organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Benzyl­sulfanyl-1,3,4-thia­diazol-2-yl)-2-(piperidin-1-yl)acetamide

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: raxul@mail.ru

(Received 20 December 2013; accepted 29 January 2014; online 5 February 2014)

The title compound, C16H20N4OS2, was synthesized by the reaction of 2-benzyl­sulfanyl-5-chloro­acetamido-1,3,4-thia­diazole and piperidine in a 1:2 ratio. The planes of the acetamide and 1,3,4-thia­diazole units are twisted by 10.8 (4)°. The thia­diazole S atom and the acetamide O atom are syn-oriented due to a hypervalent S⋯O inter­action of 2.628 (4) Å. In the crystal, mol­ecules form centrosymmetric dimers via N—H⋯N hydrogen bonds. These dimers are further connected by C—H⋯O inter­actions into (100) layers.

Related literature

For physiological properties and syntheses of 1,3,4-thia­diazole derivatives, see: Turner et al. (1988[Turner, S., Myers, M., Gadie, B., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 5, 902-906.]); Chapleo et al. (1987[Chapleo, B. C., Myers, P. L., Smith, A. C. B., Tulloch, I. F. & Walter, D. S. (1987). J. Med. Chem. 30, 5, 951-954.]); Cleici et al. (2001[Cleici, F., Pocar, D., Guido, M., Loche, A., Perlini, V. & Brufani, M. (2001). J. Med. Chem. 44, 931-936.]); Jain & Mishra (2004[Jain, S. K. & Mishra, P. (2004). Indian J. Chem. Sect. B, 43, 184-188.]). For the structures of related 1,3,4-thia­diazole derivatives, see: Leung et al. (1992[Leung, B. K.-O., Hudson, M. J. & Drew, M. G. B. (1992). Transition Met. Chem. 17, 352-355.]); Zhang (2009[Zhang, G.-Y. (2009). Acta Cryst. E65, o2138.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N4OS2

  • Mr = 348.48

  • Monoclinic, P 21 /c

  • a = 17.429 (4) Å

  • b = 16.748 (3) Å

  • c = 5.8390 (12) Å

  • β = 95.48 (3)°

  • V = 1696.6 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.92 mm−1

  • T = 290 K

  • 0.35 × 0.28 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.431, Tmax = 0.558

  • 7003 measured reflections

  • 2970 independent reflections

  • 1521 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.217

  • S = 0.98

  • 2970 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1i 0.86 2.08 2.930 (7) 169
C11—H11A⋯O1ii 0.97 2.55 3.334 (8) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,3,4-Thiadiazoless are a very important class of compounds because of their interesting physiological properties. Derivatives of 1,3,4– thiadiazoles show different biological activities such as antihypertensive (Turner et al., 1988), anticonvulsant (Chapleo et al., 1987), anti-depressant (Cleici et al., 2001), and diuretic (Jain & Mishra, 2004). Acetazolamide, having a 1,3,4-thiadiazole moiety, is known in medicine as narcotic drug.

The title compound was obtained in the reaction of 2-benzylsulfanyl-5-chloroacetamido-1,3,4-thiadiazole and piperidine in a 1:2 ratio in the presence of benzene. The structure of the obtained product was confirmed by single-crystal X-ray analysis and 1H NMR spectroscopy.

Molecular structure of title compound is shown in Figure 1. The acetamido-1,3,4-thiadiazole (S1/C1/N1/N2/C2/N3/C10/O1/C11) unit is essentially planar [r.m.s. deviation 0.082 Å]. The thiadiazole sulfur and the acetamido oxygen atoms are syn oriented due to a hypervalent interaction with the S···O distance of 2.628 (4) Å. In crystal, the molecules form centrosymmetric dimers through N-H···N hydrogen bonds (Table 1, Fig. 2). These dimers are further connected by C11—H···O1 interactions into (100) layers. As well as an intramolecular S···O hypervalent interaction [S1···O1 2.625 (5) Å] was observed.

Related literature top

For physiological properties and syntheses of 1,3,4-thiadiazole derivatives, see: Turner et al. (1988); Chapleo et al. (1987); Cleici et al. (2001); Jain & Mishra (2004). For the structures of related 1,3,4-thiadiazole derivatives, see: Leung et al. (1992); Zhang (2009).

Experimental top

To a solution of 2.99 g (10 mmol) of 2–benzylsulfanyl–5–chloroacetamido–1,3,4–thiadiazole in 15 ml benzene was added dropwise 1.7 g (20 mmol) of piperidine at room temperature. The reaction mixture was refluxed for 8 h. Benzene was distilled off, the residue was washed with water, 2% solution of NaOH, again with water and re-crystallized from hexane [yield 3.02 g (87%); m.p. 376–377 K]. Colourless crystals suitable for X–ray analysis were grown from hexane at room temperature.

Refinement top

The H atoms were placed geometrically with N—H 0.86 Å, C—H =0.93 Å for Car or 0.97 Å for methylene group and included in the refinement in a riding model approximation with Uiso=1.2Ueq(C, N)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The displacement ellipsoid are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing viewed down the c axis with hydrogen bonds shown as dashed lines.
N-(5-Benzylsulfanyl-1,3,4-thiadiazol-2-yl)-2-(piperidin-1-yl)acetamide top
Crystal data top
C16H20N4OS2F(000) = 736
Mr = 348.48Dx = 1.364 Mg m3
Monoclinic, P21/cMelting point < 376(1) K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 17.429 (4) ÅCell parameters from 124 reflections
b = 16.748 (3) Åθ = 5.9–35.8°
c = 5.8390 (12) ŵ = 2.92 mm1
β = 95.48 (3)°T = 290 K
V = 1696.6 (6) Å3Prizmatic, colourless
Z = 40.35 × 0.28 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2970 independent reflections
Radiation source: Enhance (Cu) X-ray Source1521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
Detector resolution: 10.2576 pixels mm-1θmax = 66.6°, θmin = 3.7°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 019
Tmin = 0.431, Tmax = 0.558l = 06
7003 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1068P)2]
where P = (Fo2 + 2Fc2)/3
2970 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H20N4OS2V = 1696.6 (6) Å3
Mr = 348.48Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.429 (4) ŵ = 2.92 mm1
b = 16.748 (3) ÅT = 290 K
c = 5.8390 (12) Å0.35 × 0.28 × 0.20 mm
β = 95.48 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2970 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1521 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.558Rint = 0.117
7003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 0.98Δρmax = 0.41 e Å3
2970 reflectionsΔρmin = 0.39 e Å3
208 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3, DMSO): 7.30 (5H, m, H–5,6,7,8,9), 6.36 (1H, s, N–H), 4.39 (2H, s, CH2–11), 3.17 (2H, s CH2–3), 2.47 (4H, t, J5.0 Hz, CH2–12,16), 1.57 (4H, m, CH2–13,15), 1.42 (2H, t, J5.1 Hz, CH2–14).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52312 (7)0.33111 (9)0.9429 (2)0.0528 (4)
S20.39119 (9)0.32063 (11)1.2305 (3)0.0642 (5)
O10.6512 (2)0.3164 (3)0.7429 (8)0.0675 (12)
N10.4609 (3)0.4532 (3)0.7342 (8)0.0545 (12)
N20.4113 (3)0.4313 (3)0.8972 (8)0.0536 (12)
N30.5742 (3)0.4130 (3)0.5819 (8)0.0549 (12)
H30.56810.44900.47690.066*
N40.7677 (3)0.3620 (3)0.4568 (7)0.0499 (11)
C10.5195 (3)0.4055 (4)0.7371 (9)0.0496 (14)
C20.4357 (3)0.3686 (4)1.0141 (9)0.0524 (15)
C30.3196 (3)0.3937 (4)1.3030 (10)0.0637 (17)
H3B0.31860.39451.46880.076*
H3C0.33570.44611.25610.076*
C40.2399 (3)0.3782 (4)1.1947 (9)0.0526 (14)
C50.2152 (3)0.4084 (4)0.9797 (10)0.0641 (17)
H5A0.24960.43590.89640.077*
C60.1403 (4)0.3980 (5)0.8881 (11)0.074 (2)
H6A0.12480.41810.74260.089*
C70.0882 (4)0.3586 (4)1.0077 (12)0.0730 (19)
H7A0.03710.35340.94720.088*
C80.1127 (4)0.3267 (5)1.2187 (12)0.077 (2)
H8A0.07820.29811.29910.093*
C90.1871 (3)0.3364 (4)1.3124 (11)0.0677 (18)
H9A0.20250.31471.45620.081*
C100.6380 (3)0.3646 (4)0.5903 (10)0.0500 (14)
C110.6864 (3)0.3734 (4)0.3892 (9)0.0550 (15)
H11A0.66940.33470.27170.066*
H11B0.67840.42630.32310.066*
C120.8104 (3)0.3476 (4)0.2561 (10)0.0606 (16)
H12A0.80520.39350.15450.073*
H12B0.78880.30160.17190.073*
C130.8937 (3)0.3331 (4)0.3287 (11)0.0691 (18)
H13A0.92100.32600.19300.083*
H13B0.89880.28410.41760.083*
C140.9299 (3)0.4006 (5)0.4705 (11)0.074 (2)
H14A0.93240.44770.37500.089*
H14B0.98210.38620.52810.089*
C150.8832 (4)0.4190 (5)0.6722 (11)0.075 (2)
H15A0.88790.37510.78110.090*
H15B0.90320.46670.75060.090*
C160.7994 (3)0.4313 (4)0.5881 (10)0.0592 (16)
H16A0.77010.44010.71880.071*
H16B0.79440.47840.49140.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0408 (7)0.0584 (9)0.0596 (9)0.0043 (7)0.0063 (6)0.0094 (8)
S20.0531 (8)0.0744 (11)0.0673 (10)0.0131 (8)0.0177 (7)0.0167 (9)
O10.053 (2)0.074 (3)0.077 (3)0.014 (2)0.017 (2)0.030 (3)
N10.051 (3)0.053 (3)0.059 (3)0.008 (2)0.006 (2)0.007 (2)
N20.045 (3)0.055 (3)0.062 (3)0.004 (2)0.011 (2)0.008 (3)
N30.045 (2)0.064 (3)0.055 (3)0.001 (2)0.005 (2)0.014 (3)
N40.045 (2)0.058 (3)0.047 (3)0.002 (2)0.0067 (19)0.003 (2)
C10.036 (3)0.058 (4)0.054 (3)0.001 (2)0.000 (2)0.003 (3)
C20.042 (3)0.063 (4)0.052 (3)0.001 (3)0.004 (2)0.003 (3)
C30.053 (3)0.085 (5)0.054 (4)0.005 (3)0.008 (3)0.007 (3)
C40.050 (3)0.059 (4)0.050 (3)0.004 (3)0.011 (2)0.001 (3)
C50.057 (4)0.079 (5)0.057 (4)0.000 (3)0.012 (3)0.012 (3)
C60.065 (4)0.092 (6)0.063 (4)0.006 (4)0.001 (3)0.009 (4)
C70.047 (3)0.085 (5)0.086 (5)0.000 (3)0.003 (3)0.002 (4)
C80.056 (4)0.090 (5)0.089 (5)0.006 (4)0.025 (3)0.016 (4)
C90.059 (4)0.088 (5)0.058 (4)0.007 (3)0.015 (3)0.018 (4)
C100.040 (3)0.050 (3)0.060 (4)0.002 (2)0.005 (2)0.002 (3)
C110.050 (3)0.060 (4)0.055 (3)0.002 (3)0.007 (3)0.003 (3)
C120.061 (4)0.070 (4)0.052 (3)0.002 (3)0.012 (3)0.012 (3)
C130.056 (3)0.084 (5)0.070 (4)0.008 (4)0.022 (3)0.011 (4)
C140.044 (3)0.099 (6)0.078 (5)0.003 (3)0.004 (3)0.005 (4)
C150.054 (4)0.102 (6)0.071 (4)0.006 (4)0.007 (3)0.027 (4)
C160.054 (3)0.066 (4)0.058 (4)0.001 (3)0.013 (3)0.014 (3)
Geometric parameters (Å, º) top
S1—C11.728 (6)C7—C81.373 (9)
S1—C21.736 (5)C7—H7A0.9300
S2—C21.741 (6)C8—C91.368 (9)
S2—C31.825 (6)C8—H8A0.9300
O1—C101.208 (7)C9—H9A0.9300
N1—C11.295 (7)C10—C111.517 (7)
N1—N21.394 (6)C11—H11A0.9700
N2—C21.301 (8)C11—H11B0.9700
N3—C101.372 (7)C12—C131.492 (8)
N3—C11.383 (7)C12—H12A0.9700
N3—H30.8600C12—H12B0.9700
N4—C111.448 (7)C13—C141.504 (9)
N4—C121.467 (7)C13—H13A0.9700
N4—C161.469 (7)C13—H13B0.9700
C3—C41.493 (8)C14—C151.527 (8)
C3—H3B0.9700C14—H14A0.9700
C3—H3C0.9700C14—H14B0.9700
C4—C51.383 (8)C15—C161.509 (8)
C4—C91.390 (8)C15—H15A0.9700
C5—C61.373 (8)C15—H15B0.9700
C5—H5A0.9300C16—H16A0.9700
C6—C71.368 (9)C16—H16B0.9700
C6—H6A0.9300
C1—S1—C286.0 (3)O1—C10—N3121.2 (5)
C2—S2—C3102.7 (3)O1—C10—C11123.7 (5)
C1—N1—N2111.6 (5)N3—C10—C11115.0 (5)
C2—N2—N1112.3 (4)N4—C11—C10112.2 (5)
C10—N3—C1122.1 (5)N4—C11—H11A109.2
C10—N3—H3119.0C10—C11—H11A109.2
C1—N3—H3119.0N4—C11—H11B109.2
C11—N4—C12111.3 (4)C10—C11—H11B109.2
C11—N4—C16110.3 (5)H11A—C11—H11B107.9
C12—N4—C16110.6 (5)N4—C12—C13110.7 (5)
N1—C1—N3121.9 (5)N4—C12—H12A109.5
N1—C1—S1115.5 (4)C13—C12—H12A109.5
N3—C1—S1122.6 (4)N4—C12—H12B109.5
N2—C2—S1114.6 (4)C13—C12—H12B109.5
N2—C2—S2127.4 (4)H12A—C12—H12B108.1
S1—C2—S2118.0 (4)C12—C13—C14112.3 (5)
C4—C3—S2114.5 (5)C12—C13—H13A109.1
C4—C3—H3B108.6C14—C13—H13A109.1
S2—C3—H3B108.6C12—C13—H13B109.1
C4—C3—H3C108.6C14—C13—H13B109.1
S2—C3—H3C108.6H13A—C13—H13B107.9
H3B—C3—H3C107.6C13—C14—C15110.4 (5)
C5—C4—C9118.0 (6)C13—C14—H14A109.6
C5—C4—C3121.2 (5)C15—C14—H14A109.6
C9—C4—C3120.7 (6)C13—C14—H14B109.6
C6—C5—C4120.6 (6)C15—C14—H14B109.6
C6—C5—H5A119.7H14A—C14—H14B108.1
C4—C5—H5A119.7C16—C15—C14110.3 (5)
C7—C6—C5121.0 (7)C16—C15—H15A109.6
C7—C6—H6A119.5C14—C15—H15A109.6
C5—C6—H6A119.5C16—C15—H15B109.6
C6—C7—C8118.7 (6)C14—C15—H15B109.6
C6—C7—H7A120.6H15A—C15—H15B108.1
C8—C7—H7A120.6N4—C16—C15111.5 (5)
C9—C8—C7121.0 (6)N4—C16—H16A109.3
C9—C8—H8A119.5C15—C16—H16A109.3
C7—C8—H8A119.5N4—C16—H16B109.3
C8—C9—C4120.6 (6)C15—C16—H16B109.3
C8—C9—H9A119.7H16A—C16—H16B108.0
C4—C9—H9A119.7
C1—N1—N2—C20.3 (7)C5—C6—C7—C82.4 (12)
N2—N1—C1—N3176.5 (5)C6—C7—C8—C92.3 (12)
N2—N1—C1—S12.1 (7)C7—C8—C9—C40.6 (12)
C10—N3—C1—N1177.3 (5)C5—C4—C9—C81.1 (10)
C10—N3—C1—S14.2 (8)C3—C4—C9—C8175.8 (6)
C2—S1—C1—N12.5 (5)C1—N3—C10—O14.4 (9)
C2—S1—C1—N3176.1 (5)C1—N3—C10—C11172.2 (5)
N1—N2—C2—S11.7 (7)C12—N4—C11—C10163.5 (5)
N1—N2—C2—S2179.1 (4)C16—N4—C11—C1073.3 (6)
C1—S1—C2—N22.3 (5)O1—C10—C11—N437.3 (8)
C1—S1—C2—S2178.4 (4)N3—C10—C11—N4146.2 (5)
C3—S2—C2—N214.8 (6)C11—N4—C12—C13178.0 (5)
C3—S2—C2—S1164.4 (3)C16—N4—C12—C1358.9 (7)
C2—S2—C3—C499.2 (5)N4—C12—C13—C1456.4 (7)
S2—C3—C4—C588.5 (7)C12—C13—C14—C1552.9 (8)
S2—C3—C4—C994.7 (6)C13—C14—C15—C1652.0 (8)
C9—C4—C5—C61.0 (10)C11—N4—C16—C15176.8 (5)
C3—C4—C5—C6175.9 (6)C12—N4—C16—C1559.6 (7)
C4—C5—C6—C70.7 (12)C14—C15—C16—N456.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.862.082.930 (7)169
C11—H11A···O1ii0.972.553.334 (8)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N1i0.862.082.930 (7)169
C11—H11A···O1ii0.972.553.334 (8)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F7–T185).

References

First citationChapleo, B. C., Myers, P. L., Smith, A. C. B., Tulloch, I. F. & Walter, D. S. (1987). J. Med. Chem. 30, 5, 951–954.  Google Scholar
First citationCleici, F., Pocar, D., Guido, M., Loche, A., Perlini, V. & Brufani, M. (2001). J. Med. Chem. 44, 931–936.  Web of Science PubMed Google Scholar
First citationJain, S. K. & Mishra, P. (2004). Indian J. Chem. Sect. B, 43, 184–188.  Google Scholar
First citationLeung, B. K.-O., Hudson, M. J. & Drew, M. G. B. (1992). Transition Met. Chem. 17, 352–355.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, S., Myers, M., Gadie, B., Nelson, A. J., Pape, R., Saville, J. F., Doxey, J. C. & Berridge, T. L. (1988). J. Med. Chem. 31, 5, 902–906.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G.-Y. (2009). Acta Cryst. E65, o2138.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds