah, R., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o61. CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hemissi, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o779–o780. Web of Science CrossRef CAS IUCr Journals Google Scholar
Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Khedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, o2038–o2039. CSD CrossRef CAS IUCr Journals Google Scholar
Khedhiri, L., Bel Haj Salah Raoudha, , Belam, W. & Rzaigui, M. (2007). Acta Cryst. E63, o2269–o2271. Google Scholar
Ozin, G. A. (1992). Adv. Mater. 4, 612–649. CrossRef CAS Web of Science Google Scholar
Schulke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teraski, O., Barry, J. C. & Thomas, J. M. (1987). Nature (London), 330, 58–60. Google Scholar
Toumi Akriche, S., Rzaigui, M., Elothman, Z. A. & Mahfouz, R. M. (2010). Acta Cryst. E66, o358. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Research in organic-inorganic materials has experienced considerable growth in recent years for the purpose of generating desirable properties and functionalities. An important strategy employed in studying such systems has been to take advantage of hydrogen-bond interactions between organic cations and inorganic anions, since they have been recognized as the most powerful force to generate supramolecular network in one, two and three dimensions (Ozin, 1992, Teraski et al., 1987).
In this context, our aims have been focused on the organic salts of cyclohexaphosphates systems. The title compound (I) provides another example of these kinds of materials.
The partial three-dimensional plot in Figure 1 illustrates the geometrical configuration of the [H2P6O18]4- ring and the two independent organic cations [C5H6ClN2]+ in the (I) structure. The dihydrogen-cyclohexaphosphate anions are connected through strong hydrogen bonds characterized by short distances (dO···O = 2.418 (3) Å) leading to the formation of infinite and parallel [H2P6O18]n4- slabs (Figure 2). It is worth noting that the strong H-bond between phosphoric rings (Table 1) (dO···O < 2.73 Å) is rather observed in cyclohexaphosphates.
Two crystallographically independent cations coexist in this structure. They are arranged in pairs and anchored onto the anionic ribbons via N—H···O and C—H···O hydrogen bonds to keep up the three-dimensional network cohesion (Figure 3, Figure 4).
The [H2P6O18]4-, group with chair conformation shows its standard geometry, the longest bonds length ranging between 1.580 (2) and 1.608 (2) Å, correspond to the bridging oxygen atom, the intermediate one, P1—O1 = 1.502 (2) Å, correspond to the P—OH bonding and the shortest ones spreading between 1.460 (2) and 1.498 (2) Å, correspond to the external oxygen atoms. The P—P—P angles of 111.0 (1), 120.5 (1) and 125.1 (4)° show that the rings are slightly distorted from the ideal threefold symmetry. The P—P distances as well as P—O—P or O—P—O angles show that these features are similar to those commonly observed in condensed phosphate anions (Bel Haj Salah et al., 2014, Khedhiri et al., 2012, Khedhiri et al., 2007, Amri et al., 2009, Abid et al., 2012).
Despite the limited number of organic cation cyclohexaphosphates (about forty related structures), we can distinguish only few acidic cyclohexaphosphates such as the title compound (I).
The examination of pyridinium rings shows that these units are planar with mean deviation of 0.0036 and 0.0038 Å from least-square plane defined by the six constituent atoms. The average C—N distances in pyridinium rings is 1.353 Å and the C—C bond lengths are 1.380 Å. The latter value, being shorter than 1.39–1.41 Å, reported for non-substituent pyridine, may indicate some aromatic bond characters (Bak et al., 1959). These values are in accordance with those observed in others compounds (Hemissi et al., 2010, Toumi Akriche et al., 2010, Akriche et al., 2005). The inter-planar distance between the pyridine rings is in the vicinity of 4.00 Å, which is significantly longer than 3.80 Å for the p-p interaction (Janiak, 2000). In addition to electrostatic and van der Waals interactions, the structure is further stabilized with a three-dimensional network of O—H···O, N—H···O and the weaker C—H···O hydrogen bonds (Table 1, Figure 3).