organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-3-cyclo­hexyl­sulfinyl-2,4,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 2 February 2014; accepted 12 February 2014; online 15 February 2014)

In the title compound, C17H21BrO2S, the cyclo­hexyl ring adopts a chair conformation and the aryl­sulfinyl unit is positioned equatorially relative to the cyclo­hexyl group. The benzo­furan unit is essentially planar, with an r.m.s. deviation of 0.016 (2) Å. In the crystal, mol­ecules are linked by weak C—H⋯O, C—H⋯π and Br⋯π [3.663 (2) Å] inter­actions, resulting in a three-dimensional network. A Br⋯Br [3.6838 (6) Å] contact is observed. The O atom of the sulfinyl group is disordered over two orientations with an occupancy ratio of 0.863 (5):0.137 (5).

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o527.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1039.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21BrO2S

  • Mr = 369.31

  • Triclinic, [P \overline 1]

  • a = 5.9051 (4) Å

  • b = 11.7060 (9) Å

  • c = 12.7906 (10) Å

  • α = 65.839 (4)°

  • β = 85.795 (4)°

  • γ = 83.394 (4)°

  • V = 801.01 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.70 mm−1

  • T = 173 K

  • 0.38 × 0.29 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.429, Tmax = 0.520

  • 14547 measured reflections

  • 3981 independent reflections

  • 3419 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 1.05

  • 3981 reflections

  • 203 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2Ai 1.00 2.44 3.355 (3) 151
C11—H11CCg1ii 0.98 2.83 3.547 (3) 130
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-bromo-3-cyclohexylsulfinyl-1-benzofuran derivatives containing a methyl group in 2-position (Choi et al. , 2011a) and methyl substituents in the 2,7-positions (Choi et al. , 2011b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.016 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclohexyl ring is in the chair form and the arylsulfinyl moiety is positioned equatorial relative to the cyclohexyl group. The O atom of the sulfinyl group is disordered over two positions with site-occupancy factors, from refinement, of 0.863 (5) (part A) and 0.137 (5) (part B). In the crystal structure (Fig. 2), molecules are connected by weak C—H···O and C—H···π hydrogen bonds (Table 1; Cg1 is the centroid of the C2–C7 benzene ring), and by C4—Br1···π interactions between the bromine atom and the furan ring of a neighbouring molecule with a Br1···Cg2i = 3.663 (2) Å (Cg2 is the centroid of the C1/C2/C7/O1/C8 furan ring). The crystal packing (Fig. 2) also exhibits a Br1···Br1iii contact at 3.6838 (6) Å.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2011a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-3-cyclohexylsulfanyl-2,4,6-trimethyl-1-benzofuran (282 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 450–451 K; Rf = 0.46 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.0 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq for methyl H atoms. The positions of methyl hydrogens were optimized rotationally. The O atom of sulfinyl group is disordered over two positions with site-ccupancy factors, from refinement of 0.863 (5) (part A) and 0.137 (5) (part B). The distance of S—O sets was restrained to 0.001 Å using command SADI and DELU.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The O atom of the sulfinyl group is disordered over two positions with site-occupancy factors, of 0.863 (5) (part A) and 0.137 (5) (part B).
[Figure 2] Fig. 2. A view of the C—H···O, C—H···π and C—Br···π and Br···Br interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) - x - 1, - y + 2, - z.]
5-Bromo-3-cyclohexylsulfinyl-2,4,6-trimethyl-1-benzofuran top
Crystal data top
C17H21BrO2SZ = 2
Mr = 369.31F(000) = 380
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Melting point = 450–451 K
a = 5.9051 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7060 (9) ÅCell parameters from 6652 reflections
c = 12.7906 (10) Åθ = 3.1–28.4°
α = 65.839 (4)°µ = 2.70 mm1
β = 85.795 (4)°T = 173 K
γ = 83.394 (4)°Block, colourless
V = 801.01 (10) Å30.38 × 0.29 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3981 independent reflections
Radiation source: rotating anode3419 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.038
Detector resolution: 10.0 pixels mm-1θmax = 28.5°, θmin = 3.1°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.429, Tmax = 0.520l = 1717
14547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.091H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0292P)2 + 1.0109P]
where P = (Fo2 + 2Fc2)/3
3981 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 1.28 e Å3
4 restraintsΔρmin = 0.88 e Å3
Crystal data top
C17H21BrO2Sγ = 83.394 (4)°
Mr = 369.31V = 801.01 (10) Å3
Triclinic, P1Z = 2
a = 5.9051 (4) ÅMo Kα radiation
b = 11.7060 (9) ŵ = 2.70 mm1
c = 12.7906 (10) ÅT = 173 K
α = 65.839 (4)°0.38 × 0.29 × 0.28 mm
β = 85.795 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3419 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.520Rint = 0.038
14547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 1.28 e Å3
3981 reflectionsΔρmin = 0.88 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.27560 (5)0.86915 (3)0.02612 (2)0.03843 (10)
S10.58237 (11)0.47281 (6)0.18104 (6)0.03238 (15)
O10.4834 (3)0.69082 (15)0.35369 (15)0.0281 (4)
O2A0.8063 (4)0.4118 (2)0.2215 (2)0.0408 (6)0.863 (5)
O2B0.637 (2)0.5186 (11)0.0592 (3)0.036 (3)0.137 (5)
C10.4916 (4)0.5828 (2)0.2422 (2)0.0231 (5)
C20.2955 (4)0.6766 (2)0.2109 (2)0.0222 (4)
C30.1240 (4)0.7157 (2)0.1289 (2)0.0232 (5)
C40.0359 (4)0.8119 (2)0.1324 (2)0.0264 (5)
C50.0339 (4)0.8713 (2)0.2086 (2)0.0290 (5)
C60.1401 (4)0.8330 (2)0.2854 (2)0.0290 (5)
H60.14980.87090.33770.035*
C70.2994 (4)0.7378 (2)0.2837 (2)0.0246 (5)
C80.5969 (4)0.5962 (2)0.3264 (2)0.0273 (5)
C90.1167 (4)0.6589 (2)0.0433 (2)0.0292 (5)
H9A0.00240.60060.06690.044*
H9B0.26470.61310.03950.044*
H9C0.08290.72570.03230.044*
C100.2122 (5)0.9752 (2)0.2065 (3)0.0404 (7)
H10A0.18161.00350.26600.061*
H10B0.36330.94380.22100.061*
H10C0.20781.04570.13130.061*
C110.8011 (5)0.5326 (3)0.3952 (2)0.0345 (6)
H11A0.88680.47730.36280.052*
H11B0.75350.48260.47450.052*
H11C0.89800.59580.39380.052*
C120.3727 (4)0.3601 (2)0.2543 (2)0.0236 (5)
H120.21680.40610.24050.028*
C130.4062 (5)0.2963 (3)0.3826 (2)0.0361 (6)
H13A0.38310.35990.41570.043*
H13B0.56430.25620.39760.043*
C140.2387 (6)0.1967 (3)0.4400 (2)0.0447 (7)
H14A0.26940.15300.52280.054*
H14B0.08110.23810.43200.054*
C150.2590 (6)0.1012 (3)0.3867 (3)0.0442 (7)
H15A0.14320.04070.42260.053*
H15B0.41160.05380.40160.053*
C160.2251 (5)0.1658 (3)0.2582 (2)0.0380 (6)
H16A0.06710.20610.24370.046*
H16B0.24640.10210.22510.046*
C170.3923 (5)0.2649 (2)0.1994 (2)0.0312 (5)
H17A0.35920.30910.11690.037*
H17B0.54990.22370.20640.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02588 (14)0.03838 (16)0.03727 (16)0.00417 (10)0.00621 (10)0.00237 (11)
S10.0252 (3)0.0267 (3)0.0457 (4)0.0040 (2)0.0114 (3)0.0168 (3)
O10.0262 (9)0.0269 (8)0.0338 (9)0.0042 (7)0.0043 (7)0.0140 (7)
O2A0.0242 (10)0.0408 (13)0.0592 (16)0.0009 (8)0.0026 (9)0.0238 (11)
O2B0.036 (8)0.037 (7)0.0463 (14)0.002 (5)0.009 (2)0.029 (5)
C10.0189 (11)0.0204 (10)0.0280 (11)0.0024 (8)0.0018 (9)0.0082 (9)
C20.0185 (11)0.0198 (10)0.0274 (11)0.0033 (8)0.0016 (9)0.0086 (9)
C30.0201 (11)0.0214 (10)0.0247 (11)0.0036 (8)0.0019 (9)0.0059 (9)
C40.0201 (11)0.0221 (10)0.0294 (12)0.0022 (8)0.0003 (9)0.0028 (9)
C50.0250 (12)0.0194 (10)0.0373 (13)0.0025 (9)0.0080 (10)0.0075 (10)
C60.0321 (13)0.0223 (11)0.0348 (13)0.0063 (9)0.0051 (10)0.0138 (10)
C70.0237 (11)0.0228 (10)0.0269 (11)0.0059 (9)0.0002 (9)0.0086 (9)
C80.0216 (11)0.0238 (11)0.0332 (13)0.0042 (9)0.0006 (9)0.0078 (10)
C90.0275 (12)0.0318 (12)0.0278 (12)0.0014 (10)0.0037 (10)0.0116 (10)
C100.0358 (15)0.0259 (12)0.0544 (18)0.0032 (11)0.0080 (13)0.0143 (12)
C110.0257 (13)0.0370 (14)0.0360 (14)0.0034 (10)0.0073 (11)0.0089 (11)
C120.0211 (11)0.0225 (10)0.0277 (11)0.0013 (8)0.0014 (9)0.0110 (9)
C130.0481 (17)0.0338 (13)0.0275 (13)0.0066 (12)0.0022 (11)0.0124 (11)
C140.068 (2)0.0347 (14)0.0303 (14)0.0148 (14)0.0144 (14)0.0118 (12)
C150.062 (2)0.0276 (13)0.0407 (16)0.0113 (13)0.0105 (14)0.0115 (12)
C160.0459 (17)0.0315 (13)0.0416 (15)0.0113 (12)0.0049 (13)0.0190 (12)
C170.0396 (15)0.0261 (11)0.0302 (13)0.0045 (10)0.0038 (11)0.0141 (10)
Geometric parameters (Å, º) top
Br1—C41.903 (2)C10—H10A0.9800
Br1—Br1i3.6838 (6)C10—H10B0.9800
S1—O2B1.450 (2)C10—H10C0.9800
S1—O2A1.451 (2)C11—H11A0.9800
S1—C11.778 (2)C11—H11B0.9800
S1—C121.830 (2)C11—H11C0.9800
O1—C71.373 (3)C12—C131.516 (3)
O1—C81.381 (3)C12—C171.531 (3)
C1—C81.353 (3)C12—H121.0000
C1—C21.457 (3)C13—C141.528 (4)
C2—C71.392 (3)C13—H13A0.9900
C2—C31.411 (3)C13—H13B0.9900
C3—C41.397 (3)C14—C151.519 (4)
C3—C91.501 (3)C14—H14A0.9900
C4—C51.412 (4)C14—H14B0.9900
C5—C61.379 (4)C15—C161.520 (4)
C5—C101.506 (3)C15—H15A0.9900
C6—C71.379 (3)C15—H15B0.9900
C6—H60.9500C16—C171.526 (4)
C8—C111.482 (3)C16—H16A0.9900
C9—H9A0.9800C16—H16B0.9900
C9—H9B0.9800C17—H17A0.9900
C9—H9C0.9800C17—H17B0.9900
C4—Br1—Br1i129.48 (8)H10B—C10—H10C109.5
O2B—S1—O2A97.6 (6)C8—C11—H11A109.5
O2B—S1—C1119.2 (5)C8—C11—H11B109.5
O2A—S1—C1110.03 (13)H11A—C11—H11B109.5
O2B—S1—C12123.9 (6)C8—C11—H11C109.5
O2A—S1—C12107.98 (13)H11A—C11—H11C109.5
C1—S1—C1297.78 (11)H11B—C11—H11C109.5
C7—O1—C8106.35 (18)C13—C12—C17111.8 (2)
C8—C1—C2106.9 (2)C13—C12—S1112.15 (18)
C8—C1—S1125.76 (19)C17—C12—S1107.30 (17)
C2—C1—S1127.31 (18)C13—C12—H12108.5
C7—C2—C3119.2 (2)C17—C12—H12108.5
C7—C2—C1104.7 (2)S1—C12—H12108.5
C3—C2—C1136.1 (2)C12—C13—C14110.8 (2)
C4—C3—C2115.2 (2)C12—C13—H13A109.5
C4—C3—C9122.7 (2)C14—C13—H13A109.5
C2—C3—C9122.1 (2)C12—C13—H13B109.5
C3—C4—C5125.2 (2)C14—C13—H13B109.5
C3—C4—Br1118.04 (19)H13A—C13—H13B108.1
C5—C4—Br1116.76 (18)C15—C14—C13111.2 (2)
C6—C5—C4117.9 (2)C15—C14—H14A109.4
C6—C5—C10120.1 (2)C13—C14—H14A109.4
C4—C5—C10122.0 (2)C15—C14—H14B109.4
C7—C6—C5117.9 (2)C13—C14—H14B109.4
C7—C6—H6121.1H14A—C14—H14B108.0
C5—C6—H6121.1C14—C15—C16110.9 (2)
O1—C7—C6124.6 (2)C14—C15—H15A109.5
O1—C7—C2110.9 (2)C16—C15—H15A109.5
C6—C7—C2124.5 (2)C14—C15—H15B109.5
C1—C8—O1111.1 (2)C16—C15—H15B109.5
C1—C8—C11134.8 (2)H15A—C15—H15B108.0
O1—C8—C11114.1 (2)C15—C16—C17111.6 (2)
C3—C9—H9A109.5C15—C16—H16A109.3
C3—C9—H9B109.5C17—C16—H16A109.3
H9A—C9—H9B109.5C15—C16—H16B109.3
C3—C9—H9C109.5C17—C16—H16B109.3
H9A—C9—H9C109.5H16A—C16—H16B108.0
H9B—C9—H9C109.5C16—C17—C12110.3 (2)
C5—C10—H10A109.5C16—C17—H17A109.6
C5—C10—H10B109.5C12—C17—H17A109.6
H10A—C10—H10B109.5C16—C17—H17B109.6
C5—C10—H10C109.5C12—C17—H17B109.6
H10A—C10—H10C109.5H17A—C17—H17B108.1
O2B—S1—C1—C8120.2 (7)C8—O1—C7—C21.0 (3)
O2A—S1—C1—C88.9 (3)C5—C6—C7—O1179.1 (2)
C12—S1—C1—C8103.5 (2)C5—C6—C7—C20.8 (4)
O2B—S1—C1—C258.4 (7)C3—C2—C7—O1177.3 (2)
O2A—S1—C1—C2169.7 (2)C1—C2—C7—O11.4 (3)
C12—S1—C1—C277.8 (2)C3—C2—C7—C62.7 (4)
C8—C1—C2—C71.3 (3)C1—C2—C7—C6178.6 (2)
S1—C1—C2—C7179.92 (17)C2—C1—C8—O10.7 (3)
C8—C1—C2—C3177.1 (3)S1—C1—C8—O1179.52 (16)
S1—C1—C2—C31.7 (4)C2—C1—C8—C11179.9 (3)
C7—C2—C3—C42.7 (3)S1—C1—C8—C111.2 (4)
C1—C2—C3—C4179.2 (2)C7—O1—C8—C10.2 (3)
C7—C2—C3—C9176.6 (2)C7—O1—C8—C11179.2 (2)
C1—C2—C3—C91.6 (4)O2B—S1—C12—C13160.6 (7)
C2—C3—C4—C51.1 (3)O2A—S1—C12—C1347.9 (2)
C9—C3—C4—C5178.1 (2)C1—S1—C12—C1366.1 (2)
C2—C3—C4—Br1179.22 (16)O2B—S1—C12—C1737.5 (7)
C9—C3—C4—Br11.5 (3)O2A—S1—C12—C1775.2 (2)
Br1i—Br1—C4—C3175.07 (14)C1—S1—C12—C17170.76 (17)
Br1i—Br1—C4—C54.6 (2)C17—C12—C13—C1455.7 (3)
C3—C4—C5—C60.7 (4)S1—C12—C13—C14176.3 (2)
Br1—C4—C5—C6179.00 (18)C12—C13—C14—C1555.8 (4)
C3—C4—C5—C10179.6 (2)C13—C14—C15—C1656.1 (4)
Br1—C4—C5—C100.0 (3)C14—C15—C16—C1756.3 (4)
C4—C5—C6—C70.8 (3)C15—C16—C17—C1255.5 (3)
C10—C5—C6—C7179.8 (2)C13—C12—C17—C1655.4 (3)
C8—O1—C7—C6179.0 (2)S1—C12—C17—C16178.79 (19)
Symmetry code: (i) x1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2Aii1.002.443.355 (3)151
C11—H11C···Cg1iii0.982.833.547 (3)130
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O2Ai1.002.443.355 (3)151.2
C11—H11C···Cg1ii0.982.833.547 (3)130.4
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011a). Acta Cryst. E67, o527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011b). Acta Cryst. E67, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds