organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Fluoren-9-one oxime

aInstitute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, bDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae

(Received 13 January 2014; accepted 5 February 2014; online 8 February 2014)

In the title mol­ecule, C13H9NO, the fluorene system and the oxime group non-H atoms are essentially coplanar, with a maximum deviation from the fluorene mean plane of 0.079 (2) Å for the oxime O atom. A short intra­molecular C—H⋯O generates an S(6) ring. In the crystal, mol­ecules related by a twofold screw axis are connected by O—H⋯N hydrogen bonds, forming [100] chains Within these chains, mol­ecules related by a unit translation along [100] show ππ stacking inter­actions between their fluorene ring systems with an inter­planar distance of 3.347 (2) Å. The dihedral angle between the fluorene units of adjacent mol­ecules along the helix is 88.40 (2)°. There is a short C—H⋯π contact between the fluorene groups belonging to neighbouring chains.

Related literature

For the original procedure for the preparation of the title compound, see: Moore & Huntress (1927[Moore, F. J. & Huntress, E. H. (1927). J. Am. Chem. Soc. 49, 2618-, 2624.]). For the use of the title compound as a starting material for the synthesis of bioactive compounds, see: Amlaiky et al. (1983[Amlaiky, N., Leclerc, G., Decker, N. & Schwartz, J. (1983). Eur. J. Med. Chem. 18, 437-439.]); Ni et al. (2009[Ni, S., Yuan, Y., Huang, J., Mao, X., Lu, M., Zhu, J., Shen, X., Pei, J., Lai, L., Jiang, H. & Li, J. (2009). J. Med. Chem. 52, 5295-5298.]); Rad et al. (2012[Rad, M. N. S., Behrouz, S., Karimitabar, F. & Khalafi-Nezhad, A. (2012). Helv. Chim. Acta, 95, 491-501.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9NO

  • Mr = 195.21

  • Orthorhombic, P 21 21 21

  • a = 4.8009 (1) Å

  • b = 12.2309 (2) Å

  • c = 16.0247 (3) Å

  • V = 940.96 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.16 × 0.13 × 0.13 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.890, Tmax = 1.000

  • 7588 measured reflections

  • 1942 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.05

  • 1942 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack parameter determined using 735 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.16 (13)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.95 2.38 2.898 (2) 114
O1—H1⋯N1i 0.98 (3) 1.80 (3) 2.7758 (18) 169 (3)
C5—H5⋯Cg1ii 0.95 3.08 3.873 142
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound, which was prepared according to a known procedure (Moore & Huntress, 1927) has found extensive use as a starting material for preparation of medicinal active compounds such as novel cyclophilin A inhibitors (Ni et al., 2009), novel analogs of beta-adrenoceptor antagonists (Rad et al., 2012) and beta-blocker (Amlaiky et al., 1983).

The ring atoms, N and O atoms in the title compound molecule, are essentially coplanar with a maximum deviation of 0.079 (2) Å for the O atom from the averaged ring plane (13 carbon atoms). The molecule in the crystal exhibits a C12—H12···O1 intramolecular interaction (Table 1), (Figure 1). The molecules related by a twofold screw axis are connected by O1—H1···N1 hydrogen bonds (Table 1) within a helical bonding network extending along the a axis (Figure 2). Within one helical bonding network, the neighboring molecules related by a unit translation along [100] show ππ stacking interactions between their fluorene ring systems with the interplanar distance of 3.347 (2) Å (Figure 2). The neighboring helical bonding networks in parallel alignment are linked to each other by C5—H5··· π (Cg1) (Table 1) close contact between their fluorene groups (Figure 3). The dihedral angle between the fluorene units of adjacent molecules along the helix is 88.40 (2)°.

Related literature top

For the original procedure for the preparation of the title compound, see: Moore & Huntress (1927). For the use of the title compound as a starting material for the synthesis of bioactive compounds, see: Amlaiky et al. (1983); Ni et al. (2009); Rad et al. (2012).

Experimental top

To a solution of fluoren-9-one (1.8 g, 10 mmol) in EtOH (47 ml) was given a solution of hydroxylamine hydrochloride (NH2OH.HCl, 2.75 g, 39.6 mmol) in water (7 ml), and the resulting mixture was stirred at 70 oC for 5 h. Thereafter, the reaction mixture was cooled and given into water (150 ml). The colorless precipitate was extracted with CH2Cl2 (2 × 75 ml). The organic phase was dried over anhydrous MgSO4 and concentrated in vacuo to give fluoren-9-one oxime (1.79 g, 92%) as a colorless solid, mp. 471 – 472 K; νmax (KBr/cm-1) 3500 – 2800 (bs, OH), 1604 (w), 1602, 1450, 1405, 1317, 1156, 1089, 998, 937, 780, 732, 640; δH (400 MHz, CDCl3) 7.28 – 7.47 (4H, m), 7.62 (1H, d, 3J = 7.6 Hz), 7.66 (1H, d, 3J = 7.2 Hz), 7.77 (1H, d, 3J = 7.2 Hz), 8.42 (1H, d, 3J = 7.6 Hz); δC (100.5 MHz, CDCl3) 119.8 (CH), 119.9 (CH), 121.7 (CH), 128.0 (CH), 128.4 (CH), 129.7 (CH), 130.2 (CH), 130.3 (Cquat), 131.3 (CH), 135.1 (Cquat), 140.5 (Cquat), 141.4 (Cquat), 153.6 (Cquat). Single crystals were obtained from cold CH2Cl2.

Refinement top

All carbon-bound hydrogen atoms, except the H of the OH group which was freely refined, were placed in calculated positions with C—H distance of 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule with displacement ellipsoids shown at the 50% probability level, showing the intramolecular contact within the molecule.
[Figure 2] Fig. 2. Intermolecular interactions between molecules of the title compound, including the ππ stacking interactions (represented by arrows in yellow). [Symmetry codes: i: 1 + x,y,z; ii: 1/2 + x,1.5 - y,1 - z; iii: -1/2 + x,1.5 - y,1 - z; iv: x, y, z; v: -1/2 + x, 1/2 - y, 1 - z; vi: x, -1 + y, z]
[Figure 3] Fig. 3. The crystal packing diagram showing the O—H···N close contacts (colored in green) between adjacent molecules in each helical bonding network, C—H···π intermolecular interaction between molecules within different helices (colored in blue) and ππ stacking interactions (arrows in yellow).
Fluoren-9-one oxime top
Crystal data top
C13H9NODx = 1.378 Mg m3
Mr = 195.21Melting point = 471–472 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
a = 4.8009 (1) ÅCell parameters from 3850 reflections
b = 12.2309 (2) Åθ = 4.5–76.1°
c = 16.0247 (3) ŵ = 0.70 mm1
V = 940.96 (3) Å3T = 100 K
Z = 4Block, colourless
F(000) = 4080.16 × 0.13 × 0.13 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1942 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1865 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4127 pixels mm-1θmax = 76.3°, θmin = 4.6°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1415
Tmin = 0.890, Tmax = 1.000l = 1920
7588 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.1723P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.13 e Å3
1942 reflectionsΔρmin = 0.18 e Å3
140 parametersAbsolute structure: Flack parameter determined using 735 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.16 (13)
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H9NOV = 940.96 (3) Å3
Mr = 195.21Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 4.8009 (1) ŵ = 0.70 mm1
b = 12.2309 (2) ÅT = 100 K
c = 16.0247 (3) Å0.16 × 0.13 × 0.13 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1942 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1865 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.029
7588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.18 e Å3
1942 reflectionsAbsolute structure: Flack parameter determined using 735 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
140 parametersAbsolute structure parameter: 0.16 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5506 (4)0.58330 (13)0.40422 (10)0.0189 (4)
C100.8197 (4)0.44386 (15)0.17647 (10)0.0251 (4)
C110.9543 (4)0.53953 (15)0.20052 (10)0.0242 (4)
C120.8830 (4)0.59306 (14)0.27456 (10)0.0219 (4)
C130.6741 (4)0.54803 (13)0.32367 (10)0.0196 (3)
C20.3367 (4)0.50126 (13)0.42679 (10)0.0194 (3)
C30.1613 (4)0.49391 (13)0.49503 (10)0.0209 (3)
C40.0178 (4)0.40413 (13)0.50050 (11)0.0228 (4)
C50.0177 (4)0.32387 (14)0.43891 (11)0.0246 (4)
C60.1590 (4)0.33133 (14)0.37017 (11)0.0235 (4)
C70.3353 (4)0.42037 (13)0.36414 (10)0.0195 (3)
C80.5403 (4)0.45037 (13)0.30001 (10)0.0198 (4)
C90.6112 (4)0.39797 (14)0.22607 (11)0.0239 (4)
H10.898 (6)0.773 (2)0.4668 (17)0.068 (9)*
H100.87030.40930.12560.030*
H111.09690.56890.16610.029*
H120.97500.65840.29080.026*
H30.16260.54850.53720.025*
H40.14080.39780.54670.027*
H50.13990.26310.44380.029*
H60.15830.27640.32830.028*
H90.52000.33250.20970.029*
N10.6059 (3)0.66488 (11)0.45230 (8)0.0202 (3)
O10.8178 (3)0.73127 (10)0.42014 (7)0.0233 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0217 (9)0.0194 (8)0.0158 (7)0.0029 (6)0.0016 (6)0.0013 (6)
C100.0300 (10)0.0290 (8)0.0164 (7)0.0078 (8)0.0003 (7)0.0031 (7)
C110.0257 (9)0.0289 (9)0.0179 (8)0.0060 (7)0.0018 (7)0.0038 (7)
C120.0266 (9)0.0206 (7)0.0186 (8)0.0025 (7)0.0013 (7)0.0015 (6)
C130.0228 (9)0.0204 (7)0.0155 (7)0.0050 (7)0.0024 (7)0.0007 (6)
C20.0216 (8)0.0185 (7)0.0181 (8)0.0028 (7)0.0048 (7)0.0005 (6)
C30.0233 (8)0.0219 (7)0.0174 (7)0.0043 (7)0.0018 (7)0.0005 (6)
C40.0223 (8)0.0248 (8)0.0214 (8)0.0028 (6)0.0007 (8)0.0042 (7)
C50.0259 (9)0.0210 (8)0.0268 (9)0.0024 (7)0.0015 (7)0.0030 (7)
C60.0277 (10)0.0200 (7)0.0228 (8)0.0012 (7)0.0040 (7)0.0025 (6)
C70.0209 (8)0.0200 (7)0.0177 (7)0.0037 (6)0.0021 (6)0.0002 (6)
C80.0212 (9)0.0202 (7)0.0181 (8)0.0034 (7)0.0032 (7)0.0001 (6)
C90.0287 (10)0.0220 (8)0.0209 (8)0.0030 (7)0.0039 (7)0.0034 (6)
N10.0236 (8)0.0184 (6)0.0185 (7)0.0010 (6)0.0008 (6)0.0014 (5)
O10.0283 (6)0.0217 (5)0.0198 (6)0.0058 (5)0.0010 (5)0.0023 (4)
Geometric parameters (Å, º) top
C1—C131.484 (2)C4—H40.9500
C1—C21.481 (2)C5—C61.393 (2)
C10—C111.391 (3)C5—H50.9500
C10—H100.9500C6—C71.383 (2)
C11—C121.398 (2)C6—H60.9500
C11—H110.9500C7—C81.469 (2)
C12—C131.389 (2)C8—C131.408 (2)
C12—H120.9500C8—C91.389 (2)
C2—C71.410 (2)C9—C101.396 (3)
C2—C31.383 (2)C9—H90.9500
C3—C41.397 (2)N1—C11.288 (2)
C3—H30.9500O1—H10.98 (3)
C4—C51.392 (2)O1—N11.4000 (19)
N1—O1—H1107.7 (17)C6—C7—C2120.39 (16)
C1—N1—O1112.25 (13)C6—C7—C8130.96 (16)
N1—C1—C2121.43 (15)C9—C8—C7130.19 (16)
N1—C1—C13131.53 (16)C9—C8—C13120.61 (16)
C2—C1—C13107.00 (14)C13—C8—C7109.20 (14)
C3—C2—C1131.26 (15)C8—C9—H9120.8
C3—C2—C7120.97 (15)C8—C9—C10118.41 (16)
C7—C2—C1107.75 (14)C10—C9—H9120.8
C2—C3—H3120.8C9—C10—H10119.6
C2—C3—C4118.38 (15)C11—C10—C9120.89 (16)
C4—C3—H3120.8C11—C10—H10119.6
C3—C4—H4119.7C10—C11—H11119.5
C5—C4—C3120.63 (16)C10—C11—C12121.04 (17)
C5—C4—H4119.7C12—C11—H11119.5
C4—C5—H5119.5C11—C12—H12120.9
C4—C5—C6120.97 (17)C13—C12—C11118.17 (17)
C6—C5—H5119.5C13—C12—H12120.9
C5—C6—H6120.7C8—C13—C1107.38 (15)
C7—C6—C5118.66 (16)C12—C13—C1131.75 (16)
C7—C6—H6120.7C12—C13—C8120.87 (15)
C2—C7—C8108.64 (14)
O1—N1—C1—C2178.85 (14)C5—C6—C7—C20.5 (3)
O1—N1—C1—C131.2 (2)C5—C6—C7—C8179.68 (17)
N1—C1—C2—C31.5 (3)C6—C7—C8—C91.3 (3)
N1—C1—C2—C7177.14 (15)C6—C7—C8—C13178.35 (18)
N1—C1—C13—C8177.82 (17)C7—C2—C3—C40.0 (2)
N1—C1—C13—C121.4 (3)C7—C8—C9—C10178.93 (17)
C1—C2—C3—C4178.52 (16)C7—C8—C13—C10.88 (18)
C1—C2—C7—C6178.38 (15)C7—C8—C13—C12178.46 (15)
C1—C2—C7—C81.52 (18)C8—C9—C10—C110.3 (3)
C2—C1—C13—C80.04 (18)C9—C8—C13—C1179.46 (15)
C2—C1—C13—C12179.28 (17)C9—C8—C13—C121.2 (2)
C2—C3—C4—C50.4 (2)C9—C10—C11—C120.6 (3)
C2—C7—C8—C9178.86 (18)C10—C11—C12—C130.1 (3)
C2—C7—C8—C131.53 (18)C11—C12—C13—C1179.97 (17)
C3—C2—C7—C60.5 (2)C11—C12—C13—C80.8 (2)
C3—C2—C7—C8179.64 (15)C13—C1—C2—C3179.66 (16)
C3—C4—C5—C60.4 (3)C13—C1—C2—C70.98 (18)
C4—C5—C6—C70.0 (3)C13—C8—C9—C100.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.382.898 (2)114
O1—H1···N1i0.98 (3)1.80 (3)2.7758 (18)169 (3)
C5—H5···Cg1ii0.953.083.873142
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.382.898 (2)114
O1—H1···N1i0.98 (3)1.80 (3)2.7758 (18)169 (3)
C5—H5···Cg1ii0.953.0763.873142
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+1/2, z+1.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAmlaiky, N., Leclerc, G., Decker, N. & Schwartz, J. (1983). Eur. J. Med. Chem. 18, 437–439.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, F. J. & Huntress, E. H. (1927). J. Am. Chem. Soc. 49, 2618–, 2624.  Google Scholar
First citationNi, S., Yuan, Y., Huang, J., Mao, X., Lu, M., Zhu, J., Shen, X., Pei, J., Lai, L., Jiang, H. & Li, J. (2009). J. Med. Chem. 52, 5295–5298.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRad, M. N. S., Behrouz, S., Karimitabar, F. & Khalafi-Nezhad, A. (2012). Helv. Chim. Acta, 95, 491–501.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds