organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­methyl-2-(pyridin-2-yl)-1-[(pyri­din-2-yl)meth­yl]-1H-benzimidazole

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 12 February 2014; accepted 19 February 2014; online 26 February 2014)

The title compound, C20H18N4, was obtained via the condensation of 4,5-di­methyl­benzene-1,2-di­amine with pyridine-2-carbaldehyde. The plane of the 2-(pyridin-2-yl) substitutent is canted by 2.75 (11)° from the plane of the benzimidazole system. The mol­ecule exhibits an S(6) C—H⋯N intra­molecular hydrogen-bond motif. In the crystal, C—H⋯N hydrogen bonds link pairs of mol­ecules related by a crystallographic inversion center, forming R22(20) rings. Additional weak C—H⋯N hydrogen bonds result in C(9) chains parallel to [001].

Related literature

Reich et al. (2004[Reich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357-1359.]) provide examples of inter­molecular aldimine coupling. For a discussion of the biological activity of benzimidazole derivatives, see: López-Rodríguez et al. (1999[López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020-5028.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]). For the structure of 2-(pyridin-4-yl)-1H-benzimidazole, see: Geiger & Bond (2013[Geiger, D. K. & Bond, C. J. (2013). Acta Cryst. E69, o869.]), and for its trihydrate, see: Huang et al. (2004[Huang, X.-C., Zeng, M.-H. & Ng, S. W. (2004). Acta Cryst. E60, o939-o940.]). For the structure of 5,6-di­methyl­benzimidazole, see: Lee & Scheidt (1986[Lee, YoungJa & Scheidt, W. R. (1986). Acta Cryst. C42, 1652-1654.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4

  • Mr = 314.38

  • Monoclinic, C 2/c

  • a = 35.544 (4) Å

  • b = 6.1194 (5) Å

  • c = 16.5050 (19) Å

  • β = 113.273 (4)°

  • V = 3297.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.60 × 0.30 × 0.06 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.45, Tmax = 1.00

  • 8660 measured reflections

  • 3501 independent reflections

  • 2402 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.154

  • S = 1.03

  • 3501 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯N3 0.99 2.35 2.948 (3) 118
C11—H11⋯N4i 0.95 2.61 3.315 (3) 131
C17—H17⋯N2ii 0.95 2.74 3.368 (3) 125
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives are of interest because of their pharmacological uses. Examples include inhibitors of serotonin activated neurotransmission drugs (López-Rodríguez et al., 1999) and antiarrhythmic, antihistamine, antiulcer, anticancer, fungicidal, and anthelmintical drugs (Horton et al., 2003). The title compound was prepared as part of our efforts to prepare benzimidazole analogues which have substitutents capable of binding metals (Geiger & Bond, 2013).

The benzimidazole ring system is planar with the largest deviation from planarity for N1 of 0.0173 (13) Å. The largest deviation from planarity in the 2-(pyridin-2-yl) substituent occurs for C9 of 0.0030 (17) Å. The pyridine ring and the benzimidazole ring system are almost coplanar. The angle between the two mean planes is 2.75 (11)°. The 2-(pyridin-2-yl) substituent N atom is syn to the 1-(pyridin-2-ylmethyl)substituent, resulting in a weak C—H···N S(6) intramolecular hydrogen-bond motif with a C13···N3 distance of 2.948 (3) Å and a C13—H13A···N3 angle of 118.4°. The 1-(pyridin-2-ylmethyl) substituent pyridine ring exhibits a high degree of planarity. The largest deviation is 0.0079 (13) Å for N4.

The solid-state structure displays extensive intermolecular interactions. Pairs of molecules related by crystallographic inversion centers are joined by two weak C11—H11···N4 H-bonds. As shown in Figure 2, the result is an R22(20) ring with C···N = 3.315 (3) Å and a C—H···N angle of 131°.

Additionally, weak C17—H17···N2 interactions link molecules into C(9) chains parallel to [001] (Figure 3). The C—N nonbonded contact is 3.368 (3) Å and the C—H···N angle is 125°.

Related literature top

Reich et al. (2004) provide examples of intermolecular aldimine coupling. For a discussion of the biological activity of benzimidazole derivatives, see: López-Rodríguez et al. (1999); Horton et al. (2003). For the structure of 2-(pyridin-4-yl)-1H-benzimidazole, see: Geiger & Bond (2013), and for its trihydrate, see: Huang et al. (2004). For the structure of 5,6-dimethylbenzimidazole, see: Lee & Scheidt (1986).

Experimental top

4,5-dimethyl-1,2-diaminobenzene (2.00 g, 14.7 mmole) was stirred in absolute ethanol (60 ml) for five minutes under nitrogen. 2-pyridinecarboxaldehyde (2.80 ml, 3.15 g, 29.4 mmole) was added dropwise to the reaction mixture with stirring at room temperature. After 24 h, the solution had turned from red to orange with the formation of a precipitate. The reaction mixture was chilled and then filtered using an HPLC grade filter and washed with water. The orange solid was dried yielding 1.37 g (29.7% yield) of pure product. 1H NMR (400 MHz, CDCl3, p.p.m.): 2.33 (s, 3H), 2.38 (s, 3H), 6.24 (s, 2H), 6.83 (d, 1H), 7.11 (s, 1H), 7.14 (t, 1H), 7.27 (t, 1H), 7.47 (t, 1H), 7.62 (s, 1H), 7.81 (t, 1H), 8.43 (d, 1H), 8.53 (d, 1H), 8.60 (d, 1H). 13C NMR (CDCl3, p.p.m.): 20.4, 20.7, 51.1, 110.7, 120.1, 120.8, 122.2, 123.6, 124.3, 132.0, 133.2, 135.4, 136.8, 136.9, 141.4, 148.6, 149.1, 149.1, 150.6, 157.8.

Single crystals suitable for X-ray diffraction were obtained via vapor diffusion of hexane into an ethanol solution of the product at ambient temperature.

Refinement top

All hydrogen atoms were observed in difference fourier maps. The H atoms were refined using a riding model with a C—H distance of 0.99 Å for the methylene carbon atoms, 0.98 Å for the methyl carbon atoms and 0.95 Å for the phenyl and pyridine carbon atoms. The methyl C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso = 1.5Ueq. All other C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso = 1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Anisotropic displacement parameters are displayed at the 50% probability level.
[Figure 2] Fig. 2. Pairs of molecules related by a crystallographic inversion center. The second molecule* is generated by the operation -x, -y, 1 - z. Dashed lines denote the C11—H11···N4 hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing viewed along b-axis with the intermolecular C17—H17···N2 hydrogen bonds (dashed lines) resulting in infinite chains parallel to [001]. Hydrogen atoms, except H17, have been omitted for clarity.
5,6-Dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole top
Crystal data top
C20H18N4F(000) = 1328
Mr = 314.38Dx = 1.266 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.544 (4) ÅCell parameters from 3800 reflections
b = 6.1194 (5) Åθ = 2.5–26.8°
c = 16.5050 (19) ŵ = 0.08 mm1
β = 113.273 (4)°T = 200 K
V = 3297.9 (6) Å3Prism, colourless
Z = 80.60 × 0.30 × 0.06 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3501 independent reflections
Radiation source: XOS X-beam microfocus source2402 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.061
Detector resolution: 8.3330 pixels mm-1θmax = 27.1°, θmin = 2.5°
ω scansh = 4545
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 76
Tmin = 0.45, Tmax = 1.00l = 2121
8660 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0585P)2 + 1.1674P]
where P = (Fo2 + 2Fc2)/3
3501 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H18N4V = 3297.9 (6) Å3
Mr = 314.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 35.544 (4) ŵ = 0.08 mm1
b = 6.1194 (5) ÅT = 200 K
c = 16.5050 (19) Å0.60 × 0.30 × 0.06 mm
β = 113.273 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
3501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2402 reflections with I > 2σ(I)
Tmin = 0.45, Tmax = 1.00Rint = 0.061
8660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3501 reflectionsΔρmin = 0.26 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12573 (5)0.1608 (2)0.70519 (10)0.0282 (4)
N20.12580 (5)0.4886 (3)0.76699 (11)0.0310 (4)
N30.03658 (5)0.2057 (3)0.61214 (13)0.0482 (5)
N40.11122 (5)0.1414 (3)0.50291 (12)0.0366 (4)
C10.16607 (6)0.2056 (3)0.76024 (13)0.0289 (4)
C20.16544 (6)0.4083 (3)0.79875 (13)0.0298 (4)
C30.20184 (6)0.4972 (3)0.85981 (14)0.0345 (5)
H30.20160.6350.88610.041*
C40.23817 (6)0.3845 (3)0.88192 (14)0.0342 (5)
C50.23848 (6)0.1778 (3)0.84098 (14)0.0355 (5)
C60.20272 (6)0.0883 (3)0.78064 (14)0.0335 (5)
H60.20290.04870.75370.04*
C70.10284 (6)0.3384 (3)0.71141 (13)0.0299 (4)
C80.05821 (6)0.3659 (3)0.66471 (14)0.0333 (5)
C90.04023 (7)0.5580 (4)0.67726 (17)0.0437 (6)
H90.05650.66860.71560.052*
C100.00146 (7)0.5856 (4)0.63336 (18)0.0517 (6)
H100.01430.71590.64070.062*
C110.02436 (7)0.4211 (4)0.57853 (17)0.0524 (6)
H110.05310.43560.54750.063*
C120.00429 (7)0.2366 (4)0.57030 (18)0.0554 (7)
H120.02010.12340.53290.067*
C130.11412 (6)0.0225 (3)0.64333 (13)0.0310 (4)
H13A0.08580.06750.63260.037*
H13B0.13240.14780.67040.037*
C140.11648 (5)0.0312 (3)0.55631 (12)0.0254 (4)
C150.12293 (6)0.2405 (3)0.53268 (13)0.0315 (5)
H150.12660.35930.57210.038*
C160.12391 (6)0.2736 (3)0.45063 (15)0.0371 (5)
H160.12860.41560.43320.045*
C170.11803 (7)0.0989 (3)0.39455 (14)0.0399 (5)
H170.11830.11760.33770.048*
C180.11168 (8)0.1032 (4)0.42288 (15)0.0451 (6)
H180.10740.22330.38380.054*
C410.27737 (6)0.4761 (4)0.94972 (17)0.0465 (6)
H41A0.27160.61460.97240.07*
H41B0.2970.50130.92240.07*
H41C0.2890.3720.99840.07*
C510.27837 (7)0.0560 (4)0.86530 (17)0.0480 (6)
H51A0.27360.07970.83110.072*
H51B0.28960.02130.92840.072*
H51C0.29790.14720.85220.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0317 (8)0.0268 (9)0.0281 (9)0.0039 (7)0.0139 (7)0.0029 (7)
N20.0330 (8)0.0303 (9)0.0319 (10)0.0014 (7)0.0151 (7)0.0027 (7)
N30.0370 (10)0.0491 (12)0.0518 (13)0.0056 (9)0.0103 (9)0.0130 (10)
N40.0512 (10)0.0269 (9)0.0325 (10)0.0042 (8)0.0173 (8)0.0045 (8)
C10.0338 (10)0.0298 (11)0.0237 (10)0.0032 (8)0.0119 (8)0.0023 (8)
C20.0323 (10)0.0297 (11)0.0298 (11)0.0004 (8)0.0148 (8)0.0025 (8)
C30.0363 (10)0.0311 (11)0.0375 (13)0.0045 (9)0.0161 (9)0.0048 (9)
C40.0360 (11)0.0357 (11)0.0319 (12)0.0044 (9)0.0143 (9)0.0024 (9)
C50.0366 (11)0.0362 (12)0.0358 (12)0.0027 (9)0.0165 (9)0.0086 (10)
C60.0413 (11)0.0270 (10)0.0348 (12)0.0028 (9)0.0177 (9)0.0015 (9)
C70.0347 (10)0.0313 (11)0.0267 (11)0.0021 (8)0.0155 (8)0.0003 (9)
C80.0333 (10)0.0379 (12)0.0298 (11)0.0050 (9)0.0138 (9)0.0002 (9)
C90.0394 (12)0.0399 (13)0.0543 (15)0.0011 (10)0.0210 (11)0.0060 (11)
C100.0393 (12)0.0505 (14)0.0666 (18)0.0025 (11)0.0224 (12)0.0015 (13)
C110.0298 (11)0.0626 (16)0.0607 (17)0.0003 (11)0.0134 (11)0.0003 (13)
C120.0367 (12)0.0593 (16)0.0602 (18)0.0044 (11)0.0082 (11)0.0119 (13)
C130.0401 (10)0.0241 (10)0.0303 (11)0.0057 (8)0.0154 (9)0.0039 (8)
C140.0222 (8)0.0240 (10)0.0284 (10)0.0005 (7)0.0084 (7)0.0018 (8)
C150.0380 (10)0.0244 (10)0.0346 (12)0.0002 (8)0.0169 (9)0.0002 (8)
C160.0465 (12)0.0291 (11)0.0415 (13)0.0054 (9)0.0236 (10)0.0082 (9)
C170.0543 (13)0.0425 (13)0.0284 (12)0.0073 (10)0.0222 (10)0.0047 (10)
C180.0663 (15)0.0369 (12)0.0358 (13)0.0026 (11)0.0241 (11)0.0092 (10)
C410.0340 (11)0.0510 (14)0.0512 (15)0.0066 (10)0.0135 (11)0.0021 (11)
C510.0426 (12)0.0496 (14)0.0510 (16)0.0097 (11)0.0174 (11)0.0069 (12)
Geometric parameters (Å, º) top
N1—C71.385 (2)C10—C111.383 (4)
N1—C11.388 (2)C10—H100.95
N1—C131.462 (2)C11—C121.371 (3)
N2—C71.327 (2)C11—H110.95
N2—C21.385 (2)C12—H120.95
N3—C81.333 (3)C13—C141.508 (3)
N3—C121.353 (3)C13—H13A0.99
N4—C141.341 (2)C13—H13B0.99
N4—C181.348 (3)C14—C151.384 (3)
C1—C21.398 (3)C15—C161.383 (3)
C1—C61.407 (3)C15—H150.95
C2—C31.398 (3)C16—C171.375 (3)
C3—C41.380 (3)C16—H160.95
C3—H30.95C17—C181.372 (3)
C4—C51.436 (3)C17—H170.95
C4—C411.509 (3)C18—H180.95
C5—C61.381 (3)C41—H41A0.98
C5—C511.509 (3)C41—H41B0.98
C6—H60.95C41—H41C0.98
C7—C81.474 (3)C51—H51A0.98
C8—C91.392 (3)C51—H51B0.98
C9—C101.379 (3)C51—H51C0.98
C9—H90.95
C7—N1—C1106.36 (15)C10—C11—H11121.0
C7—N1—C13129.91 (17)N3—C12—C11124.1 (2)
C1—N1—C13122.81 (16)N3—C12—H12118.0
C7—N2—C2105.77 (16)C11—C12—H12118.0
C8—N3—C12117.1 (2)N1—C13—C14113.04 (15)
C14—N4—C18117.07 (17)N1—C13—H13A109.0
N1—C1—C2105.94 (16)C14—C13—H13A109.0
N1—C1—C6132.48 (18)N1—C13—H13B109.0
C2—C1—C6121.58 (18)C14—C13—H13B109.0
N2—C2—C1109.84 (17)H13A—C13—H13B107.8
N2—C2—C3130.41 (18)N4—C14—C15122.64 (17)
C1—C2—C3119.75 (17)N4—C14—C13114.13 (16)
C4—C3—C2119.94 (19)C15—C14—C13123.22 (16)
C4—C3—H3120.0C16—C15—C14118.86 (18)
C2—C3—H3120.0C16—C15—H15120.6
C3—C4—C5119.74 (19)C14—C15—H15120.6
C3—C4—C41120.26 (19)C17—C16—C15119.26 (18)
C5—C4—C41119.99 (18)C17—C16—H16120.4
C6—C5—C4120.85 (18)C15—C16—H16120.4
C6—C5—C51119.74 (19)C18—C17—C16118.25 (19)
C4—C5—C51119.41 (19)C18—C17—H17120.9
C5—C6—C1118.13 (18)C16—C17—H17120.9
C5—C6—H6120.9N4—C18—C17123.9 (2)
C1—C6—H6120.9N4—C18—H18118.1
N2—C7—N1112.07 (17)C17—C18—H18118.1
N2—C7—C8121.56 (17)C4—C41—H41A109.5
N1—C7—C8126.37 (18)C4—C41—H41B109.5
N3—C8—C9122.5 (2)H41A—C41—H41B109.5
N3—C8—C7118.75 (18)C4—C41—H41C109.5
C9—C8—C7118.74 (19)H41A—C41—H41C109.5
C10—C9—C8119.1 (2)H41B—C41—H41C109.5
C10—C9—H9120.4C5—C51—H51A109.5
C8—C9—H9120.4C5—C51—H51B109.5
C9—C10—C11119.2 (2)H51A—C51—H51B109.5
C9—C10—H10120.4C5—C51—H51C109.5
C11—C10—H10120.4H51A—C51—H51C109.5
C12—C11—C10118.0 (2)H51B—C51—H51C109.5
C12—C11—H11121.0
C7—N1—C1—C21.14 (19)C1—N1—C7—C8180.00 (18)
C13—N1—C1—C2171.16 (16)C13—N1—C7—C810.9 (3)
C7—N1—C1—C6179.63 (19)C12—N3—C8—C90.1 (3)
C13—N1—C1—C69.6 (3)C12—N3—C8—C7179.9 (2)
C7—N2—C2—C10.6 (2)N2—C7—C8—N3177.59 (18)
C7—N2—C2—C3179.1 (2)N1—C7—C8—N31.5 (3)
N1—C1—C2—N21.1 (2)N2—C7—C8—C92.3 (3)
C6—C1—C2—N2179.58 (17)N1—C7—C8—C9178.59 (18)
N1—C1—C2—C3178.63 (18)N3—C8—C9—C100.5 (3)
C6—C1—C2—C30.7 (3)C7—C8—C9—C10179.6 (2)
N2—C2—C3—C4179.53 (19)C8—C9—C10—C110.5 (4)
C1—C2—C3—C40.1 (3)C9—C10—C11—C120.1 (4)
C2—C3—C4—C51.0 (3)C8—N3—C12—C110.3 (4)
C2—C3—C4—C41178.20 (19)C10—C11—C12—N30.3 (4)
C3—C4—C5—C61.0 (3)C7—N1—C13—C1482.2 (2)
C41—C4—C5—C6178.14 (19)C1—N1—C13—C1485.3 (2)
C3—C4—C5—C51179.78 (19)C18—N4—C14—C151.2 (3)
C41—C4—C5—C511.1 (3)C18—N4—C14—C13177.96 (18)
C4—C5—C6—C10.2 (3)N1—C13—C14—N4171.72 (16)
C51—C5—C6—C1179.41 (18)N1—C13—C14—C159.1 (3)
N1—C1—C6—C5178.49 (19)N4—C14—C15—C160.2 (3)
C2—C1—C6—C50.6 (3)C13—C14—C15—C16178.92 (18)
C2—N2—C7—N10.2 (2)C14—C15—C16—C170.7 (3)
C2—N2—C7—C8179.37 (17)C15—C16—C17—C180.5 (3)
C1—N1—C7—N20.8 (2)C14—N4—C18—C171.4 (3)
C13—N1—C7—N2169.90 (17)C16—C17—C18—N40.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N30.992.352.948 (3)118
C11—H11···N4i0.952.613.315 (3)131
C17—H17···N2ii0.952.743.368 (3)125
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N30.992.352.948 (3)118.4
C11—H11···N4i0.952.613.315 (3)130.8
C17—H17···N2ii0.952.743.368 (3)124.7
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z1/2.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeiger, D. K. & Bond, C. J. (2013). Acta Cryst. E69, o869.  CSD CrossRef IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, X.-C., Zeng, M.-H. & Ng, S. W. (2004). Acta Cryst. E60, o939–o940.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, YoungJa & Scheidt, W. R. (1986). Acta Cryst. C42, 1652–1654.  Google Scholar
First citationLópez-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020–5028.  Web of Science PubMed Google Scholar
First citationReich, B. J. E., Justice, A. K., Beckstead, B. T., Reibenspies, J. H. & Miller, S. A. (2004). J. Org. Chem. 69, 1357–1359.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds