organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o342-o343

Tetra­kis(2-amino-5-chloro­pyridinium) di­hydrogen cyclo­hexa­phosphate

aChemistry Laboratory of Materials, Sciences Faculty of Bizerta, 7021 Jarzouna, Bizerta, Tunisia
*Correspondence e-mail: lamia.khederi@fsb.rnu.tn

(Received 3 February 2014; accepted 17 February 2014; online 22 February 2014)

In the crystal structure of the title compound, 4C5H6ClN2+·H2P6O184−, the [H2P6O18]4− anions are interconnected by O—H⋯O hydrogen bonds, leading to the formation of infinite ribbons extending along the a-axis direction. These ribbons are linked to the organic cations, via N—H⋯O and C—H⋯O hydrogen bonds, into a three-dimensional network. The six P atoms of the [H2P6O18]4− anion form a chair conformation. The complete cyclohexaphosphate anion is generated by inversion symmetry.

Related literature

For properties of hybrid materials, see: Ozin (1992[Ozin, G. A. (1992). Adv. Mater. 4, 612-649.]); Teraski et al. (1987[Teraski, O., Barry, J. C. & Thomas, J. M. (1987). Nature (London), 330, 58-60.]). For related structures containing cyclo­hexa­phosphate rings, see: Bel Haj Salah et al. (2014[Bel Haj Salah, R., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o61.]); Khedhiri et al. (2007[Khedhiri, L., Bel Haj Salah Raoudha, , Belam, W. & Rzaigui, M. (2007). Acta Cryst. E63, o2269-o2271.], 2012[Khedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, o2038-o2039.]); Amri et al. (2009[Amri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.]); Abid et al. (2012[Abid, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, i62-i63.]). For bond lengths in pyridine, see: Bak et al. (1959[Bak, B., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1959). J. Mol. Spectrosc. 2, 361-364.]); Hemissi et al. (2010[Hemissi, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o779-o780.]); Toumi Akriche et al. (2010[Toumi Akriche, S., Rzaigui, M., Elothman, Z. A. & Mahfouz, R. M. (2010). Acta Cryst. E66, o358.]); Akriche & Rzaigui (2005[Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.]); Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For the preparation of cyclo­hexa­phospho­ric acid, see: Schulke & Kayser (1985[Schulke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]).

[Scheme 1]

Experimental

Crystal data
  • 4C5H6ClN2+·H2O18P64−

  • Mr = 994.11

  • Triclinic, [P \overline 1]

  • a = 9.199 (3) Å

  • b = 9.304 (2) Å

  • c = 11.327 (3) Å

  • α = 74.98 (3)°

  • β = 85.17 (2)°

  • γ = 75.20 (2)°

  • V = 905.1 (5) Å3

  • Z = 1

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 11291 measured reflections

  • 8865 independent reflections

  • 5387 reflections with I > 2σ(I)

  • Rint = 0.020

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.155

  • S = 1.02

  • 8865 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.96 (3) 1.78 (3) 2.736 (3) 177 (3)
O1—H1A⋯O8ii 0.78 (5) 1.66 (5) 2.418 (3) 165 (5)
N2—H2A⋯O6i 0.82 (4) 2.02 (4) 2.844 (3) 173 (3)
N2—H2B⋯O9iii 0.80 (3) 2.29 (3) 3.000 (3) 149 (4)
N3—H3⋯O2 0.78 (4) 2.03 (3) 2.781 (3) 161 (3)
N4—H4A⋯O2 0.80 (3) 2.57 (3) 3.179 (3) 134 (2)
N4—H4A⋯O6 0.80 (3) 2.16 (3) 2.827 (3) 142 (3)
N4—H4B⋯O9iv 0.93 (4) 1.95 (4) 2.852 (3) 162 (3)
C5—H5⋯O5v 0.87 (3) 2.51 (3) 3.322 (3) 157 (3)
C10—H10⋯O1ii 0.96 (4) 2.42 (4) 3.262 (3) 146 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y-1, z; (v) x, y, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Research in organic-inorganic materials has experienced considerable growth in recent years for the purpose of generating desirable properties and functionalities. An important strategy employed in studying such systems has been to take advantage of hydrogen-bond interactions between organic cations and inorganic anions, since they have been recognized as the most powerful force to generate supramolecular network in one, two and three dimensions (Ozin, 1992, Teraski et al., 1987).

In this context, our aims have been focused on the organic salts of cyclohexaphosphates systems. The title compound (I) provides another example of these kinds of materials.

The partial three-dimensional plot in Figure 1 illustrates the geometrical configuration of the [H2P6O18]4- ring and the two independent organic cations [C5H6ClN2]+ in the (I) structure. The dihydrogen-cyclohexaphosphate anions are connected through strong hydrogen bonds characterized by short distances (dO···O = 2.418 (3) Å) leading to the formation of infinite and parallel [H2P6O18]n4- slabs (Figure 2). It is worth noting that the strong H-bond between phosphoric rings (Table 1) (dO···O < 2.73 Å) is rather observed in cyclohexaphosphates.

Two crystallographically independent cations coexist in this structure. They are arranged in pairs and anchored onto the anionic ribbons via N—H···O and C—H···O hydrogen bonds to keep up the three-dimensional network cohesion (Figure 3, Figure 4).

The [H2P6O18]4-, group with chair conformation shows its standard geometry, the longest bonds length ranging between 1.580 (2) and 1.608 (2) Å, correspond to the bridging oxygen atom, the intermediate one, P1—O1 = 1.502 (2) Å, correspond to the P—OH bonding and the shortest ones spreading between 1.460 (2) and 1.498 (2) Å, correspond to the external oxygen atoms. The P—P—P angles of 111.0 (1), 120.5 (1) and 125.1 (4)° show that the rings are slightly distorted from the ideal threefold symmetry. The P—P distances as well as P—O—P or O—P—O angles show that these features are similar to those commonly observed in condensed phosphate anions (Bel Haj Salah et al., 2014, Khedhiri et al., 2012, Khedhiri et al., 2007, Amri et al., 2009, Abid et al., 2012).

Despite the limited number of organic cation cyclohexaphosphates (about forty related structures), we can distinguish only few acidic cyclohexaphosphates such as the title compound (I).

The examination of pyridinium rings shows that these units are planar with mean deviation of 0.0036 and 0.0038 Å from least-square plane defined by the six constituent atoms. The average C—N distances in pyridinium rings is 1.353 Å and the C—C bond lengths are 1.380 Å. The latter value, being shorter than 1.39–1.41 Å, reported for non-substituent pyridine, may indicate some aromatic bond characters (Bak et al., 1959). These values are in accordance with those observed in others compounds (Hemissi et al., 2010, Toumi Akriche et al., 2010, Akriche et al., 2005). The inter-planar distance between the pyridine rings is in the vicinity of 4.00 Å, which is significantly longer than 3.80 Å for the p-p interaction (Janiak, 2000). In addition to electrostatic and van der Waals interactions, the structure is further stabilized with a three-dimensional network of O—H···O, N—H···O and the weaker C—H···O hydrogen bonds (Table 1, Figure 3).

Related literature top

For properties of hybrid materials, see: Ozin (1992); Teraski et al. (1987). For related structures containing cyclohexaphosphate rings, see: Bel Haj Salah et al. (2014); Khedhiri et al. (2007, 2012); Amri et al. (2009); Abid et al. (2012). For bond lengths in pyridine, see: Bak et al. (1959); Hemissi et al. (2010); Toumi Akriche et al. (2010); Akriche & Rzaigui (2005); Janiak (2000). For the preparation of cyclohexaphosphoric acid, see: Schulke & Kayser (1985).

Experimental top

Single crystals of the title compound were prepared in two steps. In the first one, 50 ml of an aqueous solution of cyclohexaphosphoric acid was prepared by protonation of 4 g of Li6P6O18, obtained by the Schulke process (Schulke et al., 1985), with an ion exchange resin (Amberlite IR 120). In the second one, the frech acidic solution (20 ml, 2.6 mmol) was immediately neutralized with a solution of 2-amino-5-chloropyridine (2.8 mmol in 10 ml of ehanol) under continuous stirring. Good quality of prismatic-shaped crystals were obtained after a slow evaporation during few days at ambient temperature

Refinement top

All H atoms were found in difference Fourier synthesis and refined in isotropic approximation

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the cyclic anion [H2P6O18]4- and the two independent 2-amino-5-chloropyridinium cations. Displacement ellipsoids for non H-atoms are drawn at the 40% probability level. [Symmetry code: (i) x, y, z]
[Figure 2] Fig. 2. Projection of the [H2P6O18]4- anions running along the a axis
[Figure 3] Fig. 3. Projection of the structure along the a direction
[Figure 4] Fig. 4. Projection of the structure along the b direction
Tetrakis(2-amino-5-chloropyridinium) dihydrogen cyclohexaphosphate top
Crystal data top
4C5H6ClN2+·H2O18P64Z = 1
Mr = 994.11F(000) = 504
Triclinic, P1Dx = 1.824 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56087 Å
a = 9.199 (3) ÅCell parameters from 25 reflections
b = 9.304 (2) Åθ = 9–11°
c = 11.327 (3) ŵ = 0.35 mm1
α = 74.98 (3)°T = 293 K
β = 85.17 (2)°Rectangular, colorless
γ = 75.20 (2)°0.32 × 0.22 × 0.15 mm
V = 905.1 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.1°
Graphite monochromatorh = 1515
non–profiled ω scansk = 1515
11291 measured reflectionsl = 183
8865 independent reflections2 standard reflections every 120 min
5387 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0798P)2 + 0.0876P]
where P = (Fo2 + 2Fc2)/3
8865 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
4C5H6ClN2+·H2O18P64γ = 75.20 (2)°
Mr = 994.11V = 905.1 (5) Å3
Triclinic, P1Z = 1
a = 9.199 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 9.304 (2) ŵ = 0.35 mm1
c = 11.327 (3) ÅT = 293 K
α = 74.98 (3)°0.32 × 0.22 × 0.15 mm
β = 85.17 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.020
11291 measured reflections2 standard reflections every 120 min
8865 independent reflections intensity decay: 1%
5387 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.82 e Å3
8865 reflectionsΔρmin = 0.65 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.31788 (5)0.39966 (6)0.59770 (5)0.0246 (1)
P20.09221 (5)0.22559 (6)0.68658 (5)0.0249 (1)
P30.21377 (5)0.64715 (6)0.38126 (5)0.0261 (1)
O10.39658 (19)0.4679 (2)0.67218 (19)0.0454 (6)
O20.40900 (17)0.29457 (17)0.52877 (14)0.0335 (4)
O30.20301 (19)0.5379 (2)0.51466 (15)0.0455 (5)
O40.20430 (16)0.32887 (17)0.69374 (13)0.0297 (4)
O50.08853 (19)0.11700 (18)0.80701 (15)0.0375 (5)
O60.12380 (17)0.16793 (19)0.57518 (15)0.0353 (4)
O70.06189 (16)0.64266 (17)0.32794 (16)0.0359 (5)
O80.33616 (16)0.56632 (18)0.30855 (14)0.0333 (4)
O90.21174 (18)0.80107 (18)0.39100 (17)0.0407 (5)
Cl10.26706 (10)0.37124 (10)0.05308 (6)0.0606 (3)
N10.0267 (2)0.1302 (2)0.18049 (17)0.0341 (5)
N20.0748 (3)0.1321 (3)0.3732 (2)0.0430 (7)
C10.0017 (3)0.1920 (2)0.2777 (2)0.0319 (5)
C20.0596 (3)0.3211 (3)0.2711 (2)0.0382 (7)
C30.1390 (3)0.3761 (3)0.1712 (2)0.0396 (7)
C40.1628 (3)0.3061 (3)0.0732 (2)0.0377 (6)
C50.1044 (3)0.1844 (3)0.0791 (2)0.0376 (6)
Cl20.71034 (11)0.24071 (11)0.00108 (7)0.0685 (3)
N30.4844 (2)0.2016 (2)0.31254 (19)0.0370 (6)
N40.3444 (2)0.0352 (2)0.4197 (2)0.0387 (6)
C60.4320 (2)0.0752 (2)0.3261 (2)0.0298 (5)
C70.4751 (2)0.0097 (2)0.2364 (2)0.0325 (6)
C80.5622 (3)0.0394 (3)0.1400 (2)0.0373 (6)
C90.6083 (3)0.1751 (3)0.1271 (2)0.0405 (7)
C100.5705 (3)0.2533 (3)0.2150 (2)0.0434 (7)
H1A0.483 (5)0.441 (5)0.680 (4)0.113 (17)*
H10.010 (3)0.041 (3)0.186 (3)0.047 (8)*
H20.041 (3)0.362 (3)0.333 (3)0.053 (9)*
H2A0.089 (3)0.046 (4)0.382 (3)0.044 (8)*
H2B0.083 (4)0.164 (4)0.433 (3)0.055 (9)*
H3A0.174 (3)0.469 (4)0.162 (3)0.055 (9)*
H50.107 (3)0.139 (4)0.021 (3)0.053 (9)*
H30.457 (4)0.247 (4)0.363 (3)0.054 (9)*
H4A0.319 (3)0.082 (3)0.471 (2)0.033 (7)*
H4B0.312 (4)0.053 (5)0.425 (3)0.075 (11)*
H70.442 (3)0.106 (3)0.249 (3)0.044 (8)*
H80.592 (3)0.006 (3)0.082 (2)0.031 (6)*
H100.607 (4)0.340 (4)0.218 (3)0.058 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0202 (2)0.0277 (2)0.0285 (2)0.0090 (2)0.0034 (2)0.0097 (2)
P20.0230 (2)0.0271 (2)0.0294 (2)0.0115 (2)0.0022 (2)0.0111 (2)
P30.0231 (2)0.0274 (2)0.0304 (2)0.0090 (2)0.0001 (2)0.0093 (2)
O10.0284 (7)0.0669 (11)0.0609 (12)0.0270 (8)0.0119 (7)0.0393 (10)
O20.0306 (7)0.0335 (7)0.0360 (8)0.0039 (6)0.0058 (6)0.0135 (6)
O30.0387 (8)0.0452 (9)0.0345 (8)0.0062 (7)0.0107 (7)0.0020 (7)
O40.0297 (6)0.0388 (7)0.0294 (7)0.0210 (6)0.0047 (5)0.0129 (6)
O50.0454 (9)0.0366 (8)0.0343 (8)0.0224 (7)0.0015 (7)0.0028 (6)
O60.0351 (7)0.0438 (8)0.0376 (8)0.0184 (6)0.0078 (6)0.0226 (7)
O70.0243 (6)0.0320 (7)0.0589 (10)0.0077 (5)0.0042 (6)0.0224 (7)
O80.0254 (6)0.0452 (8)0.0339 (8)0.0124 (6)0.0046 (5)0.0158 (7)
O90.0367 (8)0.0351 (8)0.0601 (11)0.0175 (6)0.0027 (7)0.0196 (7)
Cl10.0841 (5)0.0739 (5)0.0387 (3)0.0499 (4)0.0169 (3)0.0155 (3)
N10.0451 (10)0.0335 (8)0.0322 (9)0.0198 (8)0.0038 (7)0.0142 (7)
N20.0648 (14)0.0380 (10)0.0362 (10)0.0264 (10)0.0150 (9)0.0182 (9)
C10.0409 (10)0.0271 (8)0.0313 (10)0.0126 (8)0.0012 (8)0.0100 (7)
C20.0574 (14)0.0313 (10)0.0330 (11)0.0199 (10)0.0031 (10)0.0127 (8)
C30.0558 (14)0.0339 (10)0.0365 (11)0.0217 (10)0.0022 (10)0.0120 (9)
C40.0482 (12)0.0406 (11)0.0300 (10)0.0220 (10)0.0017 (9)0.0086 (9)
C50.0477 (12)0.0426 (11)0.0323 (10)0.0222 (10)0.0044 (9)0.0169 (9)
Cl20.0848 (6)0.0781 (5)0.0483 (4)0.0413 (5)0.0239 (4)0.0125 (4)
N30.0453 (10)0.0351 (9)0.0389 (10)0.0173 (8)0.0078 (8)0.0190 (8)
N40.0389 (10)0.0384 (10)0.0450 (11)0.0143 (8)0.0103 (8)0.0197 (9)
C60.0299 (9)0.0282 (8)0.0343 (10)0.0084 (7)0.0007 (7)0.0114 (7)
C70.0354 (10)0.0296 (9)0.0368 (10)0.0082 (8)0.0022 (8)0.0147 (8)
C80.0414 (11)0.0421 (11)0.0333 (11)0.0111 (9)0.0019 (9)0.0177 (9)
C90.0447 (12)0.0461 (12)0.0333 (11)0.0171 (10)0.0064 (9)0.0107 (10)
C100.0554 (14)0.0379 (11)0.0444 (13)0.0242 (10)0.0065 (11)0.0127 (10)
Geometric parameters (Å, º) top
Cl1—C41.718 (3)N3—C61.350 (3)
Cl2—C91.722 (3)N3—C101.361 (3)
P1—O21.4612 (17)N4—C61.310 (3)
P1—O11.501 (2)N3—H30.78 (4)
P1—O31.5816 (19)N4—H4B0.93 (4)
P1—O41.5804 (17)N4—H4A0.80 (3)
P2—O41.5981 (17)C1—C21.416 (4)
P2—O7i1.6082 (17)C2—C31.352 (3)
P2—O51.4758 (18)C3—C41.402 (3)
P2—O61.4744 (18)C4—C51.357 (4)
P3—O31.5989 (18)C2—H20.87 (3)
P3—O91.4599 (18)C3—H3A0.98 (4)
P3—O71.5823 (17)C5—H50.87 (3)
P3—O81.4979 (17)C6—C71.415 (3)
O1—H1A0.78 (5)C7—C81.351 (3)
N1—C51.353 (3)C8—C91.401 (4)
N1—C11.347 (3)C9—C101.353 (4)
N2—C11.317 (3)C7—H70.99 (3)
N1—H10.96 (3)C8—H80.86 (2)
N2—H2A0.82 (4)C10—H100.96 (4)
N2—H2B0.80 (3)
O1—P1—O2118.53 (10)C6—N4—H4A123.5 (19)
O1—P1—O3106.68 (11)C6—N4—H4B117 (2)
O1—P1—O4102.68 (10)N1—C1—N2119.7 (2)
O2—P1—O3112.61 (10)N2—C1—C2123.0 (2)
O2—P1—O4114.52 (10)N1—C1—C2117.3 (2)
O3—P1—O499.74 (9)C1—C2—C3120.3 (2)
O4—P2—O5108.10 (10)C2—C3—C4119.9 (3)
O4—P2—O6110.40 (9)C3—C4—C5119.5 (2)
O4—P2—O7i98.08 (9)Cl1—C4—C3120.7 (2)
O5—P2—O6119.81 (10)Cl1—C4—C5119.78 (19)
O5—P2—O7i108.31 (10)N1—C5—C4119.6 (2)
O6—P2—O7i109.93 (10)C1—C2—H2117.0 (19)
O3—P3—O799.05 (10)C3—C2—H2123 (2)
O3—P3—O8109.32 (10)C2—C3—H3A121.8 (19)
O3—P3—O9109.78 (11)C4—C3—H3A118.2 (19)
O7—P3—O8105.20 (10)C4—C5—H5126 (2)
O7—P3—O9111.56 (10)N1—C5—H5114 (2)
O8—P3—O9119.86 (10)N3—C6—C7117.59 (19)
P1—O3—P3134.02 (13)N3—C6—N4120.0 (2)
P1—O4—P2132.54 (10)N4—C6—C7122.37 (18)
P2i—O7—P3126.34 (11)C6—C7—C8119.8 (2)
P1—O1—H1A121 (3)C7—C8—C9120.5 (2)
C1—N1—C5123.4 (2)C8—C9—C10119.4 (2)
C5—N1—H1119.3 (19)Cl2—C9—C8119.51 (19)
C1—N1—H1117.3 (19)Cl2—C9—C10121.1 (2)
C1—N2—H2A121 (2)N3—C10—C9119.5 (2)
H2A—N2—H2B117 (3)C6—C7—H7117.6 (18)
C1—N2—H2B119 (3)C8—C7—H7122.6 (18)
C6—N3—C10123.1 (2)C7—C8—H8124.7 (18)
C6—N3—H3115 (3)C9—C8—H8114.7 (18)
C10—N3—H3122 (3)N3—C10—H10116 (2)
H4A—N4—H4B120 (3)C9—C10—H10125 (2)
O1—P1—O3—P389.53 (18)C5—N1—C1—C20.6 (4)
O2—P1—O3—P342.1 (2)C1—N1—C5—C40.8 (4)
O4—P1—O3—P3163.97 (16)C10—N3—C6—N4177.2 (2)
O1—P1—O4—P2174.03 (14)C10—N3—C6—C72.8 (3)
O2—P1—O4—P244.19 (17)C6—N3—C10—C90.8 (4)
O3—P1—O4—P276.27 (15)N1—C1—C2—C31.3 (4)
O5—P2—O4—P1144.47 (14)N2—C1—C2—C3179.1 (3)
O6—P2—O4—P111.66 (17)C1—C2—C3—C40.7 (4)
O7i—P2—O4—P1103.18 (15)C2—C3—C4—Cl1178.5 (2)
O4—P2—O7i—P3i159.29 (13)C2—C3—C4—C50.7 (4)
O5—P2—O7i—P3i88.53 (15)Cl1—C4—C5—N1177.8 (2)
O6—P2—O7i—P3i44.08 (16)C3—C4—C5—N11.4 (4)
O7—P3—O3—P1134.37 (16)N3—C6—C7—C81.8 (3)
O8—P3—O3—P124.7 (2)N4—C6—C7—C8178.1 (2)
O9—P3—O3—P1108.72 (17)C6—C7—C8—C91.0 (4)
O3—P3—O7—P2i102.22 (14)C7—C8—C9—Cl2176.3 (2)
O8—P3—O7—P2i144.80 (13)C7—C8—C9—C103.0 (4)
O9—P3—O7—P2i13.34 (18)Cl2—C9—C10—N3177.2 (2)
C5—N1—C1—N2179.8 (3)C8—C9—C10—N32.1 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5ii0.96 (3)1.78 (3)2.736 (3)177 (3)
O1—H1A···O8iii0.78 (5)1.66 (5)2.418 (3)165 (5)
N2—H2A···O6ii0.82 (4)2.02 (4)2.844 (3)173 (3)
N2—H2B···O9i0.80 (3)2.29 (3)3.000 (3)149 (4)
N3—H3···O20.78 (4)2.03 (3)2.781 (3)161 (3)
N4—H4A···O20.80 (3)2.57 (3)3.179 (3)134 (2)
N4—H4A···O60.80 (3)2.16 (3)2.827 (3)142 (3)
N4—H4B···O9iv0.93 (4)1.95 (4)2.852 (3)162 (3)
C5—H5···O5v0.87 (3)2.51 (3)3.322 (3)157 (3)
C10—H10···O1iii0.96 (4)2.42 (4)3.262 (3)146 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.96 (3)1.78 (3)2.736 (3)177 (3)
O1—H1A···O8ii0.78 (5)1.66 (5)2.418 (3)165 (5)
N2—H2A···O6i0.82 (4)2.02 (4)2.844 (3)173 (3)
N2—H2B···O9iii0.80 (3)2.29 (3)3.000 (3)149 (4)
N3—H3···O20.78 (4)2.03 (3)2.781 (3)161 (3)
N4—H4A···O20.80 (3)2.57 (3)3.179 (3)134 (2)
N4—H4A···O60.80 (3)2.16 (3)2.827 (3)142 (3)
N4—H4B···O9iv0.93 (4)1.95 (4)2.852 (3)162 (3)
C5—H5···O5v0.87 (3)2.51 (3)3.322 (3)157 (3)
C10—H10···O1ii0.96 (4)2.42 (4)3.262 (3)146 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y, z1.
 

References

First citationAbid, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, i62–i63.  CrossRef CAS IUCr Journals Google Scholar
First citationAkriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2009). Acta Cryst. E65, o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBak, B., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1959). J. Mol. Spectrosc. 2, 361–364.  CrossRef Web of Science Google Scholar
First citationBel Haj Salah, R., Khederi, L. & Rzaigui, M. (2014). Acta Cryst. E70, o61.  CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHemissi, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o779–o780.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKhedhiri, L., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, o2038–o2039.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhedhiri, L., Bel Haj Salah Raoudha, , Belam, W. & Rzaigui, M. (2007). Acta Cryst. E63, o2269–o2271.  Google Scholar
First citationOzin, G. A. (1992). Adv. Mater. 4, 612–649.  CrossRef CAS Web of Science Google Scholar
First citationSchulke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeraski, O., Barry, J. C. & Thomas, J. M. (1987). Nature (London), 330, 58–60.  Google Scholar
First citationToumi Akriche, S., Rzaigui, M., Elothman, Z. A. & Mahfouz, R. M. (2010). Acta Cryst. E66, o358.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o342-o343
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds