organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Fluoro­phen­yl)(2-hy­dr­oxy-5-methyl­phen­yl)methanone

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 26 January 2014; accepted 27 January 2014; online 12 February 2014)

In the title compound, C14H11FO2, the dihedral angles beteen the central C3O ketone residue and the fluoro- and hy­droxy-substituted benzene rings are 50.44 (9) and 12.63 (10)°, respectively. The planes of the benzene rings subtend a dihedral angle of 58.88 (9)° and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. No directional inter­actions beyond van der Waals packing contacts were identified in the crystal structure.

Related literature

For related structures, see: Dileep et al. (2013[Dileep, C. S., Lakshmi Ranganatha, V., Lokanath, N. K., Shaukath, A. K. & Sridhar, M. A. (2013). Acta Cryst. E69, o1550.]); Mahendra et al. (2005[Mahendra, M., Khanum, S. A., Singh, A. K., Shashikanth, S., Doreswamy, B. H., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o2990-o2991.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FO2

  • Mr = 230.23

  • Orthorhombic, P b c a

  • a = 5.9396 (6) Å

  • b = 12.3808 (15) Å

  • c = 30.522 (3) Å

  • V = 2244.5 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.22 mm

Data collection
  • Bruker X8 Proteum CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.798, Tmax = 0.836

  • 8509 measured reflections

  • 1822 independent reflections

  • 1535 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.06

  • 1822 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.86 2.574 (2) 146

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

As part of our structural studies of benzophenone derivatives (Dileep et al., 2013), the title compound was prepared and characterized by single-crystal X-ray diffraction.

The mean plane angle between the phenyl rings (/C1C2/C3/C4/C5/C6) and (C9/C10/C11/C12/C13/C14) is 58.88°.

The position of C8 atom is distorted trigonal planar geometry as indicated by bond angle values (O2—C8—C6)=121.05°, (O2—C8—C9) =118.37°, (N6—C8—C9)= 120.56°.

The conformation of the attachment of the two phenyl rings to the central carbonyl group can also be characterized by torsion angles (O2—C8—C6—C5) and (O2—C8—C9—C10) of -165.31° and -129.32°, respectively.

The crystal structure exhibits intramolecular O(1)—H(1)···O(2) hydrogen bonds. The bond angle between (O1—C1—C2) and(O1—C1—C6) is 118.61° and 122.22°. The bond length between (O1—C2) and (O2—C8) is 1.351 Å and 1.238 Å. The molecular packing when viewed down the a axis is shown in Fig. 2.

Related literature top

For related structures, see: Dileep et al. (2013); Mahendra et al. (2005).

Experimental top

A mixture of anhydrous aluminium chloride (0.03 mol) and 4-fluoro-benzoic acid p-tolyl ester (0.02 mol) in dry nitrobenzene (40 ml) was protected from moisture by calcium chloride guard tube and refluxed for 45 min. At the end of this period the solution was cooled and decomposed by acidulated ice-cold water. Nitrobenzene was removed by steam distillation. The residual solid was crushed into powder, dissolved in ether and extracted with 10% sodium hydroxide. The basic aqueous solution was neutralized with 10% hydrochloric acid. The filtered solid was washed with distilled water and recrystallized from ethanol solution to afford pale yellow blocks of the title compound.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C–H= 0.93–0.9600 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with dispalcement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A molecular packing view of the title compound down the a-axis.
(4-Fluorophenyl)(2-hydroxy-5-methylphenyl)methanone top
Crystal data top
C14H11FO2F(000) = 960
Mr = 230.23Dx = 1.363 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 8509 reflections
a = 5.9396 (6) Åθ = 5.8–64.4°
b = 12.3808 (15) ŵ = 0.85 mm1
c = 30.522 (3) ÅT = 296 K
V = 2244.5 (4) Å3Block, pale yellow
Z = 80.28 × 0.25 × 0.22 mm
Data collection top
Bruker X8 Proteum CCD
diffractometer
1822 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1535 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.030
Detector resolution: 10.7 pixels mm-1θmax = 64.4°, θmin = 5.8°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 148
Tmin = 0.798, Tmax = 0.836l = 3435
8509 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0857P)2 + 0.3925P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1822 reflectionsΔρmax = 0.18 e Å3
156 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (4)
Crystal data top
C14H11FO2V = 2244.5 (4) Å3
Mr = 230.23Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 5.9396 (6) ŵ = 0.85 mm1
b = 12.3808 (15) ÅT = 296 K
c = 30.522 (3) Å0.28 × 0.25 × 0.22 mm
Data collection top
Bruker X8 Proteum CCD
diffractometer
1822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1535 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.836Rint = 0.030
8509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
1822 reflectionsΔρmin = 0.21 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2531 (2)0.47588 (9)0.01429 (4)0.0737 (5)
O10.0006 (3)0.11052 (11)0.14523 (5)0.0738 (6)
O20.1159 (2)0.05347 (12)0.09849 (5)0.0682 (5)
C10.1798 (4)0.05074 (14)0.15707 (6)0.0552 (6)
C20.3280 (4)0.09271 (16)0.18766 (7)0.0692 (8)
C30.5047 (4)0.0321 (2)0.20256 (6)0.0699 (8)
C40.5444 (3)0.07352 (18)0.18787 (6)0.0576 (6)
C50.4015 (3)0.11264 (14)0.15595 (5)0.0471 (6)
C60.2213 (3)0.05270 (13)0.13940 (5)0.0453 (5)
C70.7297 (4)0.1418 (2)0.20654 (7)0.0776 (9)
C80.0668 (3)0.09745 (15)0.10646 (6)0.0469 (6)
C90.1246 (3)0.19838 (13)0.08253 (5)0.0414 (5)
C100.3293 (3)0.21172 (14)0.06101 (5)0.0455 (5)
C110.3715 (3)0.30463 (15)0.03721 (6)0.0481 (6)
C120.2094 (3)0.38360 (14)0.03669 (5)0.0482 (6)
C130.0073 (3)0.37430 (16)0.05775 (6)0.0537 (6)
C140.0356 (3)0.27965 (15)0.08026 (6)0.0492 (6)
H10.074800.077400.127000.1110*
H20.307400.162500.198100.0830*
H30.602000.062000.223100.0840*
H50.426200.181700.145000.0560*
H7A0.739000.208400.190500.1160*
H7B0.870100.103800.204200.1160*
H7C0.698500.156900.236800.1160*
H100.438200.157900.062600.0550*
H110.505900.313300.022000.0580*
H130.098000.429900.057000.0640*
H140.173900.270300.094100.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0800 (9)0.0591 (7)0.0819 (8)0.0030 (6)0.0052 (6)0.0248 (6)
O10.0938 (12)0.0487 (8)0.0789 (10)0.0156 (8)0.0071 (8)0.0023 (7)
O20.0575 (9)0.0700 (9)0.0770 (10)0.0208 (7)0.0081 (7)0.0058 (7)
C10.0713 (13)0.0429 (9)0.0513 (10)0.0047 (9)0.0138 (9)0.0033 (8)
C20.1017 (18)0.0495 (11)0.0564 (11)0.0150 (12)0.0105 (12)0.0081 (9)
C30.0838 (16)0.0755 (15)0.0504 (11)0.0266 (13)0.0023 (10)0.0123 (10)
C40.0560 (11)0.0728 (12)0.0440 (9)0.0156 (10)0.0005 (8)0.0009 (9)
C50.0489 (10)0.0486 (10)0.0437 (9)0.0066 (8)0.0050 (7)0.0007 (7)
C60.0500 (10)0.0418 (9)0.0441 (9)0.0054 (8)0.0074 (7)0.0017 (7)
C70.0625 (13)0.1073 (19)0.0630 (13)0.0040 (13)0.0148 (10)0.0016 (12)
C80.0427 (10)0.0482 (10)0.0499 (10)0.0023 (8)0.0017 (7)0.0052 (7)
C90.0385 (9)0.0446 (9)0.0410 (8)0.0014 (7)0.0049 (6)0.0032 (6)
C100.0397 (9)0.0460 (9)0.0507 (9)0.0049 (7)0.0016 (7)0.0032 (7)
C110.0431 (10)0.0555 (10)0.0458 (9)0.0032 (8)0.0002 (7)0.0001 (7)
C120.0533 (11)0.0448 (9)0.0464 (9)0.0029 (8)0.0095 (8)0.0055 (7)
C130.0511 (11)0.0516 (10)0.0584 (11)0.0127 (9)0.0062 (8)0.0022 (8)
C140.0375 (9)0.0591 (11)0.0510 (10)0.0048 (8)0.0015 (7)0.0009 (8)
Geometric parameters (Å, º) top
F1—C121.357 (2)C10—C111.383 (3)
O1—C11.352 (3)C11—C121.372 (3)
O2—C81.238 (2)C12—C131.367 (2)
O1—H10.8200C13—C141.382 (3)
C1—C61.411 (2)C2—H20.9300
C1—C21.384 (3)C3—H30.9300
C2—C31.368 (3)C5—H50.9300
C3—C41.402 (3)C7—H7A0.9600
C4—C51.380 (2)C7—H7B0.9600
C4—C71.500 (3)C7—H7C0.9600
C5—C61.397 (2)C10—H100.9300
C6—C81.470 (2)C11—H110.9300
C8—C91.488 (2)C13—H130.9300
C9—C141.387 (2)C14—H140.9300
C9—C101.392 (2)
C1—O1—H1110.00C11—C12—C13123.43 (17)
O1—C1—C6122.23 (18)C12—C13—C14117.85 (17)
C2—C1—C6119.16 (19)C9—C14—C13120.90 (16)
O1—C1—C2118.61 (17)C1—C2—H2120.00
C1—C2—C3120.41 (19)C3—C2—H2120.00
C2—C3—C4122.29 (19)C2—C3—H3119.00
C3—C4—C5116.72 (18)C4—C3—H3119.00
C3—C4—C7121.83 (18)C4—C5—H5119.00
C5—C4—C7121.44 (19)C6—C5—H5119.00
C4—C5—C6122.69 (17)C4—C7—H7A109.00
C1—C6—C5118.54 (16)C4—C7—H7B109.00
C5—C6—C8121.70 (15)C4—C7—H7C109.00
C1—C6—C8119.63 (16)H7A—C7—H7B109.00
O2—C8—C9118.37 (16)H7A—C7—H7C110.00
C6—C8—C9120.56 (15)H7B—C7—H7C110.00
O2—C8—C6121.05 (17)C9—C10—H10120.00
C8—C9—C14118.41 (16)C11—C10—H10120.00
C10—C9—C14119.33 (15)C10—C11—H11121.00
C8—C9—C10122.21 (15)C12—C11—H11121.00
C9—C10—C11120.32 (16)C12—C13—H13121.00
C10—C11—C12118.12 (16)C14—C13—H13121.00
F1—C12—C11118.14 (15)C9—C14—H14120.00
F1—C12—C13118.43 (16)C13—C14—H14120.00
O1—C1—C2—C3175.88 (19)C5—C6—C8—C913.4 (3)
C6—C1—C2—C34.0 (3)O2—C8—C9—C10129.33 (19)
O1—C1—C6—C5174.98 (17)O2—C8—C9—C1448.0 (2)
O1—C1—C6—C81.0 (3)C6—C8—C9—C1052.0 (2)
C2—C1—C6—C54.9 (3)C6—C8—C9—C14130.74 (18)
C2—C1—C6—C8179.17 (18)C8—C9—C10—C11176.58 (16)
C1—C2—C3—C40.1 (3)C14—C9—C10—C110.7 (2)
C2—C3—C4—C52.7 (3)C8—C9—C14—C13178.76 (17)
C2—C3—C4—C7176.0 (2)C10—C9—C14—C131.4 (3)
C3—C4—C5—C61.7 (3)C9—C10—C11—C122.0 (3)
C7—C4—C5—C6177.01 (17)C10—C11—C12—F1178.33 (15)
C4—C5—C6—C12.0 (3)C10—C11—C12—C131.3 (3)
C4—C5—C6—C8177.92 (17)F1—C12—C13—C14179.67 (16)
C1—C6—C8—O210.5 (3)C11—C12—C13—C140.7 (3)
C1—C6—C8—C9170.79 (16)C12—C13—C14—C92.1 (3)
C5—C6—C8—O2165.31 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.862.574 (2)146
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.862.574 (2)146
 

Acknowledgements

The authors thank the University of Mysore for providing the diffractometer facility under IoE. CSD would like to thank the University of Mysore for the award of an RFSMS fellowship under the head DV5/Physics/389/RFSMS/2009–2010/10.07.2012. VLR acknowledges the financial support provided by the Department of Science and Technology, New Delhi, under the INSPIRE-Fellowship scheme [IF110555]. SAK gratefully acknowledges the financial assistance provided by UGC under the Major Research Project scheme [F.39/737/2010 (SR)].

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDileep, C. S., Lakshmi Ranganatha, V., Lokanath, N. K., Shaukath, A. K. & Sridhar, M. A. (2013). Acta Cryst. E69, o1550.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahendra, M., Khanum, S. A., Singh, A. K., Shashikanth, S., Doreswamy, B. H., Sridhar, M. A. & Shashidhara Prasad, J. (2005). Acta Cryst. E61, o2990–o2991.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds