metal-organic compounds
Propane-1,2-diammonium chromate(VI)
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: essidmanel@voila.fr
In the title molecular salt, (C3H12N2)[CrO4], each chromate anion accepts six N—H⋯O and C—H⋯O hydrogen bonds from nearby propane-1,2-diammonium cations. Three of the four O atoms of the chromate anion accept these bonds; the remaining Cr—O bond length is notably shorter than the others. In the crystal, the anions and cations stack in layers lying parallel to (100): the hydrogen-bonding pattern leads to a three-dimensional network.
CCDC reference: 984845
Related literature
For background to organic chromates, see: Chebbi & Driss (2002, 2004); Srinivasan et al. (2003). For the crystal structures of simple salts of the propane-1,2-diammonium cation, see: Pospieszna-Markiewicz et al. (2011); Gerrard & Weller (2002); Lee & Harrison (2003); Todd & Harrison (2005). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
CCDC reference: 984845
10.1107/S1600536814002463/hb7193sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002463/hb7193Isup2.hkl
CrO3 (0.10 g, 1 mmol) and 1,2-diaminopropane (0.13 ml, 1 mmol) were dissolved in distilled water (20 ml). The resulting solution was stirred for 30 min. and then evaporated slowly at room temperature. Yellow prisms of the title compound were obtained from the solution after one week.
The hydrogen atoms bonded to N1 and N2 were located from a difference map and were allowed to refine. The rest of the H atoms were treated as riding, with C—H = 0.99 Å (methylene) or 0.98 Å (methyl) or 1.00 Å (methine), with Uiso(H) = 1.2Ueq(parent C atoms) and 1.5Ueq(parent N or C-methyl atoms).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. | |
Fig. 2. Projection of (I) along the c axis. The H-atoms not involved in H-bonding are omitted. |
(C3H12N2)[CrO4] | F(000) = 400 |
Mr = 192.15 | Dx = 1.765 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3695 reflections |
a = 5.6462 (2) Å | θ = 2.8–27.5° |
b = 15.8373 (5) Å | µ = 1.54 mm−1 |
c = 8.4442 (3) Å | T = 150 K |
β = 106.779 (1)° | Prism, yellow |
V = 722.94 (4) Å3 | 0.55 × 0.44 × 0.31 mm |
Z = 4 |
Bruker APEXII diffractometer | 1659 independent reflections |
Radiation source: fine-focus sealed tube | 1554 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −7→6 |
Tmin = 0.477, Tmax = 0.620 | k = −19→20 |
6302 measured reflections | l = −9→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0303P)2 + 0.5214P] where P = (Fo2 + 2Fc2)/3 |
1659 reflections | (Δ/σ)max = 0.001 |
110 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
(C3H12N2)[CrO4] | V = 722.94 (4) Å3 |
Mr = 192.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.6462 (2) Å | µ = 1.54 mm−1 |
b = 15.8373 (5) Å | T = 150 K |
c = 8.4442 (3) Å | 0.55 × 0.44 × 0.31 mm |
β = 106.779 (1)° |
Bruker APEXII diffractometer | 1659 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1554 reflections with I > 2σ(I) |
Tmin = 0.477, Tmax = 0.620 | Rint = 0.032 |
6302 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.071 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 0.34 e Å−3 |
1659 reflections | Δρmin = −0.52 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cr | 0.97996 (5) | 0.114804 (17) | 0.67966 (3) | 0.00751 (11) | |
O1 | 1.0758 (2) | 0.20744 (8) | 0.77039 (15) | 0.0120 (3) | |
O2 | 1.0791 (3) | 0.03771 (9) | 0.81142 (16) | 0.0154 (3) | |
O3 | 1.0937 (3) | 0.10356 (8) | 0.52561 (16) | 0.0146 (3) | |
O4 | 0.6684 (2) | 0.11150 (8) | 0.60744 (16) | 0.0124 (3) | |
N1 | 0.5418 (3) | 0.46519 (10) | 0.7997 (2) | 0.0112 (3) | |
H1A | 0.606 (4) | 0.4428 (16) | 0.894 (3) | 0.017* | |
H1B | 0.456 (4) | 0.5094 (16) | 0.810 (3) | 0.017* | |
H1C | 0.660 (5) | 0.4816 (15) | 0.763 (3) | 0.017* | |
N2 | 0.3804 (3) | 0.25695 (10) | 0.5858 (2) | 0.0102 (3) | |
H2A | 0.289 (5) | 0.2680 (15) | 0.494 (3) | 0.015* | |
H2B | 0.291 (4) | 0.2454 (15) | 0.648 (3) | 0.015* | |
H2C | 0.467 (4) | 0.2134 (16) | 0.581 (3) | 0.015* | |
C1 | 0.3836 (3) | 0.40086 (11) | 0.6906 (2) | 0.0107 (3) | |
H1 | 0.2885 | 0.4275 | 0.5855 | 0.013* | |
H2 | 0.2647 | 0.3774 | 0.7451 | 0.013* | |
C2 | 0.5446 (3) | 0.32984 (11) | 0.6549 (2) | 0.0097 (3) | |
H3 | 0.6664 | 0.3121 | 0.7612 | 0.012* | |
C3 | 0.6845 (4) | 0.35472 (12) | 0.5330 (2) | 0.0141 (4) | |
H3A | 0.7805 | 0.3063 | 0.5133 | 0.021* | |
H3B | 0.7967 | 0.4016 | 0.5786 | 0.021* | |
H3C | 0.5667 | 0.3722 | 0.4284 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr | 0.00627 (16) | 0.00701 (16) | 0.00877 (16) | −0.00041 (10) | 0.00140 (11) | −0.00009 (9) |
O1 | 0.0121 (6) | 0.0105 (6) | 0.0129 (6) | −0.0018 (5) | 0.0027 (5) | −0.0024 (5) |
O2 | 0.0167 (7) | 0.0130 (6) | 0.0152 (6) | 0.0031 (5) | 0.0028 (5) | 0.0037 (5) |
O3 | 0.0151 (7) | 0.0158 (6) | 0.0145 (6) | −0.0032 (5) | 0.0069 (5) | −0.0032 (5) |
O4 | 0.0085 (6) | 0.0122 (6) | 0.0155 (6) | −0.0004 (5) | 0.0021 (5) | −0.0011 (5) |
N1 | 0.0127 (8) | 0.0099 (7) | 0.0110 (7) | 0.0005 (6) | 0.0035 (6) | −0.0014 (6) |
N2 | 0.0105 (7) | 0.0084 (7) | 0.0116 (7) | −0.0006 (6) | 0.0029 (6) | −0.0004 (6) |
C1 | 0.0086 (8) | 0.0102 (8) | 0.0123 (8) | 0.0002 (7) | 0.0016 (7) | −0.0014 (6) |
C2 | 0.0085 (8) | 0.0085 (8) | 0.0112 (8) | −0.0006 (6) | 0.0014 (6) | −0.0011 (6) |
C3 | 0.0135 (9) | 0.0125 (8) | 0.0185 (9) | −0.0021 (7) | 0.0080 (7) | −0.0019 (7) |
Cr—O3 | 1.6182 (13) | N2—H2B | 0.85 (2) |
Cr—O2 | 1.6378 (13) | N2—H2C | 0.85 (3) |
Cr—O1 | 1.6711 (13) | C1—C2 | 1.530 (2) |
Cr—O4 | 1.6879 (13) | C1—H1 | 0.9900 |
N1—C1 | 1.486 (2) | C1—H2 | 0.9900 |
N1—H1A | 0.85 (3) | C2—C3 | 1.520 (2) |
N1—H1B | 0.87 (3) | C2—H3 | 1.0000 |
N1—H1C | 0.85 (3) | C3—H3A | 0.9800 |
N2—C2 | 1.490 (2) | C3—H3B | 0.9800 |
N2—H2A | 0.82 (3) | C3—H3C | 0.9800 |
O3—Cr—O2 | 109.08 (7) | N1—C1—C2 | 109.95 (14) |
O3—Cr—O1 | 108.31 (6) | N1—C1—H1 | 109.7 |
O2—Cr—O1 | 109.94 (7) | C2—C1—H1 | 109.7 |
O3—Cr—O4 | 108.67 (7) | N1—C1—H2 | 109.7 |
O2—Cr—O4 | 109.78 (7) | C2—C1—H2 | 109.7 |
O1—Cr—O4 | 111.01 (6) | H1—C1—H2 | 108.2 |
C1—N1—H1A | 108.1 (16) | N2—C2—C3 | 108.76 (14) |
C1—N1—H1B | 111.1 (16) | N2—C2—C1 | 108.00 (14) |
H1A—N1—H1B | 110 (2) | C3—C2—C1 | 113.43 (15) |
C1—N1—H1C | 112.0 (16) | N2—C2—H3 | 108.9 |
H1A—N1—H1C | 107 (2) | C3—C2—H3 | 108.9 |
H1B—N1—H1C | 108 (2) | C1—C2—H3 | 108.9 |
C2—N2—H2A | 111.0 (16) | C2—C3—H3A | 109.5 |
C2—N2—H2B | 110.0 (16) | C2—C3—H3B | 109.5 |
H2A—N2—H2B | 108 (2) | H3A—C3—H3B | 109.5 |
C2—N2—H2C | 110.2 (16) | C2—C3—H3C | 109.5 |
H2A—N2—H2C | 110 (2) | H3A—C3—H3C | 109.5 |
H2B—N2—H2C | 108 (2) | H3B—C3—H3C | 109.5 |
N1—C1—C2—N2 | 164.88 (14) | N1—C1—C2—C3 | −74.50 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.85 (3) | 1.94 (3) | 2.769 (2) | 166 (2) |
N1—H1B···O4ii | 0.87 (3) | 1.97 (3) | 2.816 (2) | 164 (2) |
N1—H1C···O2iii | 0.85 (3) | 1.97 (3) | 2.818 (2) | 171 (2) |
N2—H2A···O1iv | 0.82 (3) | 1.96 (3) | 2.779 (2) | 178 (2) |
N2—H2B···O1v | 0.85 (2) | 1.91 (3) | 2.748 (2) | 173 (2) |
N2—H2C···O4 | 0.85 (3) | 1.95 (3) | 2.795 (2) | 171 (2) |
C1—H1···O2iv | 0.99 | 2.34 | 3.313 (2) | 167 |
C3—H3B···O2iii | 0.98 | 2.37 | 3.301 (2) | 158 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2; (iv) x−1, −y+1/2, z−1/2; (v) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4i | 0.85 (3) | 1.94 (3) | 2.769 (2) | 166 (2) |
N1—H1B···O4ii | 0.87 (3) | 1.97 (3) | 2.816 (2) | 164 (2) |
N1—H1C···O2iii | 0.85 (3) | 1.97 (3) | 2.818 (2) | 171 (2) |
N2—H2A···O1iv | 0.82 (3) | 1.96 (3) | 2.779 (2) | 178 (2) |
N2—H2B···O1v | 0.85 (2) | 1.91 (3) | 2.748 (2) | 173 (2) |
N2—H2C···O4 | 0.85 (3) | 1.95 (3) | 2.795 (2) | 171 (2) |
C1—H1···O2iv | 0.99 | 2.34 | 3.313 (2) | 167 |
C3—H3B···O2iii | 0.98 | 2.37 | 3.301 (2) | 158 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+2, y+1/2, −z+3/2; (iv) x−1, −y+1/2, z−1/2; (v) x−1, y, z. |
Acknowledgements
This work was supported by the Tunisian Ministry of H. E. Sc. R.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1986). Acta Cryst. B42, 613–621. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. (1976). Acta Cryst. A32, 24–31. CrossRef IUCr Journals Web of Science Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chebbi, H. & Driss, A. (2002). Acta Cryst. E58, m494–m496. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Chebbi, H. & Driss, A. (2004). Acta Cryst. E60, m904–m906. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gerrard, L. A. & Weller, M. T. (2002). Acta Cryst. C58, m504–m505. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739–m741. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pospieszna-Markiewicz, I., Zielaskiewicz, E., Radecka-Paryzek, W. & Kubicki, M. (2011). Acta Cryst. E67, o371–o372. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasan, B. R., Näther, C. & Bensch, W. (2003). Acta Cryst. E59, m639–m641. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2026–m2028. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In this work, we report the preparation and the structural investigation of a new organic chromate, C3H12N2·CrO4 (I).
The asymmetric unit of (I) consists of one chromate anion and one propane-1,2-ammonium dication (Figure 1). The structure of the compound consists of discrete chromate ions stacked in layers parallel to the (100) plane, separated by organic cations (Figure 2). The structural cohesion is established by a three-dimensional network of N—H···O and C—H···O hydrogen bonds. Geometrical characteristics of the chromate anion are slightly different (Table 1). The distance Cr—O3 is notably the shortest (1.6182 (13) Å) because O3 is not applied in any hydrogen bond (Table 2) at the same time as Cr—O4 distance is the longest (1.6879 (13) Å) because O4 is applied in three hydrogen bonds. These geometrical features have also been noticed in other crystal structures (Chebbi & Driss, 2002; 2004; Srinivasan, et al., 2003).
The 1,2-propanediammonium cation is characterized by N—C—C—N and N—C—C—C torsion angles of 164.88 (14) and -74.50 (19)°, respectively. Each organic entity is bounded to six different chromate anions through eight N—H···O and C—H···O hydrogen bonds forming a three dimensional network. Examination of the 1,2-propanediammonium cation shows that the bond distances and angles show no significant difference from those obtained in other simple salts involving the same organic groups (Pospieszna-Markiewicz, et al., 2011; Gerrard, et al., 2002; Lee, et al., 2003; Todd, et al., 2005).
The established weak H-bonds (Brown, 1976; Blessing, 1986) of types N—H···O and C—H···O involve oxygen atoms of the chromate anions as acceptors, and the protonated nitrogen atoms and carbon atoms of 1,2-diammoniumpropane as donors.