metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m86-m87

Bis(2,6-di­methyl­anilinium) di­aqua­bis­­(di­hydrogen diphosphato-κ2O,O′)cobaltate(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: ahmedselmi09@yahoo.fr

(Received 3 February 2014; accepted 4 February 2014; online 8 February 2014)

In the title compound, (C8H12N)2[Co(H2P2O7)2(H2O)2], the Co2+ ion lies on a crystallographic inversion centre and adopts a slightly distorted octa­hedral CoO6 coordination geometry arising from two chelating diphosphate [H2P2O7]2− ligands and two trans water mol­ecules. In the crystal, the components are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds and weak aromatic ππ stacking [shortest centroid–centroid separation = 3.778 (2) Å] inter­actions. (001) layers of alternating organic cations and complex inorganic anions are apparent.

Related literature

For related structures, see: Ahmed et al. (2006[Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796-m1798.]); Selmi et al. (2006[Selmi, A., Akriche, S. & Rzaigui, M. (2006). Anal. Sci. 22, x135-x136.], 2009[Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.]); Gharbi et al. (1994[Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330-337.]); Gharbi & Jouini (2004[Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11-13.]); Elboulali et al. (2013a[Elboulali, A., Akriche, S. & Rzaigui, M. (2013a). Acta Cryst. E69, m545-m546.],b[Elboulali, A., Akriche, S. & Rzaigui, M. (2013b). Acta Cryst. E69, m572.]); Essehli et al. (2006[Essehli, R., El Bali, B., Lachkar, M., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m538-m541.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)2[Co(H2P2O7)2(H2O)2]

  • Mr = 691.25

  • Triclinic, [P \overline 1]

  • a = 7.320 (3) Å

  • b = 7.584 (4) Å

  • c = 13.413 (2) Å

  • α = 85.35 (3)°

  • β = 75.56 (2)°

  • γ = 74.42 (5)°

  • V = 694.5 (5) Å3

  • Z = 1

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.799, Tmax = 0.982

  • 9085 measured reflections

  • 6683 independent reflections

  • 5514 reflections with I > 2σ(I)

  • Rint = 0.080

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.168

  • S = 1.04

  • 6683 reflections

  • 189 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.57 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O5 2.0645 (18)
Co1—O1 2.0744 (17)
Co1—O1W 2.130 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6i 0.82 1.72 2.532 (3) 174
O7—H7⋯O3ii 0.82 1.70 2.505 (3) 167
O1W—H2W1⋯O4i 0.87 (2) 2.11 (2) 2.947 (3) 161 (4)
O1W—H1W1⋯O7iii 0.86 (2) 1.96 (2) 2.813 (3) 177 (4)
N1—H1C⋯O6iv 0.89 1.94 2.828 (3) 175
N1—H1A⋯O3ii 0.89 1.93 2.805 (3) 168
N1—H1B⋯O5 0.89 2.29 3.005 (3) 138
N1—H1B⋯O1v 0.89 2.37 3.016 (3) 129
C7—H7C⋯O2ii 0.96 2.58 3.497 (5) 160
C7—H7A⋯O6iv 0.96 2.57 3.343 (4) 138
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The present work is a part of our investigation of diphosphate materials of mixed organic-metal cations. Here, we report a new synthesized one: (C8H12N)2[Co(H2P2O7)2(H2O)2] (I).

The asymmetric unit of (I) is made up of a half of mononuclear [Co(H2P2O7)2(H2O)2]2- moiety and one of 2,6-xylidinium cation. As Co2+ ion lie on inversion centre, the complete formula unit is generated by this element of symmetry (Fig. 1).

The inorganic component is made up of anionic monomeric units of formula [Co(H2P2O7)2(H2O)2]2-, in which the six-coordinated cobalt (II) ions are linked by means of O—H···O (with 2.505 (3) Å < O···O < 2.947 (3) Å see Table 1) hydrogen bonds to develop anionic layers running perpendicular to c axis. Similar [M(H2P2O7)2(H2O)2]2n- two-dimensional topological framework can be also found in the previously reported diphosphate materials (Selmi et al., 2006, 2009; Elboulali et al., 2013a,b). The cobalt (II) complex adopts a distorted octahedral where the four O atoms of diphospahte bidentate ligand (O1, O5, O1i and O5i with (i); -x + 1, -y + 1, -z + 1) fill the equatorial positions and the two symmetry equivalent O atoms of water molecules (O1W, O1Wi with (i); -x + 1, -y + 1, -z + 1) occupy the apical ones. The bond distances and angles in CoO6 are sufficiently close to those found in the related MIIO6 complexes featuring the chelating diphosphate ligand (Ahmed et al., 2006; Elboulali et al., 2013a, 2013b; Essehli et al., 2006; Gharbi et al., 1994; Gharbi et al., 2004; Selmi et al., 2006 and 2009).

Two phosphorous atoms are tetrahedrally coordinated and covalently linked through O4 to form a P2O7 group with bent geometry (P1–O4–P2 = 129.66 (12) °) and quasi-eclipsed conformation as confirmed by the torsion angle values 11.66°, 5.76° and 7.16° respectively of O5—P2—P1—O1, O7—P2—P1—O3 and O6—P2—P1—O2.

In the crystal of 1, the 2,6-xylidinium cations are linked by means N—H···O and C—H···O hydrogen bonds to inorganic layers thanks to NH3 group of the protonated cations (Fig. 2). It's to be noted that two adjacent cations interact by weak π···π stacking interactions (values of the inter-planar distances of 3.778 (2) Å).

Related literature top

For related structures, see: Ahmed et al. (2006); Selmi et al. (2006, 2009); Gharbi et al. (1994, 2004); Gharbi & Jouini (2004); Elboulali et al. (2013a,b); Essehli et al. (2006).

Experimental top

Pink blocks of the title compound were grown at room temperature by slow evaporation from water-ethanol (80/20) solution containing a stoichiometric mixture of CoCl2·6H2O (0.12 mg, 0.5 mmol), 2,6-xylidine (0.12 mL,1 mmol) and N4P2O7.10H2O (0.45 mg, 1 mmol) dissolved in 2 ml of hydrochloric acid solution (2M).

Refinement top

Due to poor quality of the crystal when being diffracted, some bad reflections (with (Iobs-Icalc)/SigmaW > 10) are observed. For the final refinement they are omitted. H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for aromatic ring and C—H = 0.96 Å and N—H = 0.89 Å respectively for CH3 and NH3 cation radicals and O—H = 0.82 Å for diphosphoric anion with Uiso(H) = 1.5Ueq(C, O or N). The water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Perspetive view of crystal packing of (I). The H-atoms not involved in H-bonding are omitted.
Bis(2,6-dimethylanilinium) diaquabis(dihydrogen diphosphato-κ2O,O')cobaltate(II) top
Crystal data top
(C8H12N)2[Co(H2P2O7)2(H2O)2]Z = 1
Mr = 691.25F(000) = 357
Triclinic, P1Dx = 1.653 Mg m3
a = 7.320 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 7.584 (4) ÅCell parameters from 25 reflections
c = 13.413 (2) Åθ = 9–11°
α = 85.35 (3)°µ = 0.48 mm1
β = 75.56 (2)°T = 293 K
γ = 74.42 (5)°Prism, pink
V = 694.5 (5) Å30.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
5514 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
non–profiled ω scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.799, Tmax = 0.982l = 522
9085 measured reflections2 standard reflections every 120 min
6683 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.9452P]
where P = (Fo2 + 2Fc2)/3
6683 reflections(Δ/σ)max = 0.005
189 parametersΔρmax = 1.57 e Å3
3 restraintsΔρmin = 0.82 e Å3
Crystal data top
(C8H12N)2[Co(H2P2O7)2(H2O)2]γ = 74.42 (5)°
Mr = 691.25V = 694.5 (5) Å3
Triclinic, P1Z = 1
a = 7.320 (3) ÅAg Kα radiation, λ = 0.56087 Å
b = 7.584 (4) ŵ = 0.48 mm1
c = 13.413 (2) ÅT = 293 K
α = 85.35 (3)°0.40 × 0.30 × 0.20 mm
β = 75.56 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
5514 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.080
Tmin = 0.799, Tmax = 0.9822 standard reflections every 120 min
9085 measured reflections intensity decay: 5%
6683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0613 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.57 e Å3
6683 reflectionsΔρmin = 0.82 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.01796 (9)
P10.69129 (7)0.72084 (7)0.63065 (4)0.01948 (10)
P20.80524 (7)0.75466 (7)0.40670 (4)0.01867 (10)
O10.5727 (2)0.5931 (2)0.62242 (13)0.0242 (3)
O20.8322 (3)0.6463 (2)0.70245 (15)0.0287 (3)
H20.87940.53610.69370.043*
O30.5808 (3)0.9121 (2)0.66208 (16)0.0306 (4)
O40.8430 (2)0.7284 (3)0.52092 (14)0.0274 (3)
O50.6535 (2)0.6611 (2)0.40048 (13)0.0245 (3)
O61.0029 (2)0.6880 (2)0.33643 (15)0.0281 (3)
O70.7321 (3)0.9654 (2)0.39394 (17)0.0308 (4)
H70.62700.99030.37780.046*
O1W0.7487 (2)0.2730 (2)0.49181 (18)0.0327 (4)
H1W10.748 (6)0.178 (4)0.462 (3)0.049*
H2W10.865 (4)0.291 (5)0.477 (3)0.049*
N10.3681 (3)0.7717 (3)0.26576 (15)0.0258 (3)
H1A0.36750.88040.28650.039*
H1B0.45770.68490.28850.039*
H1C0.25110.75080.29080.039*
C10.4143 (4)0.7700 (4)0.15241 (18)0.0291 (4)
C20.2798 (5)0.8852 (4)0.1038 (2)0.0367 (5)
C30.3238 (7)0.8820 (6)0.0032 (3)0.0530 (9)
H30.23640.95700.03820.064*
C40.4949 (8)0.7695 (7)0.0583 (2)0.0616 (12)
H40.52100.76800.12980.074*
C50.6260 (6)0.6602 (6)0.0078 (2)0.0540 (10)
H50.74160.58650.04570.065*
C60.5902 (5)0.6569 (4)0.0994 (2)0.0378 (6)
C70.0963 (5)1.0126 (5)0.1621 (3)0.0477 (7)
H7A0.00770.94310.19850.072*
H7B0.03641.09610.11470.072*
H7C0.12731.08020.21020.072*
C80.7374 (5)0.5355 (6)0.1532 (3)0.0556 (9)
H8A0.80420.60900.17830.083*
H8B0.83020.44770.10570.083*
H8C0.67150.47260.21000.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01549 (15)0.01757 (15)0.02352 (17)0.00720 (11)0.00640 (12)0.00003 (12)
P10.0174 (2)0.01835 (19)0.0248 (2)0.00437 (15)0.00820 (16)0.00249 (16)
P20.01319 (18)0.01767 (19)0.0260 (2)0.00567 (14)0.00438 (15)0.00018 (16)
O10.0256 (7)0.0265 (7)0.0252 (7)0.0133 (5)0.0071 (5)0.0016 (5)
O20.0286 (7)0.0271 (7)0.0330 (8)0.0007 (6)0.0171 (6)0.0051 (6)
O30.0286 (7)0.0206 (6)0.0450 (10)0.0003 (6)0.0174 (7)0.0082 (6)
O40.0206 (6)0.0389 (8)0.0276 (7)0.0137 (6)0.0087 (5)0.0010 (6)
O50.0236 (6)0.0279 (7)0.0279 (7)0.0154 (5)0.0083 (5)0.0032 (5)
O60.0176 (6)0.0248 (7)0.0369 (9)0.0044 (5)0.0010 (6)0.0012 (6)
O70.0235 (7)0.0185 (6)0.0539 (11)0.0040 (5)0.0166 (7)0.0014 (6)
O1W0.0191 (6)0.0259 (7)0.0549 (12)0.0031 (6)0.0118 (7)0.0099 (7)
N10.0265 (8)0.0297 (8)0.0232 (8)0.0104 (7)0.0062 (6)0.0003 (6)
C10.0362 (11)0.0345 (10)0.0227 (9)0.0204 (9)0.0061 (8)0.0002 (8)
C20.0475 (14)0.0433 (13)0.0310 (11)0.0272 (12)0.0166 (10)0.0089 (10)
C30.078 (3)0.068 (2)0.0340 (14)0.045 (2)0.0286 (16)0.0146 (14)
C40.099 (3)0.080 (3)0.0228 (12)0.057 (3)0.0082 (16)0.0011 (14)
C50.070 (2)0.065 (2)0.0286 (13)0.0376 (19)0.0110 (14)0.0132 (13)
C60.0413 (13)0.0433 (13)0.0295 (11)0.0205 (11)0.0030 (10)0.0084 (10)
C70.0455 (16)0.0484 (17)0.0554 (19)0.0149 (13)0.0249 (15)0.0147 (14)
C80.0376 (15)0.061 (2)0.057 (2)0.0017 (15)0.0009 (14)0.0131 (17)
Geometric parameters (Å, º) top
Co1—O5i2.0645 (18)N1—H1B0.8900
Co1—O52.0645 (18)N1—H1C0.8900
Co1—O12.0744 (17)C1—C21.386 (4)
Co1—O1i2.0744 (17)C1—C61.396 (4)
Co1—O1Wi2.130 (2)C2—C31.391 (4)
Co1—O1W2.130 (2)C2—C71.500 (5)
P1—O11.4905 (17)C3—C41.383 (7)
P1—O31.495 (2)C3—H30.9300
P1—O21.5505 (18)C4—C51.369 (7)
P1—O41.6151 (19)C4—H40.9300
P2—O51.4910 (17)C5—C61.395 (4)
P2—O61.4971 (18)C5—H50.9300
P2—O71.5529 (19)C6—C81.509 (6)
P2—O41.6110 (19)C7—H7A0.9600
O2—H20.8200C7—H7B0.9600
O7—H70.8200C7—H7C0.9600
O1W—H1W10.856 (18)C8—H8A0.9600
O1W—H2W10.867 (18)C8—H8B0.9600
N1—C11.473 (3)C8—H8C0.9600
N1—H1A0.8900
O5i—Co1—O5180.0C1—N1—H1B109.5
O5i—Co1—O190.34 (7)H1A—N1—H1B109.5
O5—Co1—O189.66 (7)C1—N1—H1C109.5
O5i—Co1—O1i89.66 (7)H1A—N1—H1C109.5
O5—Co1—O1i90.34 (7)H1B—N1—H1C109.5
O1—Co1—O1i180.0C2—C1—C6123.4 (3)
O5i—Co1—O1Wi93.83 (8)C2—C1—N1117.4 (2)
O5—Co1—O1Wi86.17 (8)C6—C1—N1119.2 (2)
O1—Co1—O1Wi92.18 (8)C1—C2—C3117.1 (3)
O1i—Co1—O1Wi87.82 (8)C1—C2—C7122.5 (3)
O5i—Co1—O1W86.17 (8)C3—C2—C7120.4 (3)
O5—Co1—O1W93.83 (8)C4—C3—C2121.2 (4)
O1—Co1—O1W87.82 (8)C4—C3—H3119.4
O1i—Co1—O1W92.18 (8)C2—C3—H3119.4
O1Wi—Co1—O1W180.0C5—C4—C3120.0 (3)
O1—P1—O3116.44 (11)C5—C4—H4120.0
O1—P1—O2112.85 (11)C3—C4—H4120.0
O3—P1—O2107.98 (11)C4—C5—C6121.5 (4)
O1—P1—O4108.32 (10)C4—C5—H5119.2
O3—P1—O4108.67 (12)C6—C5—H5119.2
O2—P1—O4101.45 (10)C5—C6—C1116.8 (3)
O5—P2—O6116.77 (11)C5—C6—C8120.5 (3)
O5—P2—O7111.33 (10)C1—C6—C8122.8 (3)
O6—P2—O7109.58 (11)C2—C7—H7A109.5
O5—P2—O4109.55 (9)C2—C7—H7B109.5
O6—P2—O4104.85 (10)H7A—C7—H7B109.5
O7—P2—O4103.77 (11)C2—C7—H7C109.5
P1—O1—Co1133.68 (10)H7A—C7—H7C109.5
P1—O2—H2109.5H7B—C7—H7C109.5
P2—O4—P1129.66 (11)C6—C8—H8A109.5
P2—O5—Co1134.76 (11)C6—C8—H8B109.5
P2—O7—H7109.5H8A—C8—H8B109.5
Co1—O1W—H1W1116 (3)C6—C8—H8C109.5
Co1—O1W—H2W1120 (3)H8A—C8—H8C109.5
H1W1—O1W—H2W1111 (3)H8B—C8—H8C109.5
C1—N1—H1A109.5
O3—P1—O1—Co199.39 (16)O1—Co1—O5—P217.64 (15)
O2—P1—O1—Co1134.89 (14)O1i—Co1—O5—P2162.36 (15)
O4—P1—O1—Co123.38 (17)O1Wi—Co1—O5—P2109.84 (16)
O5i—Co1—O1—P1178.85 (15)O1W—Co1—O5—P270.16 (16)
O5—Co1—O1—P11.15 (15)C6—C1—C2—C31.6 (4)
O1i—Co1—O1—P110 (100)N1—C1—C2—C3179.6 (2)
O1Wi—Co1—O1—P187.30 (15)C6—C1—C2—C7176.8 (3)
O1W—Co1—O1—P192.70 (15)N1—C1—C2—C72.0 (4)
O5—P2—O4—P135.28 (19)C1—C2—C3—C40.4 (5)
O6—P2—O4—P1161.35 (15)C7—C2—C3—C4178.1 (3)
O7—P2—O4—P183.69 (17)C2—C3—C4—C50.9 (6)
O1—P1—O4—P247.67 (18)C3—C4—C5—C61.0 (6)
O3—P1—O4—P279.70 (17)C4—C5—C6—C10.1 (5)
O2—P1—O4—P2166.66 (15)C4—C5—C6—C8179.8 (4)
O6—P2—O5—Co1114.85 (16)C2—C1—C6—C51.5 (4)
O7—P2—O5—Co1118.29 (16)N1—C1—C6—C5179.7 (2)
O4—P2—O5—Co14.09 (18)C2—C1—C6—C8178.5 (3)
O5i—Co1—O5—P289 (100)N1—C1—C6—C80.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6ii0.821.722.532 (3)174
O7—H7···O3iii0.821.702.505 (3)167
O1W—H2W1···O4ii0.87 (2)2.11 (2)2.947 (3)161 (4)
O1W—H1W1···O7iv0.86 (2)1.96 (2)2.813 (3)177 (4)
N1—H1C···O6v0.891.942.828 (3)175
N1—H1A···O3iii0.891.932.805 (3)168
N1—H1B···O50.892.293.005 (3)138
N1—H1B···O1i0.892.373.016 (3)129
C7—H7C···O2iii0.962.583.497 (5)160
C7—H7A···O6v0.962.573.343 (4)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y1, z; (v) x1, y, z.
Selected bond lengths (Å) top
Co1—O52.0645 (18)Co1—O1W2.130 (2)
Co1—O12.0744 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O6i0.821.722.532 (3)174
O7—H7···O3ii0.821.702.505 (3)167
O1W—H2W1···O4i0.867 (18)2.11 (2)2.947 (3)161 (4)
O1W—H1W1···O7iii0.856 (18)1.958 (18)2.813 (3)177 (4)
N1—H1C···O6iv0.891.942.828 (3)175
N1—H1A···O3ii0.891.932.805 (3)168
N1—H1B···O50.892.293.005 (3)138
N1—H1B···O1v0.892.373.016 (3)129
C7—H7C···O2ii0.962.583.497 (5)160
C7—H7A···O6iv0.962.573.343 (4)138
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

References

First citationAhmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationElboulali, A., Akriche, S. & Rzaigui, M. (2013a). Acta Cryst. E69, m545–m546.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationElboulali, A., Akriche, S. & Rzaigui, M. (2013b). Acta Cryst. E69, m572.  CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEssehli, R., El Bali, B., Lachkar, M., Svoboda, I. & Fuess, H. (2006). Acta Cryst. E62, m538–m541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13.  Web of Science CSD CrossRef Google Scholar
First citationGharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2006). Anal. Sci. 22, x135–x136.  CAS Google Scholar
First citationSelmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m86-m87
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds