metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m84-m85

Propane-1,2-di­ammonium chromate(VI)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: essidmanel@voila.fr

(Received 3 February 2014; accepted 3 February 2014; online 8 February 2014)

In the title mol­ecular salt, (C3H12N2)[CrO4], each chromate anion accepts six N—H⋯O and C—H⋯O hydrogen bonds from nearby propane-1,2-di­ammonium cations. Three of the four O atoms of the chromate anion accept these bonds; the remaining Cr—O bond length is notably shorter than the others. In the crystal, the anions and cations stack in layers lying parallel to (100): the hydrogen-bonding pattern leads to a three-dimensional network.

Related literature

For background to organic chromates, see: Chebbi & Driss (2002[Chebbi, H. & Driss, A. (2002). Acta Cryst. E58, m494-m496.], 2004[Chebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904-m906.]); Srinivasan et al. (2003[Srinivasan, B. R., Näther, C. & Bensch, W. (2003). Acta Cryst. E59, m639-m641.]). For the crystal structures of simple salts of the propane-1,2-di­ammonium cation, see: Pospieszna-Markiewicz et al. (2011[Pospieszna-Markiewicz, I., Zielaskiewicz, E., Radecka-Paryzek, W. & Kubicki, M. (2011). Acta Cryst. E67, o371-o372.]); Gerrard & Weller (2002[Gerrard, L. A. & Weller, M. T. (2002). Acta Cryst. C58, m504-m505.]); Lee & Harrison (2003[Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739-m741.]); Todd & Harrison (2005[Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026-m2028.]). For a discussion on hydrogen bonding, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[CrO4]

  • Mr = 192.15

  • Monoclinic, P 21 /c

  • a = 5.6462 (2) Å

  • b = 15.8373 (5) Å

  • c = 8.4442 (3) Å

  • β = 106.779 (1)°

  • V = 722.94 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 150 K

  • 0.55 × 0.44 × 0.31 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.477, Tmax = 0.620

  • 6302 measured reflections

  • 1659 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.14

  • 1659 reflections

  • 110 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Cr—O3 1.6182 (13)
Cr—O2 1.6378 (13)
Cr—O1 1.6711 (13)
Cr—O4 1.6879 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.85 (3) 1.94 (3) 2.769 (2) 166 (2)
N1—H1B⋯O4ii 0.87 (3) 1.97 (3) 2.816 (2) 164 (2)
N1—H1C⋯O2iii 0.85 (3) 1.97 (3) 2.818 (2) 171 (2)
N2—H2A⋯O1iv 0.82 (3) 1.96 (3) 2.779 (2) 178 (2)
N2—H2B⋯O1v 0.85 (2) 1.91 (3) 2.748 (2) 173 (2)
N2—H2C⋯O4 0.85 (3) 1.95 (3) 2.795 (2) 171 (2)
C1—H1⋯O2iv 0.99 2.34 3.313 (2) 167
C3—H3B⋯O2iii 0.98 2.37 3.301 (2) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

In this work, we report the preparation and the structural investigation of a new organic chromate, C3H12N2·CrO4 (I).

The asymmetric unit of (I) consists of one chromate anion and one propane-1,2-ammonium dication (Figure 1). The structure of the compound consists of discrete chromate ions stacked in layers parallel to the (100) plane, separated by organic cations (Figure 2). The structural cohesion is established by a three-dimensional network of N—H···O and C—H···O hydrogen bonds. Geometrical characteristics of the chromate anion are slightly different (Table 1). The distance Cr—O3 is notably the shortest (1.6182 (13) Å) because O3 is not applied in any hydrogen bond (Table 2) at the same time as Cr—O4 distance is the longest (1.6879 (13) Å) because O4 is applied in three hydrogen bonds. These geometrical features have also been noticed in other crystal structures (Chebbi & Driss, 2002; 2004; Srinivasan, et al., 2003).

The 1,2-propanediammonium cation is characterized by N—C—C—N and N—C—C—C torsion angles of 164.88 (14) and -74.50 (19)°, respectively. Each organic entity is bounded to six different chromate anions through eight N—H···O and C—H···O hydrogen bonds forming a three dimensional network. Examination of the 1,2-propanediammonium cation shows that the bond distances and angles show no significant difference from those obtained in other simple salts involving the same organic groups (Pospieszna-Markiewicz, et al., 2011; Gerrard, et al., 2002; Lee, et al., 2003; Todd, et al., 2005).

The established weak H-bonds (Brown, 1976; Blessing, 1986) of types N—H···O and C—H···O involve oxygen atoms of the chromate anions as acceptors, and the protonated nitrogen atoms and carbon atoms of 1,2-diammoniumpropane as donors.

Related literature top

For background to organic chromates, see: Chebbi & Driss (2002, 2004); Srinivasan, et al. (2003). For the crystal structures of simple salts of the propane-1,2-diammonium cation, see: Pospieszna-Markiewicz et al. (2011); Gerrard & Weller (2002); Lee & Harrison (2003); Todd & Harrison (2005). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986).

Experimental top

CrO3 (0.10 g, 1 mmol) and 1,2-diaminopropane (0.13 ml, 1 mmol) were dissolved in distilled water (20 ml). The resulting solution was stirred for 30 min. and then evaporated slowly at room temperature. Yellow prisms of the title compound were obtained from the solution after one week.

Refinement top

The hydrogen atoms bonded to N1 and N2 were located from a difference map and were allowed to refine. The rest of the H atoms were treated as riding, with C—H = 0.99 Å (methylene) or 0.98 Å (methyl) or 1.00 Å (methine), with Uiso(H) = 1.2Ueq(parent C atoms) and 1.5Ueq(parent N or C-methyl atoms).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Projection of (I) along the c axis. The H-atoms not involved in H-bonding are omitted.
Propane-1,2-diammonium chromate(VI) top
Crystal data top
(C3H12N2)[CrO4]F(000) = 400
Mr = 192.15Dx = 1.765 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3695 reflections
a = 5.6462 (2) Åθ = 2.8–27.5°
b = 15.8373 (5) ŵ = 1.54 mm1
c = 8.4442 (3) ÅT = 150 K
β = 106.779 (1)°Prism, yellow
V = 722.94 (4) Å30.55 × 0.44 × 0.31 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1659 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 76
Tmin = 0.477, Tmax = 0.620k = 1920
6302 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5214P]
where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C3H12N2)[CrO4]V = 722.94 (4) Å3
Mr = 192.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6462 (2) ŵ = 1.54 mm1
b = 15.8373 (5) ÅT = 150 K
c = 8.4442 (3) Å0.55 × 0.44 × 0.31 mm
β = 106.779 (1)°
Data collection top
Bruker APEXII
diffractometer
1659 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1554 reflections with I > 2σ(I)
Tmin = 0.477, Tmax = 0.620Rint = 0.032
6302 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.34 e Å3
1659 reflectionsΔρmin = 0.52 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.97996 (5)0.114804 (17)0.67966 (3)0.00751 (11)
O11.0758 (2)0.20744 (8)0.77039 (15)0.0120 (3)
O21.0791 (3)0.03771 (9)0.81142 (16)0.0154 (3)
O31.0937 (3)0.10356 (8)0.52561 (16)0.0146 (3)
O40.6684 (2)0.11150 (8)0.60744 (16)0.0124 (3)
N10.5418 (3)0.46519 (10)0.7997 (2)0.0112 (3)
H1A0.606 (4)0.4428 (16)0.894 (3)0.017*
H1B0.456 (4)0.5094 (16)0.810 (3)0.017*
H1C0.660 (5)0.4816 (15)0.763 (3)0.017*
N20.3804 (3)0.25695 (10)0.5858 (2)0.0102 (3)
H2A0.289 (5)0.2680 (15)0.494 (3)0.015*
H2B0.291 (4)0.2454 (15)0.648 (3)0.015*
H2C0.467 (4)0.2134 (16)0.581 (3)0.015*
C10.3836 (3)0.40086 (11)0.6906 (2)0.0107 (3)
H10.28850.42750.58550.013*
H20.26470.37740.74510.013*
C20.5446 (3)0.32984 (11)0.6549 (2)0.0097 (3)
H30.66640.31210.76120.012*
C30.6845 (4)0.35472 (12)0.5330 (2)0.0141 (4)
H3A0.78050.30630.51330.021*
H3B0.79670.40160.57860.021*
H3C0.56670.37220.42840.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.00627 (16)0.00701 (16)0.00877 (16)0.00041 (10)0.00140 (11)0.00009 (9)
O10.0121 (6)0.0105 (6)0.0129 (6)0.0018 (5)0.0027 (5)0.0024 (5)
O20.0167 (7)0.0130 (6)0.0152 (6)0.0031 (5)0.0028 (5)0.0037 (5)
O30.0151 (7)0.0158 (6)0.0145 (6)0.0032 (5)0.0069 (5)0.0032 (5)
O40.0085 (6)0.0122 (6)0.0155 (6)0.0004 (5)0.0021 (5)0.0011 (5)
N10.0127 (8)0.0099 (7)0.0110 (7)0.0005 (6)0.0035 (6)0.0014 (6)
N20.0105 (7)0.0084 (7)0.0116 (7)0.0006 (6)0.0029 (6)0.0004 (6)
C10.0086 (8)0.0102 (8)0.0123 (8)0.0002 (7)0.0016 (7)0.0014 (6)
C20.0085 (8)0.0085 (8)0.0112 (8)0.0006 (6)0.0014 (6)0.0011 (6)
C30.0135 (9)0.0125 (8)0.0185 (9)0.0021 (7)0.0080 (7)0.0019 (7)
Geometric parameters (Å, º) top
Cr—O31.6182 (13)N2—H2B0.85 (2)
Cr—O21.6378 (13)N2—H2C0.85 (3)
Cr—O11.6711 (13)C1—C21.530 (2)
Cr—O41.6879 (13)C1—H10.9900
N1—C11.486 (2)C1—H20.9900
N1—H1A0.85 (3)C2—C31.520 (2)
N1—H1B0.87 (3)C2—H31.0000
N1—H1C0.85 (3)C3—H3A0.9800
N2—C21.490 (2)C3—H3B0.9800
N2—H2A0.82 (3)C3—H3C0.9800
O3—Cr—O2109.08 (7)N1—C1—C2109.95 (14)
O3—Cr—O1108.31 (6)N1—C1—H1109.7
O2—Cr—O1109.94 (7)C2—C1—H1109.7
O3—Cr—O4108.67 (7)N1—C1—H2109.7
O2—Cr—O4109.78 (7)C2—C1—H2109.7
O1—Cr—O4111.01 (6)H1—C1—H2108.2
C1—N1—H1A108.1 (16)N2—C2—C3108.76 (14)
C1—N1—H1B111.1 (16)N2—C2—C1108.00 (14)
H1A—N1—H1B110 (2)C3—C2—C1113.43 (15)
C1—N1—H1C112.0 (16)N2—C2—H3108.9
H1A—N1—H1C107 (2)C3—C2—H3108.9
H1B—N1—H1C108 (2)C1—C2—H3108.9
C2—N2—H2A111.0 (16)C2—C3—H3A109.5
C2—N2—H2B110.0 (16)C2—C3—H3B109.5
H2A—N2—H2B108 (2)H3A—C3—H3B109.5
C2—N2—H2C110.2 (16)C2—C3—H3C109.5
H2A—N2—H2C110 (2)H3A—C3—H3C109.5
H2B—N2—H2C108 (2)H3B—C3—H3C109.5
N1—C1—C2—N2164.88 (14)N1—C1—C2—C374.50 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.85 (3)1.94 (3)2.769 (2)166 (2)
N1—H1B···O4ii0.87 (3)1.97 (3)2.816 (2)164 (2)
N1—H1C···O2iii0.85 (3)1.97 (3)2.818 (2)171 (2)
N2—H2A···O1iv0.82 (3)1.96 (3)2.779 (2)178 (2)
N2—H2B···O1v0.85 (2)1.91 (3)2.748 (2)173 (2)
N2—H2C···O40.85 (3)1.95 (3)2.795 (2)171 (2)
C1—H1···O2iv0.992.343.313 (2)167
C3—H3B···O2iii0.982.373.301 (2)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x1, y+1/2, z1/2; (v) x1, y, z.
Selected bond lengths (Å) top
Cr—O31.6182 (13)Cr—O11.6711 (13)
Cr—O21.6378 (13)Cr—O41.6879 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.85 (3)1.94 (3)2.769 (2)166 (2)
N1—H1B···O4ii0.87 (3)1.97 (3)2.816 (2)164 (2)
N1—H1C···O2iii0.85 (3)1.97 (3)2.818 (2)171 (2)
N2—H2A···O1iv0.82 (3)1.96 (3)2.779 (2)178 (2)
N2—H2B···O1v0.85 (2)1.91 (3)2.748 (2)173 (2)
N2—H2C···O40.85 (3)1.95 (3)2.795 (2)171 (2)
C1—H1···O2iv0.992.343.313 (2)167
C3—H3B···O2iii0.982.373.301 (2)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1/2, z+3/2; (iv) x1, y+1/2, z1/2; (v) x1, y, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of H. E. Sc. R.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChebbi, H. & Driss, A. (2002). Acta Cryst. E58, m494–m496.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904–m906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerrard, L. A. & Weller, M. T. (2002). Acta Cryst. C58, m504–m505.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739–m741.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPospieszna-Markiewicz, I., Zielaskiewicz, E., Radecka-Paryzek, W. & Kubicki, M. (2011). Acta Cryst. E67, o371–o372.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Näther, C. & Bensch, W. (2003). Acta Cryst. E59, m639–m641.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTodd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026–m2028.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m84-m85
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds