organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(4-Methyl­piperazin-1-yl)eth­yl]iso­indoline-1,3-dione

aKey Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: shaoying810724@163.com

(Received 15 April 2013; accepted 30 January 2014; online 12 February 2014)

In the title compound, C15H19N3O2, the piperazine ring adopts a chair conformation, with its N—C bonds in pseudo-equatorial orientations. The dihedral angle between the C atoms of the piperazine ring and the phthalamide ring system (r.m.s. deviaiton = 0.008 Å) is 89.30 (8)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating a three-dimensional network and aromatic ππ inter­actions also occur [centroid–centroid distances = 3.556 (1)–3.716 (1) Å].

Related literature

For background to piperazine derivatives, see: Tian et al. (2011[Tian, Z., Wei, X., Liang, J., Liu, R. & Zhang, Y. (2011). Yingyong Huagong, 40, 1648-1652.]); Stauffer (2011[Stauffer, S. R. (2011). ACS Chem. Neurosci. 2, 450-470.]). For the preparation, see: Ghosh et al. (2010[Ghosh, B., Antonio, T., Zhen, J., Kharkar, P., Reith, M. E. A. & Dutta, A. K. (2010). J. Med. Chem. 53, 1023-1037.]). For a similar structure, see: Shao et al. (2012[Shao, Y., An, D., Zhou, M., Liu, L. & Sun, X.-Q. (2012). Acta Cryst. E68, o173.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19N3O2

  • Mr = 273.33

  • Triclinic, [P \overline 1]

  • a = 6.9537 (12) Å

  • b = 8.4410 (15) Å

  • c = 12.563 (2) Å

  • α = 96.260 (4)°

  • β = 98.381 (4)°

  • γ = 92.647 (3)°

  • V = 723.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.979

  • 4194 measured reflections

  • 2654 independent reflections

  • 2206 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.154

  • S = 1.01

  • 2654 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.57 3.406 (3) 149
C15—H15B⋯O2ii 0.96 2.53 3.343 (3) 142
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Piperazine derivatives have received much attention for their pharmaceutical activities (Tian, et al., 2011; Stauffer, 2011). The title compound was synthesized from N-(2-bromoethyl)phthalimide and N-methylpiperazine (Ghosh, et al., 2010), as a drug intermediate. In the molecule, Fig. 1, the six-membered piperazine ring adopts the chair conformation. The phthalimide ring is coplanar [r.m.s. deviations = 0.01 Å]. In the crystal, Fig. 2, molecules are linked via intermolecular C–H···O hydrogen bonding interactions (Table 1) and π···π stacking interactions involving the benzene and maleinimide rings (Table 2), which is different form the similar compound (Shao, et al., 2012).

Related literature top

For background to piperazine derivatives, see: Tian et al. (2011); Stauffer (2011). For the preparation, see: Ghosh et al. (2010). For a similar structure, see: Shao et al. (2012).

Experimental top

A suspension of N-(2-bromoethyl)phthalimide (2.54 g, 10.0 mmol), N-methylpiperazine (1.10 g, 11.1 mmol) and K2CO3 (2.70 g, 19.6 mmol) in 20 ml CH3CN was stirred at room temperature for 0.5 h, and then heated to reflux for over 20 h. After cooling and filtration, the filter residue was washed with CH3CN. And the filtrate and washing were combined prior to removing the solvent under vacuum. The title compound (2.15 g, 7.9 mmol) was obtained as colorless needles with m.p. 102.2–103.0 °C, after recrystallization from n-hexane. Colourless blocks were obtained by slow evaporation of CH3OH.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Perspective view of the title compound along a direction. Labels of atoms have been omitted for clarity.
2-[2-(4-Methylpiperazin-1-yl)ethyl]isoindoline-1,3-dione top
Crystal data top
C15H19N3O2Z = 2
Mr = 273.33F(000) = 292
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9537 (12) ÅCell parameters from 2417 reflections
b = 8.4410 (15) Åθ = 2.8–29.0°
c = 12.563 (2) ŵ = 0.09 mm1
α = 96.260 (4)°T = 296 K
β = 98.381 (4)°Block, colorless
γ = 92.647 (3)°0.30 × 0.28 × 0.25 mm
V = 723.7 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2654 independent reflections
Radiation source: fine-focus sealed tube2206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.975, Tmax = 0.979k = 109
4194 measured reflectionsl = 715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0987P)2 + 0.097P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2654 reflectionsΔρmax = 0.17 e Å3
183 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (13)
Crystal data top
C15H19N3O2γ = 92.647 (3)°
Mr = 273.33V = 723.7 (2) Å3
Triclinic, P1Z = 2
a = 6.9537 (12) ÅMo Kα radiation
b = 8.4410 (15) ŵ = 0.09 mm1
c = 12.563 (2) ÅT = 296 K
α = 96.260 (4)°0.30 × 0.28 × 0.25 mm
β = 98.381 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2654 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2206 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.022
4194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
2654 reflectionsΔρmin = 0.18 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7472 (2)0.1040 (2)0.64462 (16)0.0663 (5)
H10.74950.18640.70040.080*
C20.7384 (3)0.0535 (3)0.6639 (2)0.0853 (7)
H20.73350.07800.73390.102*
C30.7366 (3)0.1743 (3)0.5820 (3)0.0952 (9)
H30.73210.27950.59760.114*
C40.7415 (3)0.1437 (2)0.4756 (2)0.0866 (8)
H40.73980.22630.42000.104*
C50.7489 (2)0.0147 (2)0.45574 (15)0.0583 (5)
C60.75250 (19)0.13529 (18)0.53922 (13)0.0490 (4)
C70.7637 (2)0.28929 (18)0.49368 (12)0.0470 (4)
C80.7547 (2)0.0895 (2)0.35403 (15)0.0623 (5)
C90.7949 (2)0.3733 (3)0.31185 (14)0.0682 (5)
H9A0.84710.32290.25000.082*
H9B0.89200.45390.35010.082*
C100.6130 (3)0.4551 (2)0.27092 (14)0.0618 (5)
H10A0.55470.49750.33280.074*
H10B0.65120.54470.23480.074*
C110.5329 (2)0.3035 (2)0.09326 (13)0.0585 (4)
H11A0.64360.23850.10590.070*
H11B0.57500.39730.06240.070*
C120.3737 (3)0.2097 (2)0.01439 (13)0.0613 (5)
H12A0.42120.18010.05340.074*
H12B0.33730.11240.04310.074*
C130.1346 (2)0.3462 (2)0.09674 (13)0.0534 (4)
H13A0.09680.25040.12670.064*
H13B0.02110.40830.08480.064*
C140.2917 (2)0.44238 (19)0.17559 (12)0.0532 (4)
H14A0.32540.54020.14670.064*
H14B0.24300.47120.24320.064*
C150.0515 (3)0.2147 (3)0.08443 (17)0.0777 (6)
H15A0.01430.11670.05850.117*
H15B0.09960.19150.15190.117*
H15C0.05950.27790.09510.117*
N10.46613 (18)0.35309 (15)0.19655 (9)0.0484 (3)
N20.20302 (19)0.30264 (16)0.00548 (10)0.0541 (4)
N30.76325 (17)0.25325 (17)0.38367 (10)0.0521 (4)
O10.77364 (19)0.42351 (14)0.54040 (10)0.0671 (4)
O20.7541 (2)0.0268 (2)0.26330 (12)0.0968 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0513 (9)0.0830 (13)0.0639 (11)0.0043 (8)0.0028 (8)0.0210 (9)
C20.0537 (11)0.0913 (16)0.1136 (18)0.0011 (10)0.0070 (11)0.0526 (15)
C30.0492 (11)0.0704 (14)0.164 (3)0.0016 (9)0.0154 (13)0.0502 (17)
C40.0445 (9)0.0536 (11)0.149 (2)0.0062 (7)0.0133 (11)0.0109 (12)
C50.0338 (7)0.0555 (9)0.0795 (12)0.0077 (6)0.0046 (7)0.0040 (8)
C60.0329 (7)0.0546 (9)0.0564 (9)0.0042 (6)0.0025 (6)0.0048 (7)
C70.0382 (7)0.0555 (9)0.0436 (8)0.0009 (6)0.0003 (6)0.0014 (6)
C80.0384 (8)0.0796 (12)0.0612 (10)0.0113 (7)0.0005 (7)0.0197 (8)
C90.0503 (9)0.1015 (14)0.0504 (9)0.0138 (9)0.0030 (7)0.0131 (9)
C100.0672 (10)0.0666 (10)0.0485 (9)0.0100 (8)0.0004 (7)0.0109 (7)
C110.0535 (9)0.0802 (11)0.0439 (8)0.0120 (8)0.0104 (7)0.0087 (8)
C120.0636 (10)0.0726 (11)0.0466 (9)0.0210 (8)0.0065 (7)0.0027 (8)
C130.0515 (9)0.0584 (9)0.0511 (9)0.0121 (7)0.0080 (7)0.0067 (7)
C140.0598 (9)0.0564 (9)0.0442 (8)0.0118 (7)0.0090 (7)0.0040 (7)
C150.0771 (13)0.0777 (13)0.0673 (12)0.0170 (10)0.0150 (10)0.0104 (10)
N10.0503 (7)0.0565 (8)0.0385 (7)0.0033 (5)0.0062 (5)0.0066 (5)
N20.0588 (8)0.0588 (8)0.0423 (7)0.0119 (6)0.0009 (6)0.0015 (6)
N30.0424 (7)0.0677 (9)0.0434 (7)0.0035 (5)0.0020 (5)0.0005 (6)
O10.0850 (9)0.0542 (7)0.0564 (7)0.0002 (6)0.0027 (6)0.0058 (5)
O20.0825 (10)0.1228 (13)0.0717 (9)0.0219 (9)0.0034 (7)0.0439 (9)
Geometric parameters (Å, º) top
C1—C21.377 (3)C10—H10A0.9700
C1—C61.384 (3)C10—H10B0.9700
C1—H10.9300C11—N11.466 (2)
C2—C31.366 (4)C11—C121.504 (2)
C2—H20.9300C11—H11A0.9700
C3—C41.394 (4)C11—H11B0.9700
C3—H30.9300C12—N21.459 (2)
C4—C51.386 (3)C12—H12A0.9700
C4—H40.9300C12—H12B0.9700
C5—C61.376 (2)C13—N21.450 (2)
C5—C81.490 (3)C13—C141.503 (2)
C6—C71.480 (2)C13—H13A0.9700
C7—O11.2120 (19)C13—H13B0.9700
C7—N31.382 (2)C14—N11.464 (2)
C8—O21.202 (2)C14—H14A0.9700
C8—N31.388 (2)C14—H14B0.9700
C9—N31.458 (2)C15—N21.451 (2)
C9—C101.519 (3)C15—H15A0.9600
C9—H9A0.9700C15—H15B0.9600
C9—H9B0.9700C15—H15C0.9600
C10—N11.457 (2)
C2—C1—C6117.6 (2)C12—C11—H11A109.4
C2—C1—H1121.2N1—C11—H11B109.4
C6—C1—H1121.2C12—C11—H11B109.4
C3—C2—C1121.1 (2)H11A—C11—H11B108.0
C3—C2—H2119.4N2—C12—C11111.05 (14)
C1—C2—H2119.4N2—C12—H12A109.4
C2—C3—C4121.6 (2)C11—C12—H12A109.4
C2—C3—H3119.2N2—C12—H12B109.4
C4—C3—H3119.2C11—C12—H12B109.4
C5—C4—C3117.5 (2)H12A—C12—H12B108.0
C5—C4—H4121.3N2—C13—C14110.46 (13)
C3—C4—H4121.3N2—C13—H13A109.6
C6—C5—C4120.36 (19)C14—C13—H13A109.6
C6—C5—C8107.93 (15)N2—C13—H13B109.6
C4—C5—C8131.71 (19)C14—C13—H13B109.6
C5—C6—C1121.86 (17)H13A—C13—H13B108.1
C5—C6—C7107.87 (15)N1—C14—C13111.53 (13)
C1—C6—C7130.27 (15)N1—C14—H14A109.3
O1—C7—N3124.58 (15)C13—C14—H14A109.3
O1—C7—C6128.68 (14)N1—C14—H14B109.3
N3—C7—C6106.73 (13)C13—C14—H14B109.3
O2—C8—N3124.7 (2)H14A—C14—H14B108.0
O2—C8—C5129.28 (19)N2—C15—H15A109.5
N3—C8—C5106.01 (14)N2—C15—H15B109.5
N3—C9—C10114.32 (13)H15A—C15—H15B109.5
N3—C9—H9A108.7N2—C15—H15C109.5
C10—C9—H9A108.7H15A—C15—H15C109.5
N3—C9—H9B108.7H15B—C15—H15C109.5
C10—C9—H9B108.7C10—N1—C14108.35 (13)
H9A—C9—H9B107.6C10—N1—C11112.08 (13)
N1—C10—C9114.94 (15)C14—N1—C11108.84 (12)
N1—C10—H10A108.5C13—N2—C15111.53 (14)
C9—C10—H10A108.5C13—N2—C12108.61 (12)
N1—C10—H10B108.5C15—N2—C12111.25 (13)
C9—C10—H10B108.5C7—N3—C8111.45 (15)
H10A—C10—H10B107.5C7—N3—C9123.36 (15)
N1—C11—C12111.26 (13)C8—N3—C9124.69 (15)
N1—C11—H11A109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.573.406 (3)149
C15—H15B···O2ii0.962.533.343 (3)142
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.573.406 (3)149
C15—H15B···O2ii0.962.533.343 (3)142
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
Table 2 π-π hydrogen-bond geometry (Å) top
CgICgJCgI···CgJ
Cg1Cg3i3.607 (1)
Cg1Cg3ii3.716 (1)
Cg1Cg3i3.556 (1)
Symmetry codes: (i) 1-x, -y, 1-z; (ii) 2-x, -y, 1-z; Cg1 and Cg3 are the centroids of the N3–C7–C6–C5–C8 and C1–C6 rings.

Acknowledgements

We gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Natural Science Foundation of Jiangsu Education Department (No. SCZ1212400004) for financial support.

References

First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, B., Antonio, T., Zhen, J., Kharkar, P., Reith, M. E. A. & Dutta, A. K. (2010). J. Med. Chem. 53, 1023–1037.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShao, Y., An, D., Zhou, M., Liu, L. & Sun, X.-Q. (2012). Acta Cryst. E68, o173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStauffer, S. R. (2011). ACS Chem. Neurosci. 2, 450–470.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTian, Z., Wei, X., Liang, J., Liu, R. & Zhang, Y. (2011). Yingyong Huagong, 40, 1648–1652.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds